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Exercice 1. (a) Let φ : A → B be a ring homomorphism and let a ∈ A×. Then, there exists
b ∈ A× such that ab = 1. Then:

1 = φ(1) = φ(ab) = φ(a)φ(b).

Hence φ(a) is an invertible element of B with inverse φ(b).

(b) Let a, b ∈ A such that a ∼ b. Then there exists u ∈ A× such that a = ub and we have:

φ(a) = φ(ub) = φ(u)φ(b).

Now by point (a) we have that φ(u) ∈ B× and we conclude that φ(a) ∼ φ(b).

(c) Counterexample: Consider the ring homomorphism: ξ2 : Z[x] → F2[x] (Example 1.4.36).
Now x2 + 4x + 2 ∈ Z[x] is irreducible (one shows this using Eisenstein with p = 2), but
ξ2(x

2 + 4x+ 2) = x2 and x2 ∈ F2[x] is reducible.

Exercice 2. (a) For all 1 ≤ i ≤ n we have that (x− ai)|f(x) as ai ∈ A is a root of f(x). Now as
ai 6= aj for all 1 ≤ i, j ≤ n, it follows that gcd(x− ai, x− aj) = 1.

As (x−a1)|f(x), there exists f1(x) ∈ A[x] such that f(x) = (x−a1)f1(x). Now (x−a2)|f(x)
and, as gcd(x − a1, x − a2) = 1, it follows that there exists f2(x) ∈ A[x] such that f(x) =
(x− a1)(x− a2)f2(x). We continue this process and find that there exists fn(x) ∈ A[x] such

that f(x) =
n∏

i=1

(x− ai)fn(x). We conclude that
n∏

i=1

(x− ai)|f(x).

(b) As p, q are odd primes, it follows that pq is odd and therefore [1]pq and [−1]pq are distinct
roots of t2 − [1]pq ∈ Z/pqZ. Furthermore, as p,q are distinct, there exist a, b ∈ Z such that
ap+ bq = 1. Then (2ap− 1)2 = 4a2p2 − 4ap+ 1 = 4ap(ap− 1) + 1 = −4abpq + 1.

Assume there exists c ∈ Z such that 2ap−1 = cpq. Then p(2a−cq) = 1 and so p = ±1, which
is a contradiction. Therefore [0]pq 6= [2ap− 1]pq ∈ Z/pqZ is a root of t2 − [1]pq. Moreover, we
also get that [1− 2ap]pq ∈ Z/pqZ is a root of t2 − [1]pq.

We now show that the four roots are distinct:

• If [2ap−1]pq = [1]pq, then [2]pq[a]pq[p]pq = [2]pq. As pq is odd, we have that gcd(pq, 2) = 1,
hence there exist c1, c2 ∈ Z such that c1 · 2 + c2 · pq = 1. This gives [c1]pq[2]pq = [1]pq
and we deduce that [2]pq ∈ (Z/(pq)Z)×. We now multiply [2]pq[a]pq[p]pq = [2]pq by [c1]pq
and obtain [a]pq[p]pq = [1]pq, which is a contradiction since [p]pq is a zero divisor.
• If [2ap − 1]pq = [−1]pq, then [2]pq[ap]pq = [0]pq, hence [ap]pq = [0]pq. It follows that
a = cq, for some c ∈ Z, since gcd(p, q) = 1. But then 1 = ap + bq = q(cp + b) and,
consequently, q = ±1, a contradiction.
• If [2ap− 1]pq = [1− 2ap]pq, then [2ap− 1]pq = [0], which is a contradiction.
• If [1− 2ap]pq = [1]pq, then [2ap− 1]pq = [−1]pq, which is a contradiction.
• If [1− 2ap]pq = [−1]pq, then [2ap− 1]pq = [1]pq, which is a contradiction.

We deduce that [2ap − 1]pq, [1 − 2ap]pq, [1]pq and [−1]pq are distinct roots of t2 − [1]pq in
Z/pqZ.
Lastly, (t− [1]pq)(t− [−1]pq)(t− [2ap− 1]pq)(t− [1− 2ap]pq) is a polynomial of degree 4 and
it clearly does not divide t2 − [1]pq, a polynomial of degree 2.



(c) As f |g in Q[t], there exists h ∈ Q[t] such that g(t) = f(t)h(t). Now, as h ∈ Q[t|, we can write
h(t) = c · h1(t), where h1(t) ∈ Z[t] is primitive and c ∈ Q. Then:

g(t) = c · f(t)h1(t).

By Lemma 3.8.9, we have that f(t)h1(t) is primitive and, since g(t) is also primitive, we use
Lemma 3.8.11 to determine that c ∈ Z×, i.e. c = ±1. Then

g(t) = ±f(t)h1(t) in Z[t], therefore f |g in Z[t].

(d) The roots of x4 + 1 over C are ei(
π
4
+ kπ

2
), where 0 ≤ k ≤ 3, and we have:

x4 + 1 =

3∏
k=0

(x− ei(
π
4
+ kπ

2
)).

We group the conjugate complex roots and obtain the decomposition over R[x]

x4 + 1 = (x2 −
√
2x+ 1)(x2 +

√
2x+ 1).

By Example 3.9.2 (4), it follows x4 + 1 does not admit roots in Q, as it does not admit
roots in R. If x4 + 1 = f(x)g(x), where f(x), g(x) ∈ Q[x] are polynomials of degree 2, then
f(x) = (x−a1)(x−a2) and g(x) = (x−a3)(x−a4), where a1, a2, a3, a4 ∈ {ei(

π
4
+ kπ

2
)| 0 ≤ k ≤ 3}

are distinct. One checks that for every choice of ai aj the polynomial (x − ai)(x − aj) does
not have coefficients in Q. We conclude that x4 + 1 is irreducible in Q[x]. Lastly, we note
that, as it is primitive., by Lemma 3.8.13, it is also irreducible in Z[x].
In F2[x] we have x4 + [1]2 = (x+ [1]2)

4.

The squares in F11 are [0]11, [1]11, [3]11, [4]11, [5]11 and [9]11 and we deduce that x4+[1]11 does
not admit roots in F11. Assume that x4 + [1]11 admits a decomposition into a product of two
polynomials of degree 2. As F11 is a field, we can assume that these polynomials are unitary.
We have:

x4 + [1]11 = (x2 + ax+ b)(x2 + cx+ d) = x4 + (a+ c)x3 + (b+ ac+ d)x2 + (bc+ ad)x+ bd

and so d = b−1 and c = −a. We substitute and obtain:

x4 + [1]11 = x4 + (b− a2 + b−1)x2 + a(b−1 − b)x+ [1]11

and so a(b−1 − b) = 0.

• if a = 0, then b− a2 + b−1 = b+ b−1 = 0, which is impossible as [−1]11 is not a square
in F11.

• if b = b−1, then b2 = [1]11 and so b ∈ {[1]11, [10]11}.
– If b = [1]11, then b− a2 + b−1 = [2]11 − a2 = 0, which is impossible as [2]11 is not a

square in F11.
– If b = [10]11, then b− a2 + b−1 = [9]11 − a2 = 0 and so a ∈ {[3]11, [8]11}.

We conclude that

x4 + [1]11 = (x2 + [3]11 · x+ [10]11)(x
2 + [8]11 · x+ [10]11) in F11[x].

Since x8 − 1 = (x4 + 1)(x4 − 1) it suffices to factor x4 − 1:

• in C[x] we have: x4 − 1 = (x+ i)(x− i)(x+ 1)(x− 1).

• in R[x], Q[x] and Z[x] we have: x4 − 1 = (x2 + 1)(x+ 1)(x− 1).



• in F2[x] we have: x4 − [1]2 = x4 + [1]2 = (x+ [1]2)
4.

• in F11[x] we have: x4 − [1]11 = (x2 + [1]11)(x + [1]11)(x + [10]11), where we have seen
earlier that x2 + [1]11 is irreducible.

Exercice 3. (a) We write 2
9x

5 + 5
3x

4 + x3 + 1
3 = 1

9(2x
5 + 15x4 + 9x3 + 3) ∈ Q[x].

Now 1
9 ∈ Q[x]×, as 1

9 ∈ Q×. Therefore 2
9x

5 + 5
3x

4 + x3 + 1
3 is irreducible in Q[x] if and only if

2x5+15x4+9x3+3 is. As gcd(2, 15, 9, 3) = 1, we have that 2x5+15x4+9x3+3 is primitive,
hence it is irreducible in Q[x] if and only if it is irreducible in Z[x] (Lemma 3.8.13). Using
Eisenstein for p = 3, where 3 ∈ Z is irreducible, we deduce that 2x5 + 15x4 + 9x3 + 3 is
irreducible in Z[x].

(b) Let f(x) = x4+[2]5 ∈ F5[x]. Note that for all a ∈ F5 we have a2 ∈ {[0]5, [1]5, [4]5}. Therefore
f does not admit roots in F5. We will now show that f is not a product of two polynomials
of degree 2. As F5 is a field, we can assume that these polynomials are unitary and so assume
there exist a, b, c, d ∈ F5 such that

f(x) = x4+[2]5 = (x2+ax+b)(x2+cx+d) = x4+(a+c)x3+(b+ac+d)x2+(bc+ad)x+bd.

Then c = −a and d = [2]5b
−1 and substituting in the above gives:

x4 + [2]5 = x4 + (b− a2 + [2]5 · b−1)x2 + (−ab+ [2]5 · ab−1)x+ [2]5.

Thus −ab+ [2]5 · ab−1 = a(−b+ [2]5 · b−1) = 0 and

• if a = 0, then b2 = −[2]5, a contradiction.
• if −b+ [2]5b

−1 = 0, then b2 = [2]5, a contradiction.

We conclude that f is irreducible in F5[x].

Lastly, let x4+15x3+7 ∈ Q[x]. As the dominant coefficient is 1, this polynomial is primitive,
hence it is irreducible in Q[x] if and only if it is irreducible in Z[x] (Lemma 3.8.13). Let
φ5 : Z → F5 be the quotient homomorphism and let π5 : Z[x] → F5[x] be its induced
homomorphism. We have that:

π5(x
4 + 15x3 + 7) = x4 + [2]5

and, as x4+[2]5 is irreducible in F5[x], we use Proposition 3.9.1 to conclude that x4+15x3+7
is irreducible in Z[x].

(c) First we note that x2+ y2+1 ∈ R[x, y] is primitive as its dominant coefficient is 1. Secondly,
y2 + 1 ∈ R[y] is irreducible. We now apply Eisenstein with p = y2 + 1 to conclude that
x2 + y2 + 1 is irreducible in R[x, y].

(d) We have x2 + y2 + [1]2 = (x+ y + [1]2)
2 in F2[x, y].

(e) The evaluation homomorphism ev0 : Q[y] → Q, ev0(y) = 0, induces the homomorphism
ξ : Q[y][x]→ Q[x] with ξ(y) = 0 and ξ(x) = x. We have that:

ξ(y4 + x3 + x2y2 + xy + 2x2 − x+ 1) = x3 + 2x2 − x+ 1

and, by Proposition 3.9.1, y4 + x3 + x2y2 + xy + 2x2 − x + 1 is irreducible in Q[x, y] if
x3+2x2−x+1 is irreducible in Q[x]. Now deg(x3+2x2−x+1) = 3 and thus x3+2x2−x+1
is irreducible in Q[x] if and only if it does not admit roots in Q. Assume p

r ∈ Q, where p, r ∈ Z
and gcd(p, r) = 1, is a root of x3 + 2x2 − x+ 1. Then(

p

r

)3

+ 2

(
p

r

)2

−
(
p

r

)
+ 1 = 0.

As gcd(p, r) = 1, it follows that p|1, r|1 and so p
r ∈ {−1, 1}. One checks that neither −1, nor

1 is a root of x3 + 2x2 − x+ 1 and thus x3 + 2x2 − x+ 1 is irreducible in Q[x].



(f) We have 4x3 + 120x2 + 8x − 12 = 4(x3 + 30x2 + 2x − 3) ∈ Q[x]. Now 4 ∈ Q[x]× and
so 4x3 + 120x2 + 8x − 12 is irreducible in Q[x] if and only if x3 + 30x2 + 2x − 3 is. As
deg(x3+30x2+2x−3) = 3 it follows that x3+30x2+2x−3 is irreducible in Q[x] if and only
if it does not admit roots in Q. Assume there exist p

r ∈ Q, where p, r ∈ Z and gcd(p, r) = 1,
such that: (

p

r

)3

+ 30

(
p

r

)2

+ 2

(
p

r

)
− 3 = 0.

As gcd(p, r) = 1, it follows that p|3 and r|1. Therefore p
r ∈ {−3,−1, 1, 3}. One checks that

none of the elements in {−3,−1, 1, 3} is a root of x3 + 30x2 + 2x − 3. We conclude that
x3 + 30x2 + 2x− 3 is irreducible in Q[x].

(g) As the polynomial t6+t3+1 is primitive, it follows that it is irreducible in Q[t] if and only if it
is irreducible in Z[x] (Lemma 3.8.13). We consider the quotient homomorphism φ2 : Z→ F2

and its induced homomorphism π2 : Z[t]→ F2[t] under which

π2(t
6 + t3 + 1) = t6 + t3 + [1]2.

By Proposition 3.9.1, t6 + t3 + 1 is irreducible in Z[t] if t6 + t3 + [1]2 is irreducible in F2[t].

Now, one checks that t6+t3+[1]2 does not admit roots in F2[t]. Secondly, the only irreducible
polynomial of degree 2 in F2[t] is t2 + t + [1]2 and one checks that this does not divide
t6 + t3 + [1]2. Lastly, we assume that t6 + t3 + [1]2 is a product of two polynomials of degree
3. As F2 is a field, we can assume that these polynomials are unitary and we have:

t6 + t3 + [1]2 = (t3 + a2t
2 + a1t+ a0)(t

3 + b2t
2 + b1t+ b0)

= t6 + (a2 + b2)t
5 + (a1 + a2b2 + b1)t

4 + (a0 + a1b2 + a2b1 + b0)t
3+

+ (a0b2 + a1b1 + a2b0)t
2 + (a0b1 + a1b0)t+ a0b0.

Then a0 = b0 = [1]2, a2 = b2 and
a0b1 + a1b0 = [0]2

a0b2 + a1b1 + a2b0 = [0]2

a0 + a1b2 + a2b1 + b0 = [1]2

a1 + a2b2 + b1 = [0]2

→


b1 + a1 = [0]2

a1b1 = [0]2

b2(a1 + b1) = [1]2

a2b2 = [0]2

→ [1]2 = [0]2.

We conclude that t6 + t3 + [1]2 is irreducible in F2[t].

(h) We first note that the ring Q[x] is factorial, as Q is (Theorem 3.8.1), and that x ∈ Q[x] is
irreducible. Secondly the polynomial y4 + xy3 + xy2 + x2y + 3x2 − 2x ∈ Q[x, y] is primitive,
as its dominant coefficient is 1. We now apply Eisenstein with p = x to conclude that
y4 + xy3 + xy2 + x2y + 3x2 − 2x is irreducible in Q[x, y].

Exercice 4.
Let f(t) = t4 + 4t3 + 3t2 + 7t− 4 ∈ Z[t].

(a) We have π2(f(t)) = t4+ t2+ t = t(t3+ t+[1]2) ∈ F2[t]. Moreover, we remark that t3+ t+[1]2
is irreducible in F2[t], as it does not admit roots in F2.

(b) We have π3(f(t)) = t4 + t3 + t− [1]3 = (t2 + [1]3)(t
2 + t− [1]3) ∈ F3[t].

(c) Assume that f(t) is reducible in Z[t]. Then either f(t) = (t − a)g(t), where a ∈ Z and
g(t) ∈ Z[t] is a polynomial of degree 3, or f(t) = f1(t)f2(t), where f1(t), f2(t) ∈ Z[t] are two
polynomials of degree 2.



In the first case, a|4 but none of the elements of {±1,±2,±4} are roots of f . Hence, we only
need to consider the case when f(t) = f1(t)f2(t), where deg(f1(t)) = deg(f2(t)) = 2, and we
have:

π2(f(t)) = π2(f1(t)f2(t)) = π2(f1(t))π2(f2(t).

Now, as deg(π2(f(t))) = 4 and as deg(π2(f1(t))) = deg(π2(f2(t))) ≤ 2, it follows that
deg(π2(f1(t))) = 2 and deg(π2(f2(t))) = 2.

On the other hand, we have π2(f(t)) = t4+t2+t = t(t3+t+[1]2), where t3+t+[1]2 ∈ F2[t] is
irreducible. We have arrived at a contradiction. We conclude that f(t) ∈ Z[t] is irreducible.


