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Recap: Policy optimization

max
θ

J(πθ) := E

[
∞∑
t=0

γtr(st, at)|s0 ∼ µ, πθ

]
= Es∼µ[V πθ (s)]

Tabular parametrization
I Direct:

πθ(a|s) = θs,a, with θs,a ≥ 0,
∑

a
θs,a = 1

I Softmax:

πθ(a|s) =
exp(θs,a)∑

a′∈A exp(θs,a′ )

Non-tabular parametrization
I Softmax:

πθ(a|s) =
exp(fθ(s, a))∑

a′∈A exp(fθ(s, a′))

I Gaussian:

πθ(a|s) ∼ N
(
µθ(s), σ2

θ(s)
)
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Recap: Policy gradient methods

max
θ

J(πθ) := E

[
∞∑
t=0

γtr(st, at)|s0 ∼ µ, πθ

]
= Es∼µ[V πθ (s)]

Exact policy gradient method

θt+1 ←− θt + αt∇θJ(πθt ),

where ∇θJ(πθt ) is the full gradient of the performance objective.

Stochastic policy gradient method

θt+1 ←− θt + αt∇̂θJ(πθt ),

where ∇̂θJ(πθt ) is a stochastic estimate of the full gradient of the performance objective and is used in
I REINFORCE [9]
I REINFORCE with baseline
I Actor-Critic [5]
I ...
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Previous lecture

Question 1 (Non-concavity)
When do policy gradient methods converge to an optimal solution? If so, how fast?

Remarks: ◦ Optimization wisdom: GD/SGD can converge to the global optima for “convex-like” functions:

J(π?)− J(π) = O(‖∇J(π)‖) or O(‖G(π)‖)

◦ Take-away: Despite nonconcavity, PG converges to the optimal policy, in a sublinear or linear rate.

Question 2 (Vanishing gradient)
How to avoid vanishing gradients and further improve the convergence?

Remarks: ◦ Optimization wisdom: Use divergence with good curvature information.

◦ Take-away: Natural policy gradient achieves a faster convergence with better constants.
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This lecture

Question 3 (theory)
◦ Why does NPG achieve a better convergence?

◦ How can we further improve the algorithm?

Question 4 (practice)
◦ How do we extend the algorithms to function approximation settings?

◦ How do we extend the algorithms to online settings without computing exact gradient?

◦ How do we extend the algorithms to off-policy settings?
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Revisit gradient descent

◦ Consider the optimization problem minx∈Rd f(x).

I Gradient descent (GD):
xt+1 = xt − η∇f(xt).

I Equivalent regularized form:

xt+1 = arg min
x

{
∇f(xt)>(x− xt) +

1
2η
‖x− xt‖22

}
.

I Equivalent trust region form:

xt+1 = arg min
x

∇f(xt)>(x− xt), s.t. ‖x− xt‖22 ≤ δ.

Question: ◦ Would GD give the same trajectory under invertible linear transformations (x→ Ay)?
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Gradient descent revisited

Figure: GD is not invariant w.r.t. linear transformation.
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Recall Bregman divergences

Bregman divergence
Let ω : X → R be continuously differentiable and 1-strongly convex w.r.t. some norm ‖ · ‖ on X . The Bregman
divergence Dω associated to ω is defined as

Dω(x,y) = ω(x)− ω(y)−∇ω(y)T (x− y),

for any x,y ∈ X .

Examples: ◦ Euclidean distance: ω(x) = 1
2‖x‖

2
2, Dω(x,y) = 1

2‖x− y‖22.

◦ Mahalanobis distance: ω(x) = 1
2 xTQx (where Q � I), Dω(x,y) = 1

2 (x− y)TQ(x− y).

◦ Kullback-Leibler divergence: X = {x ∈ Rd+ :
∑d

i=1 xi = 1}, ω(x) =
∑d

i=1 xi log xi

Dω(x,y) = KL(x||y) :=
∑d

i=1
xi log

xi

yi
.
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Background: Mirror descent

Mirror descent (Nemirovski & Yudin, 1983)
For a given strongly convex function ω, the iterates of mirror descent [2] are given by

xt+1 = arg min
x∈X

{Dω(x,xt) + ηt〈∇f(xt),x− xt〉}.

Examples: ◦ Gradient descent: X ⊆ Rd, ω(x) = 1
2‖x‖

2
2, Dω(x,xt) = 1

2‖x− xt‖22.

xt+1 = ΠX (xt − ηt∇f(xt)).

◦ Entropic mirror descent [2]: X = ∆d, ω(x) =
∑d

i=1 xi log xi, Dω(x,xt) = KL(x||xt).

xt+1 ∝ xt � exp(−ηt∇f(xt)),

where � is element-wise multiplication and exp(·) is applied element-wise.

◦ Entropic Mirror Descent attains nearly dimension-free convergence (Chapter 4 of [3]).

◦ See Lecture 4 Supplementary Material for more details and examples.
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Background: Fisher information and KL divergence

Fisher Information Matrix
Consider a smooth parametrization of distributions θ 7→ pθ(·), the Fisher information matrix is defined as

Fθ = Ez∼pθ [∇θ log pθ(z)∇θ log pθ(z)>].

Remarks: ◦ It is an invariant metric on the space of the parameters.

◦ Fisher information matrix is the Hessian of KL divergence.

Fθ0 =
∂2

∂θ2 KL(pθ0 ||pθ)
∣∣
θ=θ0

.

◦ The second-order Taylor expansion of KL divergence is given by

KL(pθ0 ||pθ) ≈
1
2

(θ − θ0)>Fθ0 (θ − θ0).
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Background: Natural gradient descent

◦ Consider the optimization problem minx∈∆ f(x) and represent x by pθ(·).

I Natural gradient descent (Amari, 1998):

θt+1 = θt − η(Fθt )
†∇f(θt).

I Equivalent regularized form:

θt+1 = arg min
θ

{
∇f(θt)>(θ − θt) +

1
2η

(θ − θt)>Fθt (θ − θt)
}
.

I Equivalent trust region form:

θt+1 = arg min
θ

∇f(θt)>(θ − θt), s.t.
1
2

(θ − θt)>Fθt (θ − θt) ≤ δ.
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Natural policy gradient method for policy optimization

max
θ

J(πθ) := E

[
∞∑
t=0

γtr(st, at)|s0 ∼ µ, πθ

]
= Es∼µ[V πθ (s)]

Natural policy gradient (Kakade, 2002)[4]
For a stepsize η > 0, the iterates of natural policy gradient are given by

θt+1 = θt + η(Fθt )
†∇θJ(πθt ).

Remarks: ◦ Fθ is the Fisher Information Matrix:

Fθ = E
s∼λπθµ ,a∼πθ(·|s)

[
∇θ log πθ(a|s)∇θ log πθ(a|s)>

]
.

◦ ∇θJ(πθ) is the policy gradient:

∇θJ(πθ) =
1

1− γ
E
s∼λπθµ ,a∼πθ(·|s) [∇θ log πθ(a|s)Aπθ (s, a)] .

◦ C† is the Moore–Penrose inverse of the matrix C.
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Interpretation of NPG

◦ NPG can be viewed as repeatedly solving the quadratic approximation of the subproblem:

θt+1 ≈ arg max
θ

{
J(πθ), s.t. KL (pθt (τ)||pθ(τ)) ≤ δ

}
,

where pθ(τ) is the probability of the random trajectory τ = (s0, a0, r1, . . . , ...).

Explanation: ◦ Approximate the objective with the first-order Taylor expansion: ∇J(πθt )>(θ − θt).

◦ Approximate the constraint with the second-order Taylor expansion:

KL (pθt (τ)||pθ(τ)) ≤ δ →
1
2

(θ − θt)>Fθt (θ − θt) ≤ δ.

Question: ◦ How can we compute the iterates of natural policy gradient efficiently?
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Computing natural policy gradient

Equivalent form of NPG (Appendix C.3 [1])
Let w?(θ) be such that

(1− γ)(Fθ)†∇θJ(πθ) = w?(θ).

Then, w?(θ) is the solution to the following least squares minimization problem:

w?(θ) ∈ arg min
w
E
s∼λπθµ ,a∼πθ(·|s)

[(
w>∇θ log πθ(a|s)−Aπθ (s, a)

)2]
. (1)

Remarks: ◦ The proof follows immediately by first-order optimality condition.

◦ Equivalently, we can rewrite NPG as:

θt+1 = θt +
η

1− γ
w?(θt).

◦ w?(θt) can be obtained by solving (1) via conjugate gradients, SGD, and other solvers.
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Side story

Compatible function approximation (Sutton et al., 1999)[8]
Let Aw? (s, a) be defined as w

Aw? (s, a) := w? · ∇θ log πθ(a|s)

where w? is as defined in (1). Then we have

∇θJ(πθ) =
1

1− γ
Fθ · w? =

1
1− γ

E
s∼λπθµ ,a∼πθ(·|s) [∇θ log πθ(a|s)Aw? (s, a)] .

Remarks: ◦ One can obtain unbiased policy gradient with Aw? (s, a)

I This is the best linear approximation of Aπθ (s, a) using feature maps ∇ log πθ(s, a).

◦ Advantage value function approximation Aπθ (s, a) ≈ w>φ(s, a) can introduce bias.
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Example 1: Tabular NPG under softmax parameterization

NPG parameter update
Consider the softmax parameterization πθ(a|s) = exp(θs,a)∑

a′ exp(θs,a′ )
and denote πt = πθt , the induced NPG

parameter update corresponds to the following

θt+1 = θt +
η

1− γ
Aπt .

NPG policy update = policy mirror descent
In policy space, the induced update corresponds to the following

πt+1(a|s) = πt(a|s)
exp(ηAπt (s, a)/(1− γ))

Zt(s)
.
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Example 2: NPG with linear function approximation

NPG parameter update
Consider πθ(a|s) = exp(θ>φ(s,a))∑

a′ exp(θ>φ(s,a′))
and denote πt = πθt . The induced NPG parameter update corresponds

to the following

θt+1 = θt +
η

1− γ
wt, where wt = arg min

w
E
s∼λπθµ ,a∼πθ(·|s)

[(
w>φ̄(s, a)−Aπθ (s, a)

)2]
.

NPG policy update = policy mirror descent
Notice that the parameterizations can be chosen to result in the familiar mirror descent updates on policies:

πt+1(a|s) = πt(a|s)
exp(ηw>t φ(s, a)/(1− γ))

Zt(s)
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Convergence of tabular NPG with softmax parametrization

NPG policy update = policy mirror descent

πt+1(a|s) = πt(a|s)
exp(ηAπt (s, a)/(1− γ))

Zt(s)

Convergence of tabular NPG [1]
In the tabular setting, for any η ≥ (1− γ)2 log |A| and T > 0, the tabular NPG satisfies

J(π?)− J(πT ) ≤
2

(1− γ)2T
.

Remarks: ◦ Nearly dimension-free convergence, no dependence on |A|, |S|.

◦ No dependence on distribution mismatch coefficient.

Question: ◦ What is the computational cost of this (nearly) dimension-free method?
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Proof of tabular NPG convergence

Lemma (Policy Improvement)

J(π)− J(πt) =
1
η
Es∼λπµ [KL(π(·|s)||πt(·|s))−KL(π(·|s)||πt+1(·|s)) + logZt(s)] .

Proof sketch: ◦ Recall from Performance Difference Lemma:

J(π)− J(πt) =
1

1− γ
Es∼λπµ,a∼π(a|s)[Aπt (s, a)].

◦ From the update rule πt+1(a|s) = πt(a|s) exp(ηAπt (s,a)/(1−γ))
Zs

, we have

Aπt (s, a) =
1− γ
η

log
πt+1(a|s)Zt(s)

πt(a|s)
.

◦ Combing these two equations, we have the above lemma.
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Proof of Tabular NPG convergence

Proof.
◦ Setting π = π? in the previous lemma and telescoping from t = 0, . . . , T − 1

1
T

T−1∑
t=0

J(π?)− J(πt) ≤
1
ηT
E
s∼λπ?µ

[KL(π?(·|s)||π0(·|s))] +
1
ηT

T∑
t=0

E
s∼λπ?µ

[logZt(s)] .

◦ Setting π = πt+1 in the previous lemma, we have

J(πt+1)− J(πt) ≥
1
η
E
s∼λ

πt+1
µ

[logZt(s)] ≥
1− γ
η
Es∼µ [logZt(s)] ≥ 0, ∀µ.

◦ Combining these two equations and the fact that J(π) ≥ 1
1−γ implies that

1
T

T−1∑
t=0

J(π?)− J(πt) ≤
log |A|
ηT

+
1

(1− γ)2T
.

�
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Sample-based NPG

Sample-based NPG (informal)
◦ Use N -step SGD to estimate wt ≈ w?(θt)

◦ Update θt+1 = θt + η
1−γwt

Sample-based NPG
Initialize policy parameter θ0 ∈ Rd, step size η > 0, α > 0
for t = 0, 1, . . . , T − 1 do
Initialize w0, denote πt = πθt
for n = 0, 1, . . . , N − 1 do
Obtain sample s ∼ λπtµ , a ∼ πt(·|s)
Obtain an unbiased estimate Â(s, a) for Aπt (s, a)
Update w: w ← w − α(w>∇θ log πt(a|s)− Â(s, a)) · ∇θ log πt(a|s)

end for
Set wt = w (or the average)
Update θt+1 = θt + η

1−γwt
end for
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Convergence of sample-based NPG with function approximation

Convergence of sampled-based NPG (informal)

E

[
min
t<T

J(πθ? )− J(πθt )
]
≤ O

(
1

1− γ

√
2 log |A|

T
+
√
εstat + √εbias

)
,

where εstat is how close wt is to a w?(θt) (statistical error) and εbias is how good the best policy in the class is
(function approximation error).
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Popular Baselines

TRPO (ICML, 2015)

PPO (arXiv, 2017)

OpenAI implementation: https://github.com/openai/baselines
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Trust Region Policy Optimization (TRPO)

TRPO (key idea) [6]

max
θ

E
s∼λ

πθt
µ ,a∼πθt (·|s)

[
πθ(a | s)
πθt (a | s)

Aπθt (s, a)
]
,

s.t. E
s∼λ

πθt
µ

[KL(πθ(· | s)‖πθt (· | s))] ≤ δ.

Remarks: ◦ The surrogate objective can be viewed as linear approximation in π of J(πθ):

J(π) = J(πt) +
1

1− γ
Es∼λπµ,a∼π(a|s)[Aπt (s, a)]. (PDL)

◦ It can be approximated by a natural policy gradient step.

◦ Line-search can ensure performance improvement and no constraint violation.
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Proximal Policy Optimization (PPO2)

PPO (key idea) [7]

max
θ

E
s′∼λ

πθt
µ ,a∼πθt (·|s)

min
{
πθ(a|s)
πθt (a|s)

Aπθt (s, a), clip
(
πθ(a|s)
πθt (a|s)

; 1− ε; 1 + ε

)
Aπθt (s, a)

}

Remarks: ◦ PPO penalizes large deviation from the current policy directly inside the objective
function through clipping the ratio πθ

πθt
.

clip(x; 1− ε; 1 + ε) =

1− ε, if x < 1− ε
1 + ε, if x > 1 + ε

x, otherwise

◦ Run SGD. No need to deal with the KL divergence or trust region constraints.
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Numerical Performance [7]
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More Applications

Figure: PPO performs well in many locomotion task and games.

◦ Some links:
I https://www.youtube.com/watch?v=hx_bgoTF7bs
I https://openai.com/blog/openai-baselines-ppo/
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Summary

Figure from Schulman’s slide on PPO in 2017.
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Summary

Vanilla Policy Gradient Gradient Descent
REINFORCE Stochastic Gradient Descent

Natural Policy Gradient
Mirror DescentTRPO

PPO
Conservative Policy Iteration Frank Wolfe

... ...
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