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Exercice 1. 1. We first do this division in C. There, we obtain that

(5 + 5i)

(4 + 2i)
=

(5 + 5i)(−4 + 2i)

(4 + 2i)(−4 + 2i)
=

3

2
+

1

2
i.

By either rounding up or down both the real and imaginary part, we find the closest elements
in Z[i] to be the quotients 1, 2, 1 + i, 2 + i. The division by these with rest are

• (5 + 5i) = 1 · (4 + 2i) + (1 + 3i)

• (5 + 5i) = 2 · (4 + 2i) + (−3 + i)

• (5 + 5i) = (1 + i) · (4 + 2i) + (3− i)
• (5 + 5i) = (2 + i) · (4 + 2i) + (−1− 3i)

Remark that we need to take the closest elements in Z[i] to 3
2 + 1

2 i ∈ C as otherwise the norm
of the rest would exceed the norm of 4+2i, which is a contradiction. In all of the above cases,
this is satisfied. This also shows that the quotent and rest of the euclidean division are not
unique.

2. We have

• 2 = (1 + i)(1− i) and since 1 + i, 1− i /∈ (Z[i])× it follows that 2 is not irreducible

• Assume that 3 = x · y, with x, y ∈ Z[i]. Then by Proposition 3.4.8, it follows that both
N(x) and N(y) divide N(3) = 9. This is possible if N(x), N(y) ∈ {1, 3, 9}. If N(x) = 1,
then x is a unit. If N(x) = 9, then N(y) = 1 and y is a unit. If N(x) = 3, with x = a+ib
for a, b ∈ Z, then N(x) = a2 + b2, but for natural numbers a and b this is impossible.
So N(x) 6= 3, and the only way to write 3 as a product of two elements x, y in Z[i] is if
either of them is a unit, which means that 3 is irreducible.

• 5 = (2 + i)(2− i) is not irreducible, as both factors are not units.

• 2i = (1 + i)2 is not irreducible, as 1 + i is not a unit.

• Since N(2 − 3i) = 13 is irreducible in Z, it follows by Proposition 3.4.8 that 2 − 3i is
irreducible in Z[i].

3. We note that Z[i] is Euclidean by Example 3.2.7, from which it follows by Proposition 3.3.3
that Z[i] is principal. The Proposition 3.4.13 then states that since 3 is irreducible in Z[i],
the ideal (3) is maximal in Z[i]. It follows that Z[i]/(3) is a field.

To study its cardinality, we see that the classes modulo 3 are represented by the rest of the
division by 3 in Z[i]. The norm of the rest, which we denote by r1+ir2 is N(r1+ir2) = r21 +r22
and is strictly smaller than the norm of 3, which is N(3) = 9. This is satisfied for pairs of
(r1, r2) of the form (0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2), (2, 1), (1, 2), (2, 2). There are 9 such
pairs. (Rmk: for example, the pair (1,−1) satisfies the restrictions as well, but it coincides
with the pair (1, 2) modulo 3, as 1 + 2i = 3i+ (1− i). Hence the pairs above are all.)

An alternative way to count the elements in Z[i]/(3) is via the isomorphism in Serie 4,
Exercies 4.1. We saw that Z[i]/(3) ∼= F3[t]/(t

2 + [1]3). The elements in F3[t]/(t
2 + [1]3)

are the following: 0, 1, 2, t, 1 + t, 2 + t, 2t, 1 + 2t, 2 + 2t, which correspond to the following
elements in Z[i]/(3) : 0, 1, 2, i, 1 + i, 2 + i, 2i, 1 + 2i, 2 + 2i.



Exercice 2. 1. On one hand, we have | a + bω |2= (a + bω)(a + bω̄) = a2 + ab(ω + ω̄) + b2ωω̄.
On the other hand, we see that both ω = e

2πi
3 and its complex conjugate ω̄ = e−

2πi
3 are roots

of the polynomial z3 − 1 = 0. Since z3 − 1 = (z − 1)(z2 + z + 1), both ω and ω̄ are roots of
the polynomial (z2 + z+ 1) and therefore (z2 + z+ 1) = (z−ω)(z− ω̄) = z2− (ω+ ω̄)z+ωω̄,
from which it follows by comparing coefficients that ω + ω̄ = −1 and ωω̄ = 1. Therefore,
| a+ bω |2= a2 − ab+ b2 = N(a+ bω).

2. La norme au carré étant toujours positive, la formule définissant N montre que cette norme
prend des valeurs entières. Pour montrer qu’il s’agit d’une fonction euclidienne on procède
comme pour les entiers de Gauss. Soit a+bω un entier d’Eisenstein et (a+bω) l’idéal principal
correspondant. Cet idéal est un réseau dans Z[ω]. Voici une illustration tirée d Wikipedia de
Z[ω]:

La maille fondamentale de ce réseau est un losange de côté 1 dont les sommets sont par
exemples 0, 1, ω et 1 + ω, ce dernier étant aussi de norme 1 − 1 + 1 = 1. Ainsi la petite
diagonale est de longueur 1 et la grande est de longueur

√
3 =

√
N(1− ω).

L’idéal (a+ bω) est donc obtenu à partir du réseau ci-dessus par une dilatation d’un facteur√
N(a+ bω) et rotation d’angle l’argument de a + bω. Pour nos considérations il suffira de

considérer la taille d’un losange de ce réseau homothétique, choisissons le losange de sommets
0, a+ bω, ω(a+ bω) et (1 + ω)(a+ bω) (que l’on pourra dessiner sur l’illustration précédente
pour 3 + 2ω par exemple.) La petite diagonale est de longueur | a + bω | et la grande de
longueur

√
3· | a+ bω |. Par conséquent le cercle dont le centre est le milieu du losange (point

d’intersection des diagonales) et dont le rayon vaut
√

3/2· | a+ bω | contient toute la maille.
Ceci démontre que tout point de Z[ω] se trouve à une distance d’au plus

√
3/2· | a+ bω | d’un

point de ce réseau (a+ bω).

Autrement dit, pour tout entier d’Eisenstein c + dω, il existe un entier q = q0 + q1ω tel que
r = c+ dω − q(a+ bω) est de norme plus petite ou égale à 3/4 ·N(a+ bω) < N(a+ bω). On
choisira alors q pour quotient et r comme reste de la division.

3. Let z ∈ Z[ω] be invertible, with inverse element denoted by z−1. Then by the multiplicative
properties of the norm, we have that 1 = N(1) = N(z) · N(z−1), and therefore, N(z) ∈ N
needs to be equal to 1. This is obtained for the elements z = ±1,±ω,±(1+ω). One checks that
these are indeed units: ±1 is clearly a unit, and by the first point, we have that ω+ ω̄ = −1.
From this, it follows with ω2 = ω̄ that ω(1 + ω) = ω + ω2 = ω + ω̄ = −1. Hence the inverse
of ±ω is ∓(1 + ω).

Exercice 3. 1. We define a+ b
√

5 = a− b
√

5 and note that for all z ∈ Z[
√

5], the norm N(z) =
zz. The fact that N is a multiplicative function then follows from the fact that ∀y, z ∈ Z[

√
5],

it holds that yz = y z. With this, we get that N(yz) = yzyz = yzy z = yyzz = N(y)N(z).



Furthermore, if z ∈ Z[
√

5] is invertible, then N(z) = ±1 is necessary. If we denote its inverse
by z−1, then N(z)N(z−1) = N(1) = 1, and therefore, N(z) = ±1. On the other hand, if
N(z) = ±1 for some z ∈ Z[

√
5], then ±1 = N(z) = zz and hence ±z is the inverse of z.

2. We note that N(9 + 4
√

5) = 92 − 5 · 42 = 1, and so by the first point, 9 + 4
√

5 is invertible.
Furthermore, by the multiplicative property of the norm, the norm of (9 + 4

√
5)n is 1 as well,

for n ∈ N. This means that we have created infinitely many invertible elements, and (Z[
√

5])×

is infinite.

3. We first show that no elements of norm 2 exist. For this, we note that N(a+
√

5b) = a2−5b2,
which is equal to a2 modulo 5, a square. But all squares in Z/5Z are either 0,1 or 4, as one
checks by taking the square of all elements in Z/5Z.
Now let z ∈ Z[

√
5] be of norm 4, and we assume that z = v · w for v, w ∈ Z[

√
5]. Then

4 = N(z) = N(v)N(w). But as there are no elements of norm 2, we have that either N(v) =
±1, N(w) = ±4 or N(v) = ±4, N(w) = ±1. In either cases one of the two elements is of norm
±1, which means that that element is invertible. Hence z is irreducible.

4. We have

• 4 = 2 · 2 and N(2) = 4, hence by the previous part, 2 is irreducible

• 4 = (1 +
√

5)(−1 +
√

5) and N(1 +
√

5) = −4, N(−1 +
√

5) = −4, hence both 1 +√
5,−1 +

√
5 are irreducible.

• 4 = (3 +
√

5)(3−
√

5) and N(3 +
√

5) = 4, N(3−
√

5) = 4, hence both 3 +
√

5, 3−
√

5
are irreducible.

5. As we see from the previous point, 2 · 2 = 4 = (3 +
√

5)(3−
√

5), from which it follows that
2 · 2 ∈ (3 +

√
5). But as 2 /∈ (3 +

√
5), the ideal (3 +

√
5) is not prime.

We remark that irreducible does not imply prime in a ring that is not factorial or principal.

Exercice 4. 1. We calculate the complex roots of the polynomial 3+2t+2t2. They are
−2± i

√
20

4
=

−1± i
√

5

2
. The roots are elements in Q[i

√
5] and we have that 3+2t+2t2 = 2(t+

1 + i
√

5

2
)(t+

1− i
√

5

2
). This means that 3 + 2t+ 2t2 is not irreducible in Q[i

√
5], as we can express it as

the product of 2(t+
1 + i

√
5

2
) and (t+

1− i
√

5

2
), both of which are not units.

On the other hand, if we try to decompose 3 + 2t+ 2t2 into a product of two non-invertible
elements in Z[i

√
5], then we have two option: we assume that 3 + 2t + 2t2 = f(t)g(t) with

f, g polynomials in Z[i
√

5][t]. Now the sum of the degree of f plus the degree of g is equal to
2, which means that either f is of degree 2, and g of degree 0 (or vice versa), or the degree of
both is 1.

If g is of degree 0, then g is in Z[i
√

5], and it holds that g times the leading coefficient of f
is equal to 2. But since 2 is irreducible in Z, (this can be seen by checking that N(2) = 4,
and verifying that not element in Z[i

√
5] exists with norm 2) it follows that either g = ±1 or

g = ±2. If g = ±1, then the decomposition of 3 + 2t + 2t2 is the decomposition into a unit
multiplied by a non-unit. The other decomposition with g = ±2 does not exist, since not all
coefficients of 3 + 2t+ 2t2 are divisible by 2.

Therefore, our only possibility for a decomposition into a product of two non-invertible el-
ements is if both f and g are of degree 1. Let f(t) = (αt + β), g(t) = (γt + δ) with
α, . . . , δ ∈ Z[i

√
5]. Since the leading coefficient of 3 + 2t + 2t2 is 2, which is irreducible



in Z, it follows that α = ±2, γ = ±1 (or vice versa). We now note that the ring C[t] is
integral by Proposition 3.2.3. Since furthermore, it is principal by Corollary 3.3.5, it holds
that every irreducible element is prime by Proposition 3.4.13. Then by Proposition 3.5.4,
if an element c(t) ∈ C[t] admits a decomposition into irreducible factors, then that decom-
position is unique (up to multiplication by units). This means that if a decomposition of
3 + 2t+ 2t2 in Z[i

√
5] exists, then it must agree with the decomposition in C[t] we have found

above. So if 3 + 2t + 2t2 = (2t + β)(t + δ) is a decomposition in Z[i
√

5][t], then it needs to
agree with the decomposition in C[t], which would force the decomposition to be of the form
3 + 2t + 2t2 = (2t + 1 +

√
5i)(t + 1−i

√
5

2 ) or 3 + 2t + 2t2 = (t + 1+
√
5i

2 )(2t + 1 − i
√

5). But
clearly one of the roots is not a root in Z[i

√
5], which is a contradiction. We conclude that in

Z[i
√

5], the polynomial can not be written as a product of non-invertible elements, making it
irreducible.

2. Généralisation. We calculate

(a+ ct)(b+ ct) = ab+ (cb+ ac)t+ c2t = cd+ (cb+ ac)t+ c2t = c(d+ (a+ b)t+ ct2)

which shows that the roots of d+ (a+ b)t+ ct2 are −a/c and −b/c in K. This shows that in
K, we can write the polynomial d + (a + b)t + ct2 as the product c(t + a

c )(t + b
c), with both

terms c(t+ a
c ) and (t+ b

c), not units. Hence the polynomial is not irreducible in K.

On the other hand, over A, the polynomial is irreducible. This we prove as in the exercise
above. We assume that the polynomial decoposes into a product of two non-invertible poly-
nomials f and g. There are two options. Firstly, we suppose that g is of degree 0, and f
is of degree 2. Then, g multiplied with the leading coefficient of f is equal to c. But since
c is irreducible in A, it follows that g = u, u ∈ A× or g = uc, u ∈ A× If g = u, then the
decomposition is the decomposition into a unit and non-unit. The other decomposition, with
g = uc does not exist, since c does not divide at least one coefficient of our polynomial. In
fact, c does not divive d because they are irreducible and not associated.

So we now assume that the degree of f and g is 1. Then, f(t) = αt + β, g(t) = γt + δ,
with α, . . . , δ ∈ A. Since the leading coefficient is c, which is irreducible in A, it follows that
α = uc, u ∈ A×. The argument above only uses the fact that C is a field to show that if an
element over C[t] admits a decomposition into irreducible factors, then it is unique. Hence we
apply the same propositions to the fieldK and see that the decomposition of d+(a+b)t+ct2 as
the product c(t+ a

c )(t+ b
c) is unique. From this, it follows that if there exists a decomposition

of the polynomial in A, then it must agree with the decomposition in K, which is of the form
d+ (a+ b)t+ ct2 = (ct+ a)(t+ b

c), or d+ (a+ b)t+ ct2 = (t+ a
c )(ct+ b). But clearly in both

cases, one of the roots is not a root in A, which is a contradiction. Hence the polynomial is
irreducible in A.

3. By divide −2 + i
√

5 by 1 + i
√

5 with rest, and then calculate the norm of the rest. If Z[i
√

5]
with the norm N(a+ i

√
5b) = a2 + 5b2 was Euclidean, then the norm of the rest would need

to be smaller than the norm of 1 + i
√

5, which is 6. We perform the division over C, and
obtain −2+i

√
5

1+i
√
5

= 1
2 + i12

√
5. The closest elements in Z[i

√
5] are 0, i

√
5, 1, 1+ i

√
5. It holds that

• −2 + i
√

5 = (1 + i
√

5) · 0 + (−2 + i
√

5) = 0 + (−2 + i
√

5) with N(−2 + i
√

5) = 9

• −2 + i
√

5 = (1 + i
√

5) · i
√

5 + 3 = (−5 + i
√

5) + 3 with N(3) = 9

• −2 + i
√

5 = (1 + i
√

5) · 1 + (−3) = (1 + i
√

5) + (−3) with N(−3) = 9

• −2+i
√

5 = (1+i
√

5) ·(1+i
√

5)+(2−
√

5) = (−4+i2
√

5)+(2−
√

5) with N(2−
√

5) = 9

As the norm of every rest is bigger than 6, we can not find q, r ∈ Z[i
√

5] such that −2+ i
√

5 =
q(1 + i

√
5) + r with N(r) < N(1 + i

√
5), which means that Z[i

√
5] equipped with N is not

Euclidean.



Note that we can also look at the calculations above in a geometric way. The four elements
0, 1 + i

√
5, −5 + i

√
5 et −4 + 2i

√
5 are the edges of the rectangle of the lattice spanned by

(1 + i
√

5) that contains −2 + i
√

5.

Exercice 5.
For any field K, we know that by Corollary 3.3.5, K[t] is a principal ideal domain. By Proposition
3.4.13, in a PID, the following are equivalent, for q in the PID:

• q prime

• q irreducible

• (q) prime

• (q) maximal.

1. For C[t], we know by Example 2.3.7(c) that

f(t) ∈ C[t] irreducible⇔ f(t) = ct+ d, c ∈ C \ {0}, d ∈ C.

Hence the prime=maximal ideals in C[t] are of the form (ct+ d).

For R[t], we know by Example 3.4.7 that the ideal (t − d) is prime=maximal for all d ∈ R.
Furtermore, by Example 3.4.7, we know that if f ∈ R[t], deg(f) ≤ 3, then

f(t) ∈ R[t] irreducible⇔ ∀c ∈ R : f(c) 6= 0

Let f(t) = at2 + bt + c = a
(
t2 + b

a t+ c
a

)
, with a ∈ R invertible. It suffices therefore to

study f(t) = x2 + bx + c. The complex roots of f are −b±
√
b2−4c
2 . Both roots are not in R if

b2− 4c < 0. Hence f is irreducible if b2− 4c < 0. The ideals (x2 + bx+ c) are prime=maximal
for b2 − 4c < 0.

There are no irreducible polynomials of higher degree, since a polynomial in R[t] of degree 3
or higher has at least one root that is contained in R.

2. We consider the evaluation of K[s, t] at t = a, defined as

eva : K[s, t]→ K[s], s 7→ s, t 7→ a.

Similar to Example 1.4.10, we show that ker(eva) = (t − a). With the first isomorphism
theorem (and eva being surjective), it follows that K[s, t]/(t − a) ∼= K[s]. With Proposition
3.2.3, it follows from K being a field, and hence in particular being integral, that K[s] is
integral as well. From Proposition 2.5.2 it follows that (t− a) is a prime ideal. On the other
hand, it holds that K[s] is not a field, and therefore, with Proposition 2.5.5 it follows that
(t− a) is not a maximal ideal.

3. Consider the evaluation of C[s, t] at s = t2 defined as

evs=t2 : C[s, t]→ C[t], s 7→ t2, t 7→ t.

Again, by the usual argument, ker(evs=t2) = (s− t2). It follows with surjectivity by the first
isomorphism theorem that C[s, t]/(s− t2) ∼= C[t]. By Corollary 3.3.5, using that C is a field,
it follows that C[t] is a principal ideal domain.



4. We want to apply the Chinese remainder theorem to the ideals (t−ai) in K[t]. We may do so,
since from ai 6= aj for all i, j it follows that (t− ai) is prime to (t− aj). With the remainder
theorem, we get that

K[t]/((t− a1) ∩ . . . ∩ (t− an)) ∼= K[t]/(t− a1)× . . .×K[t]/(t− an).

First, we remark that (t − a1) ∩ . . . ∩ (t − an) = ((t − a1) · . . . · (t − an)), and we denote
f(t) := (t − a1) · . . . · (t − an). Seondly, the K[t]/(t − ai) are isomorphic to K, using the
evaluation at ai. It follows that

K[t]/(f(t)) ∼= K × . . .×K ∼= Kn.

We now take (b1, . . . , bn) ∈ Kn. Via the isomorphism above, there exists g(t) ∈ K[t] modulo
f(t) that corresponds to (b1, . . . , bn) ∈ Kn. Since the isomorphism above is constructed using
the evaluations as ai, it follows that g(ai) = bi for all i = 1, . . . , n. Lastly, since f(t) is of
degree n, we may represent a class (modulo f) by a polynomial of degree strictly smaller than
n. Hence g(t) is of degree at most n− 1.

Exercice 6.
By Example 3.2.7, we have that Z[i] is euclidean. From Proposition 3.3.3 it follows that Z[i] is
principal. This means that every ideal in Z[i] is generated by a single element. So let a ∈ Z[i] such
that (5) ( (a) ( Z[i]. From Remark 3.4.5 it follows that a | 5 and then with Proposition 3.4.8 it
follows that N(a) | N(5) = 25. The only options for N(a) are 1,5, or 25. But since (a) is not equal
to both (5) and Z[i], it follows that N(a) 6= 25 and N(a) 6= 1. Hence N(a) = 5, and we let a = c+id
with c, d ∈ Z. In order for N(c+ id) = 5 to hold, we have that either c = ±1, d = ±2 or vice versa.
The possibilities for a are a = 1 + 2i, 1− 2i,−1 + 2i,−1− 2i and a = 2 + i, 2− i,−2 + i,−2− i. But
the elements −1− 2i, 1 + 2i and −2 + i are all associated to 2− i and the elements −1 + 2i, 1− 2i
and −2− i are all associated to 2 + i. We obtain two ideals (a) = (2− i) and (a) = (2 + i). Since
the elements 2− i and 2 + i are not associated, these ideals are distinct.

We now let b ∈ Z[i] such that (2) ( (b) ( Z[i]. As above, b | 2, from which it follows that
N(b) | N(2) = 4. The options for N(b) are 1,2 and 4, but since (b) is not equal to (2) or Z[i], it
follows that N(b) = 2. This is satisfied for b of the form 1 + i, 1− i,−1 + i,−1− i. As all of these
elements are associated, the only ideal we obtain is (b) = (1 + i).

Exercice 7. 1. It holds that

• (S−1A,+) is a subgroup of (Frac(A),+), since 0
1 ∈ S

−1A, as 0 ∈ A, 1 ∈ S. Furthermore,
∀ab ,

c
d ∈ S

−1A, we have that a
b + c

d = ad+cb
bd ∈ S−1A, since ad + cb ∈ A, and bc ∈ S for

b ∈ S, c ∈ S. Lastly, the additive inverse of a
b ∈ S

−1A is −ab , which is contained in S−1A
as well.

• Since 1A ∈ S, it holds that 1
1 ∈ S

−1A.

• ∀ab ,
c
d ∈ S

−1A we have that a
b ·

c
d = ac

bd ∈ S
−1A since ac ∈ A, and bd ∈ S for b ∈ S, d ∈ S.

This means that S−1A is a ring.

2. We show that S := A \ p = {a ∈ A | a /∈ p} is closed under multiplication.

• It holds that 1 ∈ S, since if 1 were contained in p, then p would be the whole ring A.

• For a, b ∈ S, it holds that a · b ∈ S, which means that a · b /∈ p. This holds because if
a · b were contained in p, then since p is prime, it would follow that either a ∈ p or b ∈ p,
which is not possible due to the assumption that both a and b are contained in S.



For the ring A = Z, you have seen the localization at a prime ideal in Example 2.1.7.

3. We note that the elements in the ring Z(2) are of the form

Z(2) = {a
b
∈ Frac(Z) | b ∈ Z \ (2)} = {a

b
∈ Q | 2 - b}.

We remark that the elements a
b ∈ Z(2) with 2 - a are the units of Z(2), since the inverse of a

b

is b
a , which is contained in Z(2) due to the fact that 2 - a.

We definem ⊆ Z(2) to bem := {ab ∈ Z(2) | a ∈ (2)}. This is an ideal, since for a
b ∈ m,

c
d ∈ Z(2),

it holds that a
b ·

c
d = ac

bd ∈ m, since a ∈ (2), c ∈ Z, and hence ac ∈ (2). Furthermore, it is
clearly an additive group. We show that this ideal is maximal. For this, we assume that there
exists an ideal I such that m ⊂ I and m 6= I. So there must exist an element a

b ∈ I which
is not contained in m. This means that a /∈ (2), and hence 2 - a. But as we remarked above,
then a

b is a unit in Z(2), and so I is equal to Z(2).

Other proper ideals in Z(2) are of the following form I = {ab ∈ Z(2) | a ∈ (n)} where (n) is an
ideal such that (n) ⊆ (2)⇔ 2 | n. These are clearly ideals. They are all ideals, since if there
was an ideal that contained an element a

b such that a is not a multiple of 2, then a
b is a unit

and hence the ideal is the whole ring.

Lastly, we remark that the only prime ideal is the maximal ideal. The other ideals of the
form I = {ab ∈ Z(2) | a ∈ (n)} with (n) ⊆ (2) but n 6= 2 are not prime, since we have that
n
1 ∈ I, and we may write n = 2m for some m ∈ Z,m < n. But then n

1 = 2
1 ·

m
1 and both 2

1 /∈ I
and m

1 /∈ I.

4. It holds that Z2 = {ab ∈ Q | b ∈ {1, 2, 22, 23, . . .}} = { a
2i
∈ Q | i ∈ N}. Hence for i = 0, we

obtain elements a
20

= a ∈ Z, and for i > 0, we obtain elements of the form a
2i

with 2 - a.
The units are elements that have an inverse in Z2. These are the elements of the form 2i ∈ Z,
since their inverse is of the form 1

2i
, which is contained in Z2, and elements of the form 1

2i
,

since their inverse is of the form 2i

1 , which is contained in Z2. The other elements are not
units, since seen as elements in Q they have an inverse, which is unique, but their inverse in
not contained in Z2 (i.e. the inverse of a

2i
with 2 - a in Q is 2i

a , but since 2 - a, this is not an
element of Z2.)

The irreducible elements are the elements of the form p
2i

and 2i · p with p ∈ Z prime. To
prove this, we let a

2i
∈ Z2. Then a ∈ Z has a prime decomposition of the following form,

a = pk11 · . . . · pk
r

r for some prime numbers pi ∈ Z, and r ≥ 1, ki ≥ 1. There are two cases.

• If all the prime numbers pi are odd, then we can write

a

2i
=

1

2i
· pk11 · . . . · p

kr

r ,

with 1
2i

a unit in Z2. It follows that a
2i

is irreducible if and only if r = 1 and k1 = 1.
This means that a

2i
is of the form p

2i
with p prime im Z.

• If the prime number 2 appears in the decomposition of a, then we have the following:
We may assume that p1 = 2, and that i = 0 (since we assume that the fractions in Z2

are shortened). We can write

a

20
= a = 2k1 · pk22 · . . . · p

kr

r ,

with 2k1 a unit in Z2. It follows that a is irreducible if and only if r = 2 and k2 = 1.
This means that a

2i
is of the form 2j · p with p prime in Z.


