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Exercice 1. 1. Let L′ denote the field extension of K of degree 1. This means that L′ is a field
that contains K, and that has a K- vector space structure such that the dimension of L′ as
a K-vector space is 1.The K-subspace of L′ generated by 1 is equal to K, and equal to L′ as
well, due to the dimension of L′ over K being 1. Hence K and L′ coincide.

2. We take any α ∈ L \K. Then we have the following field extensions, K ⊆ K(α) ⊆ L. From
this, it follows using Proposition 4.2.15 that

[L : K]︸ ︷︷ ︸
=2

= [L : K(α)] · [K(α) : K].

Since we take α /∈ K, it holds that K 6= K(α), and hence by the first point, [K(α) : K] 6= 1.
From this, it follows using the equation above that [K(α) : K] = 2. But that means that
[L : K(α)] = 1, from which it follows by the first point that L = K(α).

3. Since L = K(α), and [L : K] = 2, it holds that {1, α} forms a K-linear basis of K(α). This
means in particular that α2 is a K-linear combination of 1 and α. There exists a, b ∈ K such
that α2 = b ·1+a ·α⇔ α2−aα−b = 0.We define d to be d = a2 +4b, the discriminant of the
quadratic equation. We now show that d is a square in K(α). We do so by multiplying the
quadratic equation by 4 (note that the characteristic of K is not equal to 2), and completing
the square, to find:

4α2 − 4aα− 4b = 0⇔ (2α− a)2 − a2 − 4b = 0⇔ (2α− a)2 = a2 + 4b = d.

Hence d is a square in K(α), and we let δ = 2α− a ∈ K(α) \K, with δ2 = d. By the second
part of this exercise, it holds that L = K(δ) = K(

√
d).

Let us give an alternative proof that illuminates the role of the discriminant. Since the
characteristic of K is different from 2, the well-known theory of quadratic equations with
coefficients in C can be carried over verbatim to K to obtain the following: if p(x) = ax2 +
bx+ c ∈ K[x] is a degree 2 polynomial, then the roots ξ1, ξ2 of p(x) in any extension F of K
can be written

ξ1 =
−2b+

√
∆(p)

2a
, ξ2 =

−2b−
√

∆(p)

2a

where ∆(p) = b2 − 4ac and
√

∆(p) ∈ F denotes a square root of ∆(p). Now observe that:

(a) K(ξi) = K(ξ1, ξ2) for any i = 1, 2. We can write in K(ξ1)[x] that

p(x) = (x− ξ1)q(x)

where necessarily deg q(x) = 1. Thus q(x) = x− ξ2, and so ξ2 ∈ K(ξ1). Hence K(ξ1) =
K(ξ1, ξ2), and by exchanging the roles of ξ1 and ξ2 we also obtain K(ξ2) = K(ξ1, ξ2).

(b) K(ξ1, ξ2) = K
(√

∆(p)
)
. Indeed

√
∆(p) = 2a(ξ1− ξ2) so the inclusion ⊇ holds. Also it

follows from the formulae for ξ1 and ξ2 that ⊆ holds.

So we obtain that K(ξ1) = K(ξ2) = K(ξ1, ξ2) = K
(√

∆(p)
)
as subfields of F . Taking F = L

and p(x) = mα,K , we obtain an alternative proof of the exercise.

4. From the definition of δ, it immediately follows that {1, δ} forms a K-linear basis of K(δ) as
a K-vector space. By definition, [K(δ) : K] is the dimension of K(δ) as a K-vector space,
which is 2.



Exercice 2. 1. There are two options for Q(
√
a). If a is a square in Q, then it holds that

√
a

is contained in Q, and hence Q(
√
a) = Q, and so [Q(

√
a) : Q] = 1. If a is no square, then

Q ( Q(
√
a), and the degree of this field extension is equal to 2, since the polynomial x2 − a

is zero for
√
a, and the polynomial is irreducible (since a is no square). The same holds for

Q(
√
b). We now use the fact (seen in Linear Algebra) that any two vector spaces over the

same field are isomorphic if and only if they are of the same dimension. In our case, both
Q(
√
a) and Q(

√
b) can be of dimension 1 or 2 over Q, depending on whether or not a resp.

b is a square. We conclude that Q(
√
a) is of the same dimension over Q as Q(

√
b), and

hence isomorphic, if and only if both a and b are simultaneously squares in Q, or both are
simultaneously not squares.

2. We now assume that Q(
√
a) and Q(

√
b) are isomorphic as fields. We claim that this holds

if and only if they are equal as subfields of C. This means that there exists c ∈ Q such that√
a = c

√
b.

First, we assume that
√
a = c

√
b. Then,

√
a and

√
b generate the same field extension of Q,

and hence clearly the two fields are isomorphic.

Secondly, assume that the fields Q(
√
a) and Q(

√
b) are isomorphic. Denote the isomorphism

ϕ : Q(
√
a)→ Q(

√
b). We note that from ϕ(1) = 1, it follows that ϕ acts as the identity on Z,

and furthermore on Q. On one hand, we have that ϕ(
√
a) = u+

√
bv for some u, v ∈ Q. On

the other hand, with a ∈ Q, it holds that

a = ϕ(a) = ϕ(
√
a
2
) = ϕ(

√
a)2 = (u+

√
bv)2 = (u2 + bv2) +

√
b(2uv).

We now distinguish between two cases.

• If
√
b ∈ Q, then ϕ(

√
a) ∈ Q, and hence

√
a ∈ Q. (If

√
a was not contained in Q, then

ϕ would be an isomorphism from Q(
√
a) 6= Q to Q. This is a contradiction to ϕ being

injective.) Then,
√
a =

√
a√
b
·
√
b,

and
√
a = c

√
b with c :=

√
a√
b
∈ Q.

• If
√
b /∈ Q, then

a = (u2 + bv2) +
√
b(2uv),

with
√
b /∈ Q. Since a ∈ Q, it follows that 2uv = 0, and hence either u = 0 or v = 0. If

u = 0, then a = bv2 ⇒
√
a =

√
bv, and hence the property is satisfied. If v = 0, then

ϕ(
√
a) = u ∈ Q. It then follows that the image of ϕ is contained in Q, which means that

ϕ can not be an isomorphism. Hence this case does not occur.

Exercice 3. 1. We have the following field extensions,

K ⊂ K(α2) ⊂ K(α) ⊂ L.

By proposition 4.2.15, it follows that

[L : K] = [L : K(α)] · [K(α) : K(α2)] · [K(α2) : K].

Since the degree of the field extension L over K is odd, it follows that the degrees on the right
hand side of the equality above are odd as well. We now look at the extension K(α) over
K(α2). The degree of this extension is at most 2, since the polynomial x2 − α2 ∈ K(α2)[x]
vanishes at α. But since the degree needs to be odd, it follows that it is 1. Hence K(α) =
K(α2).



2. We first show that √p /∈ Q(
√
q). If √p is contained in Q(

√
q), then there are r, s ∈ Q such

that √p = r + s
√
q. From this, it follows that

p = (r + s
√
q)2 = (r2 + s2q) + (2rs)

√
q.

Using the fact that p ∈ Q, we compare the right hand side and left hand side, and note that
2rs = 0. If r = 0, then p = s2q which is a contradiction with p, q prime and distinct.

If s = 0, then √p = r ⇒ p = r2, which is a contradiction to p prime.

It follows that √p /∈ Q(
√
q). The same argument, with the roles of p and q reversed shows

that √q /∈ Q(
√
p).

We now compute the degree of the field extension Q(
√
p,
√
q) over Q. We have the following

extensions of fields,
Q ⊂ Q(

√
p) ⊂ Q(

√
p,
√
q).

From proposition 4.2.15 it follows that

[Q(
√
p,
√
q) : Q] = [Q(

√
p,
√
q) : Q(

√
p)] · [Q(

√
p) : Q].

We calculate both degrees on the right hand side separately. Firstly, [Q(
√
p) : Q] = 2. This

holds because √p /∈ Q. The polynomial x2 − p ∈ Q[x] vanishes at √p, and combining Gauss
III with Eisenstein for the prime p, it follows that the polynomial is irreducible over Q. Hence
it is the minimal polynomial, and the degree is 2.

Secondly, [Q(
√
p,
√
q) : Q(

√
p)] = 2. This holds because √q /∈ Q(

√
p). Therefore, the degree

of the extension is not equal to 1. Furthermore, the degree of the extension is at most 2,
since √q2 = q ∈ Q, and hence √q2 ∈ Q(

√
p). Combining these restrictions, the degree of

the extension is equal to 2, and hence the product of the two extensions is 4, meaning that
[Q(
√
p,
√
q) : Q] = 4.

3. We have the following extension of fields, K ⊂ K(α) ⊂ K(α, β). Using proposition 4.2.15, it
follows that

[K(α, β) : K] = [K(α, β) : K(α)] · [K(α) : K].

From this, it follows that m = [K(α) : K] divides [K(α, β) : K]. The same argument for
the extension of fields K ⊂ K(β) ⊂ K(α, β) shows that n divides [K(α, β) : K]. Using the
fact that m and n are coprime, it follows that mn divides [K(α, β) : K]. This means that
the degree of the field extension is a multiple of mn. We show that it is equal to mn by
considering the first field extension again, K ⊂ K(α) ⊂ K(α, β). Since [K(β) : K] = n, it
holds in particular that the degree of the field extension K(α, β) over K(α) is at most n.
Hence [K(α, β) : K] is at most nm. On the other hand, as we have seen above, it is at least
mn, from which we conclude that it is exactly mn.

The two field extensions are illustrated below.

K

K(α) K(β)

K(α, β)

⊇ ⊆

⊆ ⊇

Exercice 4.
It holds that Q(

√
3 +
√

7) ⊆ Q(
√

3,
√

7). We show that indeed it holds that Q(
√

3 +
√

7) =



Q(
√

3,
√

7). For this, it is enough to show that
√

3 ∈ Q(
√

3 +
√

7) and
√

7 ∈ Q(
√

3 +
√

7). We
denote K = Q(

√
3 +
√

7). It holds that (
√

3 +
√

7)3 = 24
√

3 + 16
√

7 ∈ K. With this, and using that
−16
√

3− 16
√

7 ∈ K, it follows that their sum is contained in K as well,

(24
√

3 + 16
√

7) + (−16
√

3− 16
√

7) = 8
√

3.

Now using that 1
8 ∈ K, and 8

√
3 ∈ K we deduce that their product

√
3 ∈ K. From

√
3 ∈ K, it

immediately follows that
√

7 ∈ K as well, since
√

7 = (
√

3 +
√

7) −
√

3. This shows that indeed
K = Q(

√
3,
√

7).
The degree of the field extension [Q(

√
3,
√

7) : Q] is by definition the dimension of Q(
√

3,
√

7)
as a Q-vector space. Using exercise 3.2, it follows that the degree is 4. {1,

√
3,
√

7,
√

3
√

7} forms a
basis of this vector space.

Exercice 5. 1. If p = 2, then e2iπ/2 = −1, which is contained in R, and hence R(e2iπ/p) = R.
From this, it follows that the degree of the extension is equal to 1.

For p 6= 2, it holds that e2iπ/p is a complex number, and not contained in R. By example
4.2.14 (a), we know that [C : R] = 2. Using exercise 1.2, it follows that R(e2iπ/p) = C, and
hence [R(e2iπ/p) : R] = [C : R] = 2.

2. By definition, α vanishes over t42 + t41 + · · ·+ t2 + t+ 1. Furthermore, using the fact that 43
is prime, and Example 3.9.4(b), it follows that t42 + t41 + · · ·+ t2 + t + 1 is irreducible over
Q. Hence we get that mα,Q = t42 + t41 + · · ·+ t2 + t+ 1, and so [Q(α) : Q] = 42.

3. We follow the same steps as example 4.2.16(a). First, we note that we have the following field
extensions, Q ⊆ Q( 5

√
13) ⊆ Q( 5

√
13, i).We can calculate the degree of the extension Q( 5

√
13, i)

over Q using proposition 4.2.15. It holds that

[Q(
5
√

13, i) : Q] = [Q(
5
√

13, i) : Q(
5
√

13)] · [Q(
5
√

13) : Q].

First, we calculate [Q( 5
√

13) : Q]. The polynomial x5 − 13 vanishes at 5
√

13. Furthermore, the
polynomial is irreducible over Q : By Gauss III, it is equivalent to showing that the polynomial
is irreducible over Z.We can apply Eisensteins criterion with p = 13, form which irreducibility
over Z follow. Therefore, m 5√13,Q = x5 − 13, and the degree of the field extension is 5.

Secondly, we calculate [Q( 5
√

13, i) : Q( 5
√

13)]. Since Q ⊆ R, and 5
√

13 ∈ R, it follows that
Q( 5
√

13) ⊆ R. Hence i /∈ Q( 5
√

13). Using that i is a root of x2 + 1, we get that the degree of i
over Q( 5

√
13) is 2, and hence [Q( 5

√
13, i) : Q( 5

√
13)] = 2.

By the formula above, it follows that

[Q(
5
√

13, i) : Q] = [Q(
5
√

13, i) : Q(
5
√

13)] · [Q(
5
√

13) : Q] = 2 · 5 = 10.

4. There are two possibilities. The first possibility is that α is the root α = [1]3. In that case,
F3(α) = F3, and hence [F3(α) : F3] = 1. We can therefore write the polynomial t4 − t3 − t2 −
t− [1]3 = (t− [1]3)(t

3−t+[1]3). If α 6= [1]3, then α is a root of the polynomial t3−t+[1]3. But
this polynomial is irreducible over F3, since neither [0]3, [1]3 or [2]3 is a root of t3 − t + [1]3.
We conclude with the fact that mα,F3 = t3 − t+ [1]3, and hence [F3(α) : F3] = 3.

5. We note that (3+
√

5)2 = 14+6
√

5⇒ 3+
√

5 =
√

14 + 6
√

5. Therefore, Q(
√

14 + 6
√

5,
√

3) =
Q(3 +

√
5,
√

3) = Q(
√

5,
√

3). It follows that [Q(
√

5,
√

3) : Q] = 4. {1,
√

3,
√

5,
√

3
√

5} forms
a basis of Q(

√
5,
√

3) as a Q-vector space.



6. We calculate the degree of the extension using proposition 4.2.15 for the extension Q ⊆
Q(( 6
√

7)2) ⊆ Q( 6
√

7), from which it follows that

[Q(
6
√

7) : Q] = [Q(
6
√

7) : Q((
6
√

7)2)] · [Q((
6
√

7)2) : Q].

We first calculate [Q( 6
√

7) : Q]. The polynomial x6 − 7 ∈ Q[x] is zero for 6
√

7. Furthermore,
by Gauss III, it is irreducible if it is irreducible over Z. Applying Eisenstein with p = 7, this
holds. Hence m 6√7,Q = x6 − 7, and the degree of the field extension is 6.

Secondly, we calculate [Q(( 6
√

7)2) : Q]. It holds that ( 6
√

7)2 = 3
√

7. The polynomial x3−7 ∈ Q[x]
is zero for 3

√
7. Furthermore, by Gauss III, it is irreducible if it is irreducible over Z. Applying

Eisenstein with p = 7, this holds. Hence m 3√7,Q = x3−7, and the degree of the field extension
is 3.

Using the formula above, we get that [Q( 6
√

7) : Q(( 6
√

7)2)] = 2.

7. We apply the same technique as in the exercise above, noting that we have an extension as
follows, F2 ⊆ F2(α

2) ⊆ F2(α), and hence

[F2(α) : F2] = [F2(α) : F2(α
2)] · [F2(α

2) : F2].

On the left hand side, the degree is equal to 3, since mα,F2 = t3 + t + [1]2. Hence on the
right hand side, one of the factors is 1, and the other one is three. We note that [F2(α

2) : F2]
can not be 1, since α2 /∈ F2. If α2 was contained in F2, then the polynomial t2 − α2 ∈ F2[t]
vanishes at α, which contradicts the fact that [F2(α) : F2] = 3. Therefore, [F2(α

2) : F2] = 3,
and so [F2(α) : F2(α

2)] = 1.

Exercice 6. 1. We show that the minimal polynomial mβ,K = x7 − y ∈ K[x]. It holds that the
polynomial vanishes at β, since

β7 − y =

(
α3

y2

)7

− y =
(α7)

3

y14
− y ∗= (y5)

3

y14
− y = y − y = 0,

where in the equation ∗, we use the fact that α is a root of f in L, and hence α7 = y5.
Furthermore, the polynomial is irreducible in K[x] : We use Gauss III to deduce that f is
irreducible in K[x] = (C(y))[x] if and only if f is irreducible in (C[y])[x]. Since y is irreducible
in C[y], we may use Eisenstein with p = y to deduce that x7−y is irreducible in (C[y])[x], and
hence in K[x]. This proves that the minimal polynomial mβ,K = x7− y ∈ K[x]. We conclude
that [K(β) : K] = 7.

2. To show that K(α) = K(β), we show that K(α) ⊆ K(β) and K(β) ⊆ K(α).

We note that

β5 =

(
α3

y2

)5

=
α15

(y5)2
=

α15

(α7)2
= α.

From this, it follows that α = β5 ∈ K(β), and hence K(α) ⊆ K(β). On the other hand,
β = α3

y2
∈ K(α), and hence K(β) ⊆ K(α).

3. We first remark that by Gauss III, f is irreducible in C[x, y] = (C[y])[y] if and only if f is
irreducible in (C(y))[x] = K[x]. By the first and second part of this exercise, it holds that
[K(α) : K] = 7. From this, it follows that the degree of the minimal polynomial mα,K is 7.
Now since α is a root of x7−y5 ∈ K[x], it follows that x7−y5 | mα,K . Since both polynomials
are of degree 7, it follows that mα,K ∼ x7 − y5, and from mα,K being irreducible in K[x] it
follows that x7 − y5 is irreducible in K[x] as well. Applying Gauss III, with x7 − y5 being
primitive, it follows that x7 − y5 is irreducible in C[x, y].


