Exercice 7. 1. Since ϕ is a ring homomorphis we have $\phi(1) = 1$. Therefore ϕ fixes the element in \mathbb{Z} . To see that ϕ fixes also the elements in \mathbb{Q} note that for every

$$\frac{p}{q} \in \mathbb{Q}$$

where $p, q \in \mathbb{Z}$ and $q \neq 0$ we have that

$$q \cdot \phi(\frac{p}{q}) = \phi(q) \cdot \phi(\frac{p}{q}) = \phi(q \cdot \frac{p}{q}) = \phi(p) = p$$

therefore

$$\phi(\frac{p}{q}) = \frac{p}{q}.$$

2. Set $T = \{s \in F | \exists a, b \in \mathbb{Z} : s^2 + as + b = 0\}$. Take $s \in T$. We know that $s = r + ti\sqrt{d}$ for r and $t \in \mathbb{Q}$. Then, we have

$$(r + ti\sqrt{d})^2 - 2r(r + ti\sqrt{d}) + (r^2 + t^2d) = 0$$

So, the minimal polynomial of s over \mathbb{Q} is

$$m = x^2 - 2rx + (r^2 + t^2d)$$

In particular, all polynomials of degree 2, which have s as roots, are multiples of m by a rational number. So, the only way s can satisfy a polynomial with integer coefficients and 1 as the leading coefficient is if $2r \in \mathbb{Z}$ and $r^2 + t^2d \in \mathbb{Z}$. From the first condition we may write r = r'/2 for $r' \in \mathbb{Z}$. Then we have

$$r^2 + t^2 d = r'^2/4 + t^2 d \in \mathbb{Z}$$

We obtain that $4t^2d \in \mathbb{Z}$, so using that d is square-free we may write t also as t'/2 for $t \in \mathbb{Z}$. Then we have

$$(r'^2+t'^2d)/4\in\mathbb{Z}$$

Equivalently we have

$$4|r'^2 + t'^2d$$

Taking into account that $d \equiv 1 \mod 4$ and that square numbers are 0 or $1 \mod 4$ we obtain that the only solution is that both r' and t' is divisible by 2. This implies that r and t are actually integers. This concludes the proof that $T \subseteq A$.

For the other inclusion if $s \in A$, then the formula $m = x^2 - 2rx + (r^2 + t^2d)$ shows that in fact $s \in T$.

3. Set d=1 and d=5, define $T'=\{s\in F'|\exists a,b\in\mathbb{Z}:s^2+as+b=0\}$, and let $\phi:\mathbb{Q}(i)\to\mathbb{Q}(\sqrt{-5})$ be an isomorphism.

The previous two points gives that ϕ induces a (ring) isomorphism $A \to A'$. In particular, from point 2) we have that A = T and A' = T' and ϕ fixes \mathbb{Z} , so ϕ sends every element satisfying a degree 2 polynomial with coefficients over \mathbb{Z} and leading coefficient 1 to an element with the same properties.

However $A \not\cong A'$, as we have seen earlier in the course that A is a UFD, but A' is not. Therefore $\mathbb{Q}(i)$ cannot be isomorphic to $\mathbb{Q}(\sqrt{-5})$