Exercice 7. 1. Suppose the opposite, and let c_1, \ldots, c_n be finitely many generators with $c_i = a_i/b_i$ for $a_i, b_i \in \mathbb{Z}$. Let p_1, \ldots, p_s be the list of the distinct prime factors of the b_i 's different from p.

Then, the following is a proper subring of $\mathbb{Z}_{(p)}$:

 $A = \{a/b \in \mathbb{Q} | b \text{ only has } p_1, \dots, p_s \text{ as prime factors } \},\$

It is easy to check that A is stable under addition and multiplication and that the neutral and zero element are in A. Moreover, let q be a prime number different from p and $q \neq p_1, \ldots, p_s$. Then for any $a \in \mathbb{Z}$ we have that $a/q \in \mathbb{Z}_{(p)}$.

Hence the subring of $\mathbb{Z}_{(p)}$ generated by c_1, \ldots, c_n is contained in $A \neq \mathbb{Z}_{(p)}$. This is a contradiction.

2. We will show that \mathbb{Z}_p is generated by 1/p or with other words $\mathbb{Z}_p = \mathbb{Z}[1/p]$. In particular \mathbb{Z}_p is a finitely generated ring.

Note that every element in \mathbb{Z}_p can be written in the form $a/p^i = a \cdot (1/p) \cdots (1/p)$ with *i* factors of the form 1/p. This means exactly that the subring $\mathbb{Z}[1/p]$, the subring generated by 1/p, is equal to \mathbb{Z}_p . We can conclude that \mathbb{Z}_p is finitely generated.

- 3. Indeed, \mathbb{Z} is a subring of \mathbb{Z}_p . Now, let A be a subring of \mathbb{Z}_p which is not equal to \mathbb{Z} . Since it contains the unit element, then it contains \mathbb{Z} , and at least one other element. This element, since it is not in \mathbb{Z} , is then necessarily of the form a/p^i where i > 0 and a is prime to p. By the Euclidean algorithm we have integers n and m such that $na + mp^i = 1$. Dividing by p^i yields $n(a/p^i) + m = 1/p^i$. Hence $1/p^i \in A$. If i = 1, then we obtain that $1/p \in A$. If i > 1, then by taking $(1/p^i) + \ldots + (1/p^i)$ with p^{i-1} summands we again obtain that $1/p \in A$. Then, by the previous point, since 1/p generates \mathbb{Z}_p , we have that $A = \mathbb{Z}_p$.
- 4. There cannot be a ring isomorphism since $\mathbb{Z}[1/p, 1/q]$ is generated by 1/p and 1/q, while $\mathbb{Z}_{(p)}$ is not finitely generated.
- 5. We will show that we need only one 1 element to generate $\mathbb{Z}[1/p, 1/q]$. Note that 1/q and 1/p are a set of generators. One has that $1/p = 1/(pq) + \cdots + 1/(pq)$, with q-summands. We have the same for 1/q, $1/p = 1/(pq) + \cdots + 1/(pq)$, with p-summands. Therefore we can conclude that $\mathbb{Z}[1/p, 1/q] = \mathbb{Z}[1/(pq)]$.