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Exercice 1. (a) Let ¢ : A — B be a ring homomorphism and let a € A*. Then, there exists
b € A* such that ab = 1. Then:

1= ¢(1) = ¢(ab) = d(a)p(b).
Hence ¢(a) is an invertible element of B with inverse ¢(b).

(b) Let a,b € A such that a ~ b. Then there exists u € A* such that a = ub and we have:

¢(a) = d(ub) = (u)p(b).
Now by point (a) we have that ¢(u) € B* and we conclude that ¢(a) ~ ¢(b).

(c) Counterexample: Consider the ring homomorphism: & : Z[z] — Falz] (Example 1.4.36).
Now 22 + 4z + 2 € Z[x] is irreducible (one shows this using Eisenstein with p = 2), but
&(2? + 42 + 2) = 22 and 22 € Fa[z] is reducible.

Exercice 2. (a) For all 1 < i <n we have that (z — a;)|f(x) as a; € A is a root of f(z). Now as
a; # a; for all 1 <4, j <mn, it follows that ged(x — a;, 2 —a;) = 1.
As (x—aq1)|f(x), there exists fi(x) € A[z] such that f(z) = (z—a1)fi(x). Now (x —a2)|f(x)
and, as ged(z — a1,z — ag) = 1, it follows that there exists fo(z) € Afz] such that f(z) =
(x —a1)(z — a2) fo(z). We continue this process and find that there exists f,,(x) € A[x] such

that f(z) = H(x —a;) fn(x). We conclude that ﬁ(w —a;)|f(z).
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(b) As p, g are odd primes, it follows that pg is odd and therefore [1],, and [—1],, are distinct
roots of 2 — 1],y € Z/pgZ. Furthermore, as p,q are distinct, there exist a,b € Z such that
ap +bg = 1. Then (2ap — 1)? = 4a?p® — 4ap + 1 = 4ap(ap — 1) + 1 = —4abpq + 1.

Assume there exists ¢ € Z such that 2ap—1 = ¢pq. Then p(2a—cq) = 1 and so p = £1, which
is a contradiction. Therefore [0], # [2ap — 1]pq € Z/pqZ is a root of t* — [1],,. Moreover, we
also get that [1 — 2apl,, € Z/pqZ is a root of t2 — [1],4.

We now show that the four roots are distinct:

o If [2ap—1],q = [1]pg, then [2]pq[alpg[Plpg = [2]pg- As pq is odd, we have that ged(pg,2) = 1,
hence there exist ¢1,cp € Z such that ¢y -2 + ¢o - pg = 1. This gives [c1]pg[2]pg = [1]pg
and we deduce that [2],, € (Z/(pq)Z)*. We now multiply [2],q[alpg[Plpg = [2]pg bY [¢1]pq
and obtain [a]pq[plpg = [1]pg, Which is a contradiction since [p],, is a zero divisor.

o If [2ap — 1]y = [—1]pq, then [2]p4[aplpg = [0]pg, hence [aplpq = [0]pg. It follows that
a = c¢q, for some ¢ € Z, since ged(p,q) = 1. But then 1 = ap 4+ bg = q(cp + b) and,
consequently, ¢ = +1, a contradiction.

o If [2ap — 1], = [1 — 2ap|pq, then [2ap — 1],4 = [0], which is a contradiction.
o If [1 — 2aplpq = [1]pg, then [2ap — 1], = [—1],q, Which is a contradiction.
o If [1 — 2ap|pq = [—1]pg, then [2ap — 1], = [1]pg, Which is a contradiction.
We deduce that [2ap — 1],q, [1 — 2ap|pg, [1]pg and [—1]p, are distinct roots of 2 — [1],, in

Z/pqZ.

Lastly, (t — [1]pg)(t — [=1]pq) (t — [2ap — 1]pg) (t — [1 — 2ap],q) is a polynomial of degree 4 and
it clearly does not divide t? — [1],4, a polynomial of degree 2.



()

As flg in Q[t], there exists h € Q[t] such that ¢g(t) = f(t)h(t). Now, as h € Q[t|, we can write
h(t) = c¢- hi(t), where hi(t) € Z[t] is primitive and ¢ € Q. Then:

g(t) = c- f(t)h (D).

By Lemma 3.8.9, we have that f(¢)h1(¢) is primitive and, since g(t) is also primitive, we use
Lemma 3.8.11 to determine that ¢ € Z*, i.e. ¢ = 1. Then

g(t) = £f(t)h1(t) in Z[t], therefore flg in Z[t].

The roots of 2 + 1 over C are ei(%"'%ﬁ), where 0 < k£ < 3, and we have:

We group the conjugate complex roots and obtain the decomposition over R|x]
2 41 = (22 = V2 +1)(2® + V22 +1).

By Example 3.9.2 (4), it follows 2% 4+ 1 does not admit roots in Q, as it does not admit
roots in R. If 2% + 1 = f(z)g(z), where f(z),g(z) € Q[z] are polynomials of degree 2, then
f(z) = (z—a1)(z—az) and g(z) = (z—a3)(z—as), where a1, a3, a3, as € {/F+5)] 0 < k < 3}
are distinct. One checks that for every choice of a; a; the polynomial (z — a;)(x — a;) does
not have coefficients in Q. We conclude that z* + 1 is irreducible in Q[z]. Lastly, we note
that, as it is primitive., by Lemma 3.8.13, it is also irreducible in Z[z].

In Fo[z] we have 2% + [1]o = (z + [1]2)*.

The squares in Fq1 are [0]11, [1]11, [3]11, [4]11, [5]11 and [9]11 and we deduce that 2* + [1]11 does
not admit roots in F11. Assume that 2% +[1];; admits a decomposition into a product of two

polynomials of degree 2. As [Fi; is a field, we can assume that these polynomials are unitary.
We have:

2t 1 =@ +az+b)(a® +cx+d) =2t + (a+ c)z® + (b+ ac+ d)z® + (be + ad)x + bd
and so d = b~! and ¢ = —a. We substitute and obtain:

e[ =a'+ b —a® +b Nz +ab ™t bz + [1n
and so a(b™t —b) = 0.

e ifa=0,then b—a?+b"! =b+b"! =0, which is impossible as [~1]17 is not a square
in FH.
e if b =071 then b = [1]1; and so b € {[1]11,[10]11}-

— If b = [1]11, then b — a® + b1 = [2];1 — a? = 0, which is impossible as [2]1; is not a
square in [Fq;.
— If b= [10]11, then b — a? + b~ = [9]1; — a® = 0 and so a € {[3]11, [8]11}-

We conclude that

z? + [1}11 = (.%'2 + [3]11 - T+ [10]11)(1’2 + [8]11 - T+ [10]11) in Fn[a}].

Since 28 — 1 = (2% + 1)(z* — 1) it suffices to factor x% — 1:

e in C[z] we have: z* — 1 = (v +4)(x — i) (x + 1)(z — 1).
e in R[z], Q[z] and Z[x] we have: 2* — 1 = (22 4+ 1)(x + 1)(z — 1).



e in Fy[z] we have: % — [1]y = 2% + [1]2 = (z + [1]2)*.
e in Fyp[z] we have: % — [1]1; = (2% + [1]11)(z + [1]11)(x + [10]11), where we have seen
earlier that x2 + [1]; is irreducible.

Exercice 3. (a) We write %x‘r’ + 2:174 + 23+ % = 5(21‘5 + 152* + 923 + 3) € Q[z].

Now § € Q[z]*, as § € Q*. Therefore 22° + 52 + 23 + 1 is irreducible in Q[z] if and only if
22° + 1524 + 923 + 3 is. As ged(2,15,9,3) = 1, we have that 22° + 152* + 923 + 3 is primitive,
hence it is irreducible in Q[z] if and only if it is irreducible in Z[x] (Lemma 3.8.13). Using
Eisenstein for p = 3, where 3 € Z is irreducible, we deduce that 2z° + 152* + 922 + 3 is

irreducible in Z[x].

Let f(x) = 2* +[2]5 € F5[z]. Note that for all a € F5 we have a® € {[0]s, [1]5,[4]5}. Therefore
f does not admit roots in F5. We will now show that f is not a product of two polynomials
of degree 2. As Fy5 is a field, we can assume that these polynomials are unitary and so assume
there exist a, b, c,d € F5 such that

f(2) =2* +[2]5 = (2* +ax+b)(2® +cx+d) = 2 + (a+c)2® + (b+ac+d)z* + (be+ ad)z + bd.
Then ¢ = —a and d = [2]5b~! and substituting in the above gives:
25 =2t + (b—a?+ 25 - b Ha? + (—ab+[2]5 - ab Dz + [2]5.
Thus —ab + [2]5 -ab™! = a(—b+ [2]5-b~!) =0 and
e if a = 0, then b> = —[2]5, a contradiction.
o if —b+ [2]5b671 =0, then b? = [2]5, a contradiction.

We conclude that f is irreducible in Fs[z].

Lastly, let 2441523 +7 € Q[z]. As the dominant coefficient is 1, this polynomial is primitive,
hence it is irreducible in Q[z] if and only if it is irreducible in Z[z] (Lemma 3.8.13). Let
¢5 : Z — F5 be the quotient homomorphism and let 75 : Z[z] — Fs[z] be its induced
homomorphism. We have that:

ms(zt +152° +7) = 2t + [2]5
and, as 2% +[2]5 is irreducible in F5[z], we use Proposition 3.9.1 to conclude that z* + 152347
is irreducible in Z|x].

First we note that 2% 4+ y? + 1 € R[z, y] is primitive as its dominant coefficient is 1. Secondly,
y? + 1 € R[y] is irreducible. We now apply Eisenstein with p = y? + 1 to conclude that
22 4+ 9% + 1 is irreducible in Rz, y].

We have 2 4 y* + (1] = (z +y + [1]2)* in Falz, y].

The evaluation homomorphism evy : Qy] — Q, evo(y) = 0, induces the homomorphism
¢ : Qy][z] — Q[z] with {(y) = 0 and &(x) = x. We have that:

Et 4+t oy + 22—+ ) =23+ 222 — x4 1

and, by Proposition 3.9.1, y* 4+ 23 + 22y + xy + 222 — 2 + 1 is irreducible in Q[z,y] if
23 +22? —z+1 is irreducible in Q[x]. Now deg(z®+ 222 —x+1) = 3 and thus 23+ 222 —2+1
is irreducible in Q[«] if and only if it does not admit roots in Q. Assume 2 € Q, where p,r € Z
and ged(p,r) = 1, is a root of 23 + 222 — x + 1. Then

(7) +=() - () -

As ged(p,r) = 1, it follows that p|1, r[1 and so £ € {—1,1}. One checks that neither —1, nor
1 is a root of 3 4 222 — z + 1 and thus 23 4 222 — z + 1 is irreducible in Q[z].



(f) We have 42 + 1202 + 8z — 12 = 4(z% 4+ 3022 + 22 — 3) € Q[z]. Now 4 € Q[z]* and
so 4z® + 12022 4+ 8x — 12 is irreducible in Q[z] if and only if 23 + 3022 + 2z — 3 is. As
deg(2® + 3022 + 22 — 3) = 3 it follows that 2 + 3022 + 2z — 3 is irreducible in Q[z] if and only
if it does not admit roots in Q. Assume there exist £ € Q, where p,r € Z and ged(p,7) = 1,

such that: 5 )
<p> + 3o<p) 4 2<p> —3=0.
T T T

As ged(p,r) = 1, it follows that p[3 and r[l. Therefore £ € {-3,—-1,1,3}. One checks that
none of the elements in {—3,—1,1,3} is a root of 23 + 3022 + 2x — 3. We conclude that
23 + 3022 + 27 — 3 is irreducible in Q[z].

(g) As the polynomial t®+3+1 is primitive, it follows that it is irreducible in Q[¢] if and only if it
is irreducible in Z[x] (Lemma 3.8.13). We consider the quotient homomorphism ¢g : Z — Fo
and its induced homomorphism 7y : Z[t] — F[t] under which

mo(t® + 13 +1) =0 + 13 + [1]s.

By Proposition 3.9.1, t0 + 3 + 1 is irreducible in Z[t] if t5 + ¢3 + [1]5 is irreducible in Fa[t].

Now, one checks that t® 413+ [1]s does not admit roots in Fa[t]. Secondly, the only irreducible
polynomial of degree 2 in Fat] is t? + ¢ + [1]o and one checks that this does not divide
t6 4+ 3 + [1]5. Lastly, we assume that t5 +¢3 4 [1]3 is a product of two polynomials of degree
3. As [y is a field, we can assume that these polynomials are unitary and we have:

5+ 13+ [1)o = (3 + aot® + a1t + ao) (t3 + bot® 4 byt + by)
= 1% + (ag + b2)t° + (a1 + agba + b1)t* + (ag + arbe + asby + bo)t*+
+ (apba + a1by + azbo)t2 + (apb1 + a1bo)t + apbo.

Then apg = b() = [1}2, as = b2 and

aobl + (leo = [0]2 bl +a; = [0]2

apbs + a1b1 + asby = [0]2 N aiby = [0]2 N [1]2 _ [0]2_
ag + ai1bs + asby + by = [1]2 bQ(CLl + bl) = [1]2

a1 + asby + by = [0] azbz = [0]2

We conclude that 5 + 3 + [1]5 is irreducible in Fa[t].

(h) We first note that the ring Q[z] is factorial, as Q is (Theorem 3.8.1), and that x € Q|xz] is
irreducible. Secondly the polynomial y* + zy3 + zy? + 2%y + 322 — 22 € Q[z, y] is primitive,
as its dominant coefficient is 1. We now apply Eisenstein with p = x to conclude that
y* + xy3 + 2y? + 2%y + 322 — 22 is irreducible in Q[z, y].

Exercice 4.
Let f(t) =t + 4¢3 + 3t2 + 7t — 4 € Z]t].

(a) We have ma(f(t)) = t* +t2+t = t(t> +t+[1]2) € Fa[t]. Moreover, we remark that 3+t +[1]o
is irreducible in Fy[t], as it does not admit roots in Fy.

(b) We have m3(f(t)) = t* + 3+t —[1]s = (¢2 + [1]3) (% +t — [1]3) € F3[t].

(c) Assume that f(t) is reducible in Z[t]. Then either f(t) = (¢t — a)g(t), where a € Z and
g(t) € Z]t] is a polynomial of degree 3, or f(t) = fi(t)f2(t), where fi(t), f2(t) € Z[t] are two
polynomials of degree 2.



In the first case, a4 but none of the elements of {£1, £2,+4} are roots of f. Hence, we only
need to consider the case when f(t) = fi(t)f2(t), where deg(f1(t)) = deg(f2(t)) = 2, and we
have:

ma(f(t)) = ma(f1(t) f2(t)) = m2(f1(2))m2(f2(?).
Now, as deg(ma(f(t))) = 4 and as deg(ma(fi(t))) = deg(ma(f2(t))) < 2, it follows that
deg(ma2(f1(t))) = 2 and deg(m2(f2(?))) = 2.

On the other hand, we have mao(f(t)) = t*+t2+t = t(t3+t +[1]2), where t3 +t +[1]y € Fat] is
irreducible. We have arrived at a contradiction. We conclude that f(t) € Z]t] is irreducible.



