
Artificial Neural Networks (Gerstner). Exercises for week 7

Error function and Optimization

Exercise 1. Weight space symmetries

Suppose you have found a minimum for some set of weights that achieves zero loss in a network with
m hidden layers of n neurons each.

a. Show that there is always at least (n!)m equivalent solutions.

b. Assume that a network with one hidden layer of n neurons and 1 output neuron finds a zero-loss
solution. Assume that the minimum loss attained by the network with one hidden layer of n− 1
neurons is bigger than zero. In other words, no network with n− 1 neurons can find a solution.

Now imagine the original network with n neurons, constructed from n − 1 hidden neurons as
follows: the input vector of the new neuron copies one of the n− 1 other input vectors, and its
output weight is zero. Note that this neuron addition does not change the predictions of the
network with n− 1 neurons on any of the data points.

Counting all possible permutations, calculate the number of the equivalent weight configurations
corresponding to the network of n− 1 neurons by duplicating one of the input vectors.

c. Now consider the duplicated neurons. Adjust the output weights of these two neurons such that
their summation is constant. Note that on this line of points, the predictions of the network
with one hidden layer of n neurons do not change.

Counting all possible permutations, calculate the number of equivalent lines corresponding to
the network of n− 1 neurons.

d. Show that all such configurations of the network with n neurons that correspond to the minimum
of a network with n− 1 neurons are critical points (if the gradient descent reaches this point, it
does not move further). These critical points are called symmetry-induced saddles.

Exercise 2. Unitwise learning rates

Consider minimizing the narrow valley function E(w1, w2) = |w1|+ 75|w2| by gradient descent.

a. Sketch the equipotential lines of E, i.e. the points in the w1 − w2-plane, where E(w1, w2) = c
for different values of c.

b. Start at the point w(0) = (10, 10) and make a gradient descent step, i.e.
w(1) = w(0) − η(∂E/∂w1, ∂E/∂w2) with η = 0.1.

Hint: Use the numeric definition of ∂|x|/∂x = sgn(x) if x 6= 0 and 0 otherwise.

c. Continue gradient descent, i.e .compute w(2),w(3) and w(4) and draw the points w(0), . . . ,w(4)

in your sketch with the equipotential lines. What do you observe? Can you choose a better
value for η such that gradient descent converges faster?

d. Repeat now the gradient descent procedure with different learning rates for the different di-
mensions, i.e. w(1) = w(0) − (η1∂E/∂w1, η2∂E/∂w2) with η1 = 1 and η2 = 1/75. What do you
observe? Can you choose better values for η1 and η2 such that gradient descent converges faster?

e. An alternative to individual learning rates is to use momentum, i.e.
∆w(t+1) = −η(∂E/∂w1, ∂E/∂w2) + α∆w(t) with α ∈ [0, 1) and w(t+1) = w(t) + ∆w(t+1).

Repeat the gradient descent procedure for 3 steps with η = 0.2 and α = 0.5. What do you
observe?



f. Assume ∂E/∂w1 = 1 in all time steps while ∂E/∂w2 = ±75 switches the sign in every time step.

Compute limt→∞∆w(t) as a function of η and α. Hint:
∑t

s=0 α
s = 1−αt+1

1−α .

g. What do you conclude from this exercise in view of training neural networks by gradient descent
with or without momentum?

Exercise 3. Averaging of Stochastic gradients (for ADAM)

We consider stochastic gradient descent in a network with three weights, (w1, w2, w3).

Evaluating the gradient for 100 input patterns (one pattern at a time), we observe the following time
series

for w1: observed gradients are 1.1; 0.9, 1.1; 0.9; 1.1; 0.9; ...

for w2: observed gradients are 0.1; 0.1; 0.1; 0.1; 0.1; ...

for w3: observed gradients are 1.1; -0.9; 1.1; -0.9; 1.1; -0.9; ...

a. Calculate the mean gradient (first moment m1) 〈gk〉 for wk, k ∈ [1, 2, 3].

b. Calculate the mean of the squared gradient (second moment m2) 〈g2k〉 for wk, k ∈ [1, 2, 3].

c. Divide the result of (a) by that of (b) so as to calculate 〈gk〉/〈g2k〉 as well as 〈gk〉/
√
〈g2k〉 for wk,

k ∈ [1, 2, 3].

d. The signal-to-noise ratio (SNR) of the gradient gk is defined as

SNR =
m1√
σ2

=
m1√

m2 −m2
1

,

where we used the definition of the variance σ2 =
〈
(gk −m1)

2
〉

= m2−m2
1 of gk. In ADAM the

weight update is proportional to ∆wk ∝ m1/
√
m2. With that, show that

• the update in ADAM is proportional to ∆wk ∝ 1√
1+1/SNR2

= SNR√
SNR2+1

.

• even though the update in ADAM is not proportional to the SNR, it is proportional to the
SNR for small SNR → 0 and saturates for big SNR →∞.

Exercise 4. Averaging with exponential filters (for ADAM)

In this exercise we study averaging with exponential filters as used e.g. for gradient averaging in SGD
with momentum or ADAM.

a. You use an algorithm to update a variable m:

m(n+ 1) = ρm(n) + (1− ρ)x(n) (*)

where ρ ∈ [0, 1) and x(n) refers to an observed time series x(1), x(2), x(3), ....

Show that, if all values of x are identical (that is, x(k) = x̄ for all k), then the algo (*) converges
to m = x̄.

b. Assume the initial condition m(0) = 0. Show that, for 1− ρ� 1 the algorithm outputs in time
step n+ 1 the value

m(n+ 1) = (1− ρ)

n∑
k=0

exp[−(1− ρ)k] · x(n− k)

Hint: (i) compare m(n + 1) with m(n) and reorder terms. (ii) At the end of your calculation
you may approximate exp(ε) = 1 + ε (which is valid for small ε� 1).



c. Your friend makes the following statement:

The algo (*) performs a running average of the time series x(n) with an exponentially weighted
window that extends roughly over 1/(1−ρ) samples. Therefore, if you want to include about 100
samples in the average, you should choose ρ = 0.99.

Is your friend’s claim correct?

Exercise 5. Bias and variance of gradient estimators

For training data (x1, y1), . . . , (xP , yP ) and some loss E(w) = 1
P

∑
µ `(fw(xµ), yµ), the gradient is

given by ∇E(w) = 1
P

∑
µ∇`(fw(xµ), yµ), with e.g. `(x, y) = 1

2(x− y)2.

a. In each step of stochastic gradient descent one sample (xµ, yµ) of the training data is selected.
Show that ∇`(fw(xµ), yµ) is an unbiased estimator of ∇E(w), if each training sample is selected
with equal probability. Hint: An estimator θ̂ of a quantity θ is called unbiased, if its expectation

E
[
θ̂
]

= θ.

b. Instead of single sample stochastic gradient descent it is common practice to use mini-batches.
Show that the mini-batch gradient estimator 1

M

∑M
i=1∇`(fw(xi), yi), with 1 < M < P , has

lower variance than the single sample estimator, if the samples (xi, yi) in each mini-batch are
sampled uniformly from the training data.

c. How does this exercise link to Ex. 2 of week 1?

Exercise 6. ADAM and minibatches.

Suppose that in a project you have already spent some time on optimizing the ADAM parameters ρ1
and ρ2 while you ran preliminary tests with a minibatch size of 128 on your computer.

For the final run you get access to a bigger and faster computer that allows you to run minibatches
of size 512.

How should you rescale ρ1 and ρ2 so as to expect roughly the same behavior of the two machines on
the training base?

Exercise 7. Simple Perceptron and Bagging

We have four data points:

Two positive examples t1 = t2 = 1 at x1 = (1, 0)T and x2 = (0, 1)T ; and Two negative examples
t3 = t4 = 0 at x3 = (0, 0)T and x4 = (1, 1)T .

a. Draw (with replacement) four times randomly from this data set. What is the probability that
you draw each example exactly once?

b. You have generated four new data sets 1 ≤ k ≤ 4 by drawing with replacement from the above
set. Each set contains four points. You find that in data set k point k is missing (1 ≤ k ≤ 4).

You work with the perceptron algorithm with hard gain function g(a) = 1 for a > 0 and zero
otherwise.

Make a graph in the data space (input space) and sketch in the graph a solution that the
perceptron algorithm finds for data set k = 1. Draw the hyperplane.

c. Sketch in the same graph, a solution (one each) that the perceptron algorithm finds for k = 2, 3, 4.
Label your proposed solutions with k = 1...4.

d. Now you perform bagging. What is the value of the (real-valued) bagged output in each region
of the above graph in response to an arbitrary data point x5. In the above graph, give the
regions a different texture and write in each region a number which indicates the amplitude of
the bagged response.



e. Now you perform majority voting. How many of the 4 data points are correctly classified?

f. Replace the four points by four Gaussian clusters of 25 data points each (Gaussians centered
x1, x2, x3, x4) with standard deviation σ = 0.1 each; labels are the same for all points inside
one Gaussian cluster.) Repeat the above arguments. Assume that the resampled data set k
has 20 data points from cluster k, 30 data points from another cluster k′ 6= k, and 25 from the
remaining two clusters.

Sketch a plot of this new problem on a separate page and repeat the above arguments (draw the
hyperplanes etc, parts b - e). Imagine you generate new data points (from the four Gaussians)
for the test set. What’s the probability for one of those point of not being correctly clustered
after bagging with majority vote?


