# Theory and Methods for Reinforcement Learning

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 7: Policy Gradient 3

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-618 (Spring 2022)





# License Information for Theory and Methods for Reinforcement Learning (EE-618)

- ▷ This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
  - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
  - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes unless they get the licensor's permission.
- Share Alike
  - The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License



# **Recap:** Policy optimization

$$\max_{\theta} J(\pi_{\theta}) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) | s_{0} \sim \mu, \pi_{\theta}\right] = \mathbb{E}_{s \sim \mu}[V^{\pi_{\theta}}(s)]$$

# Tabular parametrization

Direct:

$$\pi_{ heta}(a|s)= heta_{s,a}, ext{ with } heta_{s,a}\geq 0, {\displaystyle \sum}_{a} heta_{s,a}=1$$

Softmax:

$$\pi_{\theta}(a|s) = \frac{\exp(\theta_{s,a})}{\sum_{a' \in \mathcal{A}} \exp(\theta_{s,a'})}$$

# Non-tabular parametrization

Softmax:

$$\pi_{\theta}(a|s) = \frac{\exp(f_{\theta}(s,a))}{\sum_{a' \in \mathcal{A}} \exp(f_{\theta}(s,a'))}$$

Gaussian:

$$\pi_{\theta}(a|s) \sim \mathcal{N}\left(\mu_{\theta}(s), \sigma_{\theta}^{2}(s)\right)$$

# **Recap: Policy gradient methods**

$$\max_{\theta} J(\pi_{\theta}) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) | s_{0} \sim \mu, \pi_{\theta}\right] = \mathbb{E}_{s \sim \mu}[V^{\pi_{\theta}}(s)]$$

Exact policy gradient method

$$\theta_{t+1} \longleftarrow \theta_t + \alpha_t \nabla_\theta J(\pi_{\theta_t}),$$

where  $\nabla_{\theta} J(\pi_{\theta_t})$  is the full gradient of the performance objective.

### Stochastic policy gradient method

$$\theta_{t+1} \longleftarrow \theta_t + \alpha_t \hat{\nabla}_{\theta} J(\pi_{\theta_t}),$$

where  $\hat{\nabla}_{\theta} J(\pi_{\theta_t})$  is a stochastic estimate of the full gradient of the performance objective and is used in

- REINFORCE [9]
- REINFORCE with baseline
- Actor-Critic [5]

► ...



# **Previous lecture**

# Question 1 (Non-concavity)

When do policy gradient methods converge to an optimal solution? If so, how fast?

# Question 2 (Vanishing gradient)

How to avoid vanishing gradients and further improve the convergence?



### **Previous lecture**

# Question 1 (Non-concavity)

When do policy gradient methods converge to an optimal solution? If so, how fast?

Remarks: • Optimization wisdom: GD/SGD can converge to the global optima for "convex-like" functions:

$$J(\pi^{\star}) - J(\pi) = O(\|\nabla J(\pi)\|) \text{ or } O(\|G(\pi)\|)$$

o Take-away: Despite nonconcavity, PG converges to the optimal policy, in a sublinear or linear rate.

# Question 2 (Vanishing gradient)

How to avoid vanishing gradients and further improve the convergence?



### **Previous lecture**

#### Question 1 (Non-concavity)

When do policy gradient methods converge to an optimal solution? If so, how fast?

Remarks: • Optimization wisdom: GD/SGD can converge to the global optima for "convex-like" functions:

$$J(\pi^*) - J(\pi) = O(\|\nabla J(\pi)\|) \text{ or } O(\|G(\pi)\|)$$

o Take-away: Despite nonconcavity, PG converges to the optimal policy, in a sublinear or linear rate.

#### Question 2 (Vanishing gradient)

How to avoid vanishing gradients and further improve the convergence?

Remarks: • Optimization wisdom: Use divergence with good curvature information.

• Take-away: Natural policy gradient achieves a faster convergence with better constants.

### This lecture

# Question 3 (theory)

 $\circ$  Why does NPG achieve a better convergence?

 $\circ$  How can we further improve the algorithm?

# Question 4 (practice)

- $\circ$  How do we extend the algorithms to function approximation settings?
- o How do we extend the algorithms to online settings without computing exact gradient?
- $\circ$  How do we extend the algorithms to off-policy settings?

#### **Revisit gradient descent**

 $\circ$  Consider the optimization problem  $\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$ .

Gradient descent (GD):

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \eta \nabla f(\mathbf{x}_t).$$

Equivalent regularized form:

$$\mathbf{x}_{t+1} = \operatorname*{arg\,min}_{\mathbf{x}} \Big\{ \nabla f(\mathbf{x}_t)^\top (\mathbf{x} - \mathbf{x}_t) + \frac{1}{2\eta} \|\mathbf{x} - \mathbf{x}_t\|_2^2 \Big\}.$$

Equivalent trust region form:

$$\mathbf{x}_{t+1} = \operatorname*{arg\,min}_{\mathbf{x}} \nabla f(\mathbf{x}_t)^\top (\mathbf{x} - \mathbf{x}_t), \text{ s.t. } \|\mathbf{x} - \mathbf{x}_t\|_2^2 \le \delta$$

**Question:** • Would GD give the same trajectory under invertible linear transformations  $(x \rightarrow Ay)$ ?

# Gradient descent revisited



Figure: GD is not invariant w.r.t. linear transformation.



EPFL

#### **Recall Bregman divergences**

#### Bregman divergence

Let  $\omega : \mathcal{X} \to \mathbb{R}$  be continuously differentiable and 1-strongly convex w.r.t. some norm  $\|\cdot\|$  on  $\mathcal{X}$ . The Bregman divergence  $D_{\omega}$  associated to  $\omega$  is defined as

$$D_{\omega}(\mathbf{x}, \mathbf{y}) = \omega(\mathbf{x}) - \omega(\mathbf{y}) - \nabla \omega(\mathbf{y})^{T} (\mathbf{x} - \mathbf{y}),$$

for any  $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ .

Examples:  
• Euclidean distance: 
$$\omega(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||_2^2$$
,  $D_{\omega}(\mathbf{x}, \mathbf{y}) = \frac{1}{2} ||\mathbf{x} - \mathbf{y}||_2^2$ .  
• Mahalanobis distance:  $\omega(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T Q \mathbf{x}$  (where  $Q \succeq I$ ),  $D_{\omega}(\mathbf{x}, \mathbf{y}) = \frac{1}{2} (\mathbf{x} - \mathbf{y})^T Q (\mathbf{x} - \mathbf{y})$ .  
• Kullback-Leibler divergence:  $\mathcal{X} = \{\mathbf{x} \in \mathbb{R}^d_+ : \sum_{i=1}^d x_i = 1\}$ ,  $\omega(\mathbf{x}) = \sum_{i=1}^d x_i \log x_i$   
 $D_{\omega}(\mathbf{x}, \mathbf{y}) = \mathrm{KL}(\mathbf{x} || \mathbf{y}) := \sum_{i=1}^d x_i \log \frac{x_i}{y_i}$ .

#### **Background: Mirror descent**

# Mirror descent (Nemirovski & Yudin, 1983)

For a given strongly convex function  $\omega$ , the iterates of mirror descent [2] are given by

$$\mathbf{x}_{t+1} = \underset{\mathbf{x} \in \mathcal{X}}{\arg\min} \{ D_{\omega}(\mathbf{x}, \mathbf{x}_t) + \eta_t \langle \nabla f(\mathbf{x}_t), \mathbf{x} - \mathbf{x}_t \rangle \}.$$

**Examples:**  $\circ$  Gradient descent:  $\mathcal{X} \subseteq \mathbb{R}^d$ ,  $\omega(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$ ,  $D_{\omega}(\mathbf{x}, \mathbf{x}_t) = \frac{1}{2} \|\mathbf{x} - \mathbf{x}_t\|_2^2$ .

$$\mathbf{x}_{t+1} = \Pi_{\mathcal{X}}(\mathbf{x}_t - \eta_t \nabla f(\mathbf{x}_t)).$$

• Entropic mirror descent [2]:  $\mathcal{X} = \Delta_d$ ,  $\omega(\mathbf{x}) = \sum_{i=1}^d x_i \log x_i$ ,  $D_\omega(\mathbf{x}, \mathbf{x}_t) = \mathrm{KL}(\mathbf{x} \| \mathbf{x}_t)$ .

$$\mathbf{x}_{t+1} \propto \mathbf{x}_t \odot \exp(-\eta_t \nabla f(\mathbf{x}_t)),$$

where  $\odot$  is element-wise multiplication and  $\exp(\cdot)$  is applied element-wise.

• Entropic Mirror Descent attains nearly dimension-free convergence (Chapter 4 of [3]).

See Lecture 4 Supplementary Material for more details and examples.



### Background: Fisher information and KL divergence

#### Fisher Information Matrix

Consider a smooth parametrization of distributions  $\theta \mapsto p_{\theta}(\cdot)$ , the Fisher information matrix is defined as

$$F_{\theta} = \mathbb{E}_{z \sim p_{\theta}} [\nabla_{\theta} \log p_{\theta}(z) \nabla_{\theta} \log p_{\theta}(z)^{\top}].$$

#### Remarks:

 $\circ$  It is an invariant metric on the space of the parameters.

• Fisher information matrix is the Hessian of KL divergence.

$$F_{\theta_0} = \frac{\partial^2}{\partial \theta^2} \operatorname{KL}(p_{\theta_0} \| p_{\theta}) \Big|_{\theta = \theta_0}$$

• The second-order Taylor expansion of KL divergence is given by

$$\mathrm{KL}(p_{\theta_0} \| p_{\theta}) \approx \frac{1}{2} (\theta - \theta_0)^\top F_{\theta_0} (\theta - \theta_0).$$

# Background: Natural gradient descent

 $\circ$  Consider the optimization problem  $\min_{\mathbf{x}\in\Delta} f(\mathbf{x})$  and represent  $\mathbf{x}$  by  $p_{\theta}(\cdot)$ .

Natural gradient descent (Amari, 1998):

$$\theta_{t+1} = \theta_t - \eta (F_{\theta_t})^{\dagger} \nabla f(\theta_t).$$

Equivalent regularized form:

$$\theta_{t+1} = \underset{\theta}{\arg\min} \left\{ \nabla f(\theta_t)^\top (\theta - \theta_t) + \frac{1}{2\eta} (\theta - \theta_t)^\top F_{\theta_t} (\theta - \theta_t) \right\}.$$

Equivalent trust region form:

$$\theta_{t+1} = \operatorname*{arg\,min}_{\theta} \nabla f(\theta_t)^\top (\theta - \theta_t), \; \text{s.t.} \; \; \frac{1}{2} (\theta - \theta_t)^\top F_{\theta_t} (\theta - \theta_t) \leq \delta$$

lions@epfl

### Natural policy gradient method for policy optimization

$$\max_{\theta} J(\pi_{\theta}) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) | s_{0} \sim \mu, \pi_{\theta}\right] = \mathbb{E}_{s \sim \mu}[V^{\pi_{\theta}}(s)]$$

# Natural policy gradient (Kakade, 2002)[4]

For a stepsize  $\eta > 0$ , the iterates of natural policy gradient are given by

$$\theta_{t+1} = \theta_t + \eta(F_{\theta_t})^{\dagger} \nabla_{\theta} J(\pi_{\theta_t}).$$

Remarks:

 $\circ$   $F_{\theta}$  is the Fisher Information Matrix:

$$F_{\theta} = \mathbb{E}_{s \sim \lambda_{\mu}^{\pi_{\theta}}, a \sim \pi_{\theta}(\cdot | s)} \left[ \nabla_{\theta} \log \pi_{\theta}(a | s) \nabla_{\theta} \log \pi_{\theta}(a | s)^{\top} \right].$$

 $\circ \nabla_{\theta} J(\pi_{\theta})$  is the policy gradient:

$$\nabla_{\theta} J(\pi_{\theta}) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim \lambda_{\mu}^{\pi_{\theta}}, a \sim \pi_{\theta}(\cdot|s)} \left[ \nabla_{\theta} \log \pi_{\theta}(a|s) A^{\pi_{\theta}}(s, a) \right]$$

 $\circ~C^{\dagger}$  is the Moore–Penrose inverse of the matrix C.



#### Interpretation of NPG

o NPG can be viewed as repeatedly solving the quadratic approximation of the subproblem:

$$\theta_{t+1} \approx \arg \max_{\theta} \Big\{ J(\pi_{\theta}), \text{ s.t. } \operatorname{KL}\left(p_{\theta_{t}}(\tau) \| p_{\theta}(\tau)\right) \leq \delta \Big\},$$

where  $p_{\theta}(\tau)$  is the probability of the random trajectory  $\tau = (s_0, a_0, r_1, \dots, \dots)$ .

**Explanation:** • Approximate the objective with the first-order Taylor expansion:  $\nabla J(\pi_{\theta_t})^{\top}(\theta - \theta_t)$ .

 $\circ$  Approximate the constraint with the second-order Taylor expansion:

$$\operatorname{KL}\left(p_{\theta_{t}}(\tau)\|p_{\theta}(\tau)\right) \leq \delta \quad \to \quad \frac{1}{2}(\theta - \theta_{t})^{\top}F_{\theta_{t}}(\theta - \theta_{t}) \leq \delta.$$

**Question:** • How can we compute the iterates of natural policy gradient efficiently?

### Computing natural policy gradient

Equivalent form of NPG (Appendix C.3 [1]) Let  $w^{\star}(\theta)$  be such that

$$(1-\gamma)(F_{\theta})^{\dagger}\nabla_{\theta}J(\pi_{\theta}) = w^{\star}(\theta).$$

Then,  $w^{\star}(\theta)$  is the solution to the following least squares minimization problem:

$$w^{\star}(\theta) \in \arg\min_{w} \mathbb{E}_{s \sim \lambda_{\mu}^{\pi_{\theta}}, a \sim \pi_{\theta}(\cdot|s)} \left[ \left( w^{\top} \nabla_{\theta} \log \pi_{\theta}(a|s) - A^{\pi_{\theta}}(s, a) \right)^{2} \right].$$
(1)

**Remarks:** 

• The proof follows immediately by first-order optimality condition.

• Equivalently, we can rewrite NPG as:

$$\theta_{t+1} = \theta_t + \frac{\eta}{1-\gamma} w^\star(\theta_t).$$

 $\circ w^{\star}(\theta_t)$  can be obtained by solving (1) via conjugate gradients, SGD, and other solvers.

lions@epfl

#### Side story

Compatible function approximation (Sutton et al., 1999)[8] Let  $A_{w^{\star}}(s, a)$  be defined as w

$$A_{w^{\star}}(s,a) := w^{\star} \cdot \nabla_{\theta} \log \pi_{\theta}(a|s)$$

where  $w^*$  is as defined in (1). Then we have

$$\nabla_{\theta} J(\pi_{\theta}) = \frac{1}{1-\gamma} F_{\theta} \cdot w^{\star} = \frac{1}{1-\gamma} \mathbb{E}_{s \sim \lambda_{\mu}^{\pi_{\theta}}, a \sim \pi_{\theta}(\cdot|s)} \left[ \nabla_{\theta} \log \pi_{\theta}(a|s) A_{w^{\star}}(s, a) \right].$$

Remarks:

 $\circ$  One can obtain unbiased policy gradient with  $A_{w^{\star}}(s,a)$ 

• This is the best linear approximation of  $A^{\pi_{\theta}}(s, a)$  using feature maps  $\nabla \log \pi_{\theta}(s, a)$ .

**EPEL** 

 $\circ$  Advantage value function approximation  $A^{\pi_{\theta}}(s,a) \approx w^{\top} \phi(s,a)$  can introduce bias.

# Example 1: Tabular NPG under softmax parameterization

### NPG parameter update

Consider the softmax parameterization 
$$\pi_{\theta}(a|s) = \frac{\exp(\theta_{s,a})}{\sum_{a'} \exp(\theta_{s,a'})}$$
 and denote  $\pi_t = \pi_{\theta_t}$ , the induced NPG parameter update corresponds to the following

$$\theta_{t+1} = \theta_t + \frac{\eta}{1-\gamma} A^{\pi_t}$$

# NPG policy update = policy mirror descent

In policy space, the induced update corresponds to the following

$$\pi_{t+1}(a|s) = \pi_t(a|s) \frac{\exp(\eta A^{\pi_t}(s,a)/(1-\gamma))}{Z_t(s)}$$



### Example 2: NPG with linear function approximation

#### NPG parameter update

Consider  $\pi_{\theta}(a|s) = \frac{\exp(\theta^{\top}\phi(s,a))}{\sum_{a'}\exp(\theta^{\top}\phi(s,a'))}$  and denote  $\pi_t = \pi_{\theta_t}$ . The induced NPG parameter update corresponds to the following

$$\theta_{t+1} = \theta_t + \frac{\eta}{1-\gamma} w_t, \text{ where } w_t = \arg\min_w \mathbb{E}_{s \sim \lambda_\mu^{\pi_\theta}, a \sim \pi_\theta(\cdot|s)} \left[ \left( w^\top \bar{\phi}(s, a) - A^{\pi_\theta}(s, a) \right)^2 \right]$$

#### NPG policy update = policy mirror descent

Notice that the parameterizations can be chosen to result in the familiar mirror descent updates on policies:

$$\pi_{t+1}(a|s) = \pi_t(a|s) \frac{\exp(\eta w_t^{\top} \phi(s, a) / (1 - \gamma))}{Z_t(s)}$$

lions@epf

# Convergence of tabular NPG with softmax parametrization

NPG policy update = policy mirror descent

$$\pi_{t+1}(a|s) = \pi_t(a|s) \frac{\exp(\eta A^{\pi_t}(s,a)/(1-\gamma))}{Z_t(s)}$$

#### Convergence of tabular NPG [1]

In the tabular setting, for any  $\eta \ge (1-\gamma)^2 \log |\mathcal{A}|$  and T > 0, the tabular NPG satisfies

$$J(\pi^{\star}) - J(\pi_T) \le \frac{2}{(1-\gamma)^2 T}.$$

**Remarks:** • Nearly dimension-free convergence, no dependence on  $|\mathcal{A}|, |\mathcal{S}|$ .

o No dependence on distribution mismatch coefficient.

Question: • What is the computational cost of this (nearly) dimension-free method?

SPEL

#### Proof of tabular NPG convergence

Lemma (Policy Improvement)

$$J(\pi) - J(\pi_t) = \frac{1}{\eta} \mathbb{E}_{s \sim \lambda_{\mu}^{\pi}} \left[ KL(\pi(\cdot|s) \| \pi_t(\cdot|s)) - KL(\pi(\cdot|s) \| \pi_{t+1}(\cdot|s)) + \log Z_t(s) \right].$$

Proof sketch:

• Recall from Performance Difference Lemma:

$$J(\pi) - J(\pi_t) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim \lambda_{\mu}^{\pi}, a \sim \pi(a|s)} [A^{\pi_t}(s, a)].$$

 $\circ$  From the update rule  $\pi_{t+1}(a|s)=\pi_t(a|s)\frac{\exp(\eta A^{\pi_t}(s,a)/(1-\gamma))}{Z_s}$  , we have

$$A^{\pi_t}(s, a) = \frac{1 - \gamma}{\eta} \log \frac{\pi_{t+1}(a|s)Z_t(s)}{\pi_t(a|s)}.$$

o Combing these two equations, we have the above lemma.

# Proof of Tabular NPG convergence

## Proof.

 $\circ~$  Setting  $\pi=\pi^{\star}$  in the previous lemma and telescoping from  $t=0,\ldots,T-1$ 

$$\frac{1}{T} \sum_{t=0}^{T-1} J(\pi^{\star}) - J(\pi_t) \le \frac{1}{\eta T} \mathbb{E}_{s \sim \lambda_{\mu}^{\pi^{\star}}} \left[ \mathrm{KL}(\pi^{\star}(\cdot|s) \| \pi_0(\cdot|s)) \right] + \frac{1}{\eta T} \sum_{t=0}^{T} \mathbb{E}_{s \sim \lambda_{\mu}^{\pi^{\star}}} \left[ \log Z_t(s) \right].$$

 $\circ~$  Setting  $\pi=\pi_{t+1}$  in the previous lemma, we have

$$J(\pi_{t+1}) - J(\pi_t) \ge \frac{1}{\eta} \mathbb{E}_{s \sim \lambda_{\mu}^{\pi_{t+1}}} \left[ \log Z_t(s) \right] \ge \frac{1-\gamma}{\eta} \mathbb{E}_{s \sim \mu} \left[ \log Z_t(s) \right] \ge 0, \forall \mu.$$

 $\circ~$  Combining these two equations and the fact that  $J(\pi)\geq \frac{1}{1-\gamma}$  implies that

$$\frac{1}{T} \sum_{t=0}^{T-1} J(\pi^*) - J(\pi_t) \le \frac{\log |\mathcal{A}|}{\eta T} + \frac{1}{(1-\gamma)^2 T}.$$

lions@epfl

# Sample-based NPG

# Sample-based NPG (informal)

 $\circ$  Use N-step SGD to estimate  $w_t\approx w^\star(\theta_t)$ 

 $\circ$  Update  $heta_{t+1} = heta_t + rac{\eta}{1-\gamma}w_t$ 

#### Sample-based NPG

```
Initialize policy parameter \theta_0 \in \mathbb{R}^d, step size \eta > 0, \alpha > 0
for t = 0, 1, \ldots, T - 1 do
Initialize w_0, denote \pi_t = \pi_{\theta_t}
for n = 0, 1, \ldots, N - 1 do
Obtain sample s \sim \lambda_{\mu^t}^{\pi t}, a \sim \pi_t(\cdot|s)
Obtain an unbiased estimate \hat{A}(s, a) for A^{\pi_t}(s, a)
Update w: w \leftarrow w - \alpha(w^\top \nabla_{\theta} \log \pi_t(a|s) - \hat{A}(s, a)) \cdot \nabla_{\theta} \log \pi_t(a|s)
end for
Set w_t = w (or the average)
Update \theta_{t+1} = \theta_t + \frac{\eta}{1-\gamma}w_t
end for
```



# Convergence of sample-based NPG with function approximation

Convergence of sampled-based NPG (informal)

$$\mathbb{E}\left[\min_{t < T} J(\pi_{\theta_{\star}}) - J(\pi_{\theta_{t}})\right] \le O\left(\frac{1}{1 - \gamma}\sqrt{\frac{2\log|A|}{T}} + \sqrt{\epsilon_{\mathsf{stat}}} + \sqrt{\epsilon_{\mathsf{bias}}}\right),$$

where  $\epsilon_{\text{stat}}$  is how close  $w_t$  is to a  $w^*(\theta_t)$  (statistical error) and  $\epsilon_{\text{bias}}$  is how good the best policy in the class is (function approximation error).



#### **Popular Baselines**

#### **Trust Region Policy Optimization**

 John Schulman
 JOSCHU@EECS.BERKELEY.EDU

 Sergey Levine
 SLEVINE@EECS.BERKELEY.EDU

 Philipp Moritz
 PCMORITZ@EECS.BERKELEY.EDU

 Michael Jordan
 JORDAN@CS.BERKELEY.EDU

 Pieter Abbeel
 PABBEEL@CS.BERKELEY.EDU

University of California, Berkeley, Department of Electrical Engineering and Computer Sciences

#### **TRPO (ICML, 2015)**

#### Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov OpenAI {joschu, filip, prafulla, alec, oleg}@openai.com PPO (arXiv, 2017)

OpenAl implementation: https://github.com/openai/baselines



Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 24/ 32

# Trust Region Policy Optimization (TRPO)

TRPO (key idea) [6]  $\max_{\theta} \quad \mathbb{E}_{s \sim \lambda_{\mu}^{\pi_{\theta_{t}}}, a \sim \pi_{\theta_{t}}(\cdot|s)} \left[ \frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_{t}}(a \mid s)} A^{\pi_{\theta_{t}}}(s, a) \right],$ s.t.  $\mathbb{E}_{s \sim \lambda_{\mu}^{\pi_{\theta_{t}}}} \left[ \mathrm{KL}(\pi_{\theta}(\cdot \mid s) \| \pi_{\theta_{t}}(\cdot \mid s)) \right] \leq \delta.$ 

**Remarks:** 

• The surrogate objective can be viewed as linear approximation in  $\pi$  of  $J(\pi_{\theta})$ :

$$J(\pi) = J(\pi_t) + \frac{1}{1-\gamma} \mathbb{E}_{s \sim \lambda_{\mu}^{\pi}, a \sim \pi(a|s)} [A^{\pi_t}(s, a)].$$
(PDL)

SPEL

• It can be approximated by a natural policy gradient step.

o Line-search can ensure performance improvement and no constraint violation.

# **Proximal Policy Optimization (PPO2)**

# PPO (key idea) [7]

$$\max_{\theta} \quad \mathbb{E}_{s' \sim \lambda_{\mu}^{\pi_{\theta_{t}}}, a \sim \pi_{\theta_{t}}(\cdot|s)} \min\left\{\frac{\pi_{\theta}(a|s)}{\pi_{\theta_{t}}(a|s)} A^{\pi_{\theta_{t}}}(s, a), \operatorname{clip}\left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_{t}}(a|s)}; 1-\epsilon; 1+\epsilon\right) A^{\pi_{\theta_{t}}}(s, a)\right\}$$

**Remarks:** • PPO penalizes large deviation from the current policy directly inside the objective function through clipping the ratio  $\frac{\pi_0}{\pi_a}$ .

$$\operatorname{clip}(x; 1-\epsilon; 1+\epsilon) = \begin{cases} 1-\epsilon, \text{ if } x < 1-\epsilon\\ 1+\epsilon, \text{ if } x > 1+\epsilon\\ x, \text{ otherwise} \end{cases}$$

 $\circ$  Run SGD. No need to deal with the KL divergence or trust region constraints.



# Numerical Performance [7]



### **More Applications**



Robots



Locomotion



Muti-agent Games

EPFL

Figure: PPO performs well in many locomotion task and games.

• Some links:

- https://www.youtube.com/watch?v=hx\_bgoTF7bs
- https://openai.com/blog/openai-baselines-ppo/

# Summary



Figure from Schulman's slide on PPO in 2017.





# Summary



| Vanilla Policy Gradient       | Gradient Descent            |
|-------------------------------|-----------------------------|
| REINFORCE                     | Stochastic Gradient Descent |
| Natural Policy Gradient       |                             |
| TRPO                          | Mirror Descent              |
| PPO                           |                             |
| Conservative Policy Iteration | Frank Wolfe                 |
|                               |                             |



# References |

[1] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan.

Optimality and approximation with policy gradient methods in markov decision processes.

In Conference on Learning Theory, pages 64-66. PMLR, 2020.

#### [2] Amir Beck and Marc Teboulle.

Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 31(3):167–175, 2003.

#### [3] Sébastien Bubeck.

Convex optimization: Algorithms and complexity. Foundations and Trends in Machine Learning, 8(3-4):231–358, 2015.

#### [4] S. Kakade.

#### A natural policy gradient.

In Advances in Neural Information Processing Systems (NeurIPS), 2001.

#### [5] Vijay R Konda and John N Tsitsiklis.

#### On actor-critic algorithms.

SIAM journal on Control and Optimization, 42(4):1143–1166, 2003.

 [6] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy optimization.

In International conference on machine learning, pages 1889-1897. PMLR, 2015.



#### References II

[7] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[8] Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Mansour, et al. Policy gradient methods for reinforcement learning with function approximation. In Conference on Neural Information Processing Systems, pages 1057–1063, 1999.

[9] Ronald J Williams.

Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine learning*, 8(3-4):229–256, 1992.