Theory and Methods for Reinforcement Learning

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 9: Markov Games

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-618 (Spring 2022)

License Information for Theory and Methods for Reinforcement Learning (EE-618)

- ▷ This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes unless they get the licensor's permission.
- Share Alike
 - The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

EPEL

Games

 \circ The mathematical discussion of games can be traced back to 16th century by Gerolamo Cardano.

• From 17th-19th century, many different games are analyzed, such as the card game le Her and chess game.

o John von Neumann published the paper On the Theory of Games of Strategy in 1928.

o John Nash formalized Nash equilibrium in broad classes of games.

Figure: John von Neumann

Figure: John Nash

EPEL

• What is normal form game?

• Equilibria

 \circ Dynamics for games

- Iterated best response
- Fictitious play
- Gradient ascent

• What is normal form game?

○ Equilibria

 \circ Dynamics for games

- Iterated best response
- Fictitious play
- Gradient ascent

 \circ There is a set of players/agents: ${\cal I}$

• Joint action: $a = (a_i)_i$, where $a_i \in A_i$ is the action of agent $i \in \mathcal{I}$

• **Reward/Payoff**: $r_i(a)$ is the reward received by agent *i* with a joint action *a*

- \circ The game can be represented as above is called normal form game
- \circ Other types of games:
 - Extensive form games
 - Markov games
 - Continuous action games
 - Cournot oligopolies

Strategies

- Strategy/Policy: $\pi_i \in \Delta(\mathcal{A}_i)$: $\pi_i(a_i)$ is the probability that agent *i* selects action a_i
 - pure strategy (deterministic policy): only play one action
 - mixed strategy (stochastic policy): a distribution over the set of actions
- \circ **Strategy profile**: one strategy of each player $\boldsymbol{\pi} = (\pi_i)_i$
- Each player wants to maximize its payoff
- \circ The expected payoff of player i when a strategy profile π is used

Remark: We will see why mixed strategies can be necessary to consider.

A special case: Two-player games

 \circ The game with two players

- \circ The payoffs of two player normal form games can be represent with matrix forms
- \circ Prisoners dilemma [10]: each agent can choose to cooperate or defect

• Example: if Alex plays defect and Bob plays cooperate they receive 2 and -1 respectively.

 \circ The sum of two players' payoffs are zero, i.e., $r_1(a_1,a_2)=-r_2(a_1,a_2)$

 \circ The payoff of a two-player zero-sum normal form game can be represented with a matrix A

 $\circ A(i, j)$ is the payoff of player 1 (loss of player 2) when choosing *i*-th action and player 2 chooses its *j*-th action

 \circ The expected payoff of player 1 / loss of player 2:

 $r_1(\pi_1, \pi_2) = (\pi_1)^\top A \pi_2$

 \circ Player 1 wants to maximize $(\pi_1)^{ op}A\pi_2$ and player 2 wants to minimize it

EPEL

Response models

• What will a player do if other players' strategies are fixed at $\pi_{-i} \triangleq (\pi_1, \ldots, \pi_{i-1}, \pi_{i+1}, \ldots, \pi_n)$?

• A **best response** of agent i to the policies of the other agents π_{-i} is a policy π_i such that

$$r_{i}\left(\pi_{i}, oldsymbol{\pi}_{-i}
ight) \geq r_{i}\left(\widetilde{\pi}_{i}, oldsymbol{\pi}_{-i}
ight), \quad orall \widetilde{\pi}_{i}$$

• A softmax response of agent i to the policies of the other agents π_{-i} is a policy π_i such that

 $\pi_i(a_i) \propto \exp\left(\lambda r_i(a_i, \boldsymbol{\pi}_{-i})\right)$

Remarks: • A best response can be either deterministic or mixed.

 \circ when $\lambda \rightarrow \infty$ coincides softmax response with best response.

• What is normal form game?

• Equilibria

- Dominant Strategy Equilibrium
- Nash Equilibrium
- \circ Dynamics for games
 - Iterated best response
 - Fictitious play
 - Gradient ascent

Dominant strategy equilibrium

• A dominant strategy π_i for player i is a strategy that is a best response against all π_{-i}

$$r_i(\pi_i, \boldsymbol{\pi}_{-i}) \geq r_i\left(\widetilde{\pi}_i, \boldsymbol{\pi}_{-i}\right), \quad \forall \widetilde{\pi}_i, \boldsymbol{\pi}_{-i}$$

o In a dominant strategy equilibrium, every player adopts a dominant strategy.

o Dominant strategy and dominant strategy equilibrium may not exist.

o (defect, defect) is a dominant strategy equilibrium in prisoner dilemma game

• Bob can always improve his payoff by defecting (irrespectable of Alex's strategy)

Nash equilibrium

 \circ In a **Nash equilibrium** (NE) π^* , no player can improve its expected payoff by changing its policy if the other players stick to their policy.

• Or we can say, π_i^{\star} is the best response for each agent *i* if other agents stick to π_{-i}^{\star} .

 \circ In NE, we can write for each agent i

 $r_i(\boldsymbol{\pi}^{\star}) \geq r_i(\pi_i, \boldsymbol{\pi}_{-i}^{\star}), \quad \forall \pi_i.$

• All dominant strategy equilibria are Nash equilibria (the reverse does not hold).

Nash equilibrium - good news

Rock-paper-scissor game

 \circ No dominant strategy equilibrium. No pure NE.

 \circ Each player playing a mixed strategy $(\frac{1}{3},\frac{1}{3},\frac{1}{3})$ is a NE.

Theorem (Existence of Nash equilibrium [9])

In a normal form game with finite players and actions, there exists a Nash equilibrium in mixed strategies.

Computing Nash equilibrium

• Consider a game with different payoff matrices

$$r_1(\pi_1, \pi_2) = (\pi_1)^{\top} A \pi_2$$
 (player 1)
 $r_2(\pi_1, \pi_2) = (\pi_1)^{\top} B \pi_2$ (player 2)

• Bad news Computing mixed NE in normal form games is intractable in general [2, 3].

 \circ Good news However, NE of zero-sum games ($A = -B^{\top}$) can be efficiently computed as we will see.

Nash equilibria in two-player zero-sum games

 \circ We can find a Nash equilibrium by solving a minimax formulation

 \circ Consider the following bilinear minimax optimization problems

$$\max_{\substack{\pi_1 \in \Delta^{d_1} \\ \pi_2 \in \Delta^{d_2}}} \min_{\substack{\pi_2 \in \Delta^{d_2}}} (\pi_1)^\top A \pi_2 \quad \text{(player 1)}$$
$$\min_{\substack{\pi_2 \in \Delta^{d_2} \\ \pi_1 \in \Delta^{d_1}}} \max_{\substack{\pi_1 \in \Delta^{d_1}}} (\pi_1)^\top A \pi_2 \quad \text{(player 2)}$$

 \circ NE corresponds to $(\pi^{\star}_1,\pi^{\star}_2)$ such that

$$(\pi_1)^{\top} A \pi_2^{\star} \le (\pi_1^{\star})^{\top} A \pi_2^{\star} \le (\pi_1^{\star})^{\top} A \pi_2, \quad \forall \pi_1, \pi_2$$

 \circ It is also called a saddle point for the function $f(\pi_1, \pi_2) = (\pi_1)^\top A \pi_2$.

lions@epfl

Connection with minimax optimization

 \circ More generally (x^{\star},y^{\star}) is called a saddle point for f if

$$f(x^*, y) \le f(x^*, y^*) \le f(x, y^*)$$
 (1)

Theorem (Minimax theorem)

Let $X \in \mathbb{R}^{d_1}$ and $Y \in \mathbb{R}^{d_2}$ be compact convex sets. If $f : X \times Y \to \mathbb{R}$ is a continous function such that $f(\cdot, y)$ is convex for any y and $f(x, \cdot)$ is concave for any x then

$$\max_{x \in X} \min_{y \in Y} f(x, y) = \min_{y \in Y} \max_{x \in X} f(x, y).$$
 (minimax equality)

Proposition: \circ (x^* , y^*) is a saddle point for f if and only if the minimax equality holds and

$$x^* \in \arg\min_{x \in X} \max_{y \in Y} f(x, y), \quad y^* \in \arg\max_{y \in Y} \min_{x \in X} f(x, y).$$

lions@epf

- \circ What is normal form game?
- ∘ Equilibria
 - Dominant Strategy Equilibrium
 - Nash Equilibrium
 - Correlated Equilibrium
- o Dynamics for games
 - Iterated best response
 - Fictitious play
 - Gradient ascent

SP5L

 \circ Each player iteratively find the best response to other player's strategies

```
Iterated best response (IBR)

for t = 1, ... do

Each player i updates its strategy \pi_i^{t+1} such that

r_i \left(\pi_i^{t+1}, \pi_{-i}^t\right) \ge r_i \left(\pi_i, \pi_{-i}^t\right), \quad \forall \pi_i
```

end for

Remark: • Players can update simultaneously or sequentially.

Non-convergence of iterated best response - bad news

 \circ Starting from (T,L), two players update simultaneously.

• After 2 iterations, it arrives NE (B,R).

$$\circ (\mathsf{A},\mathsf{B}) \to (\mathsf{B},\mathsf{A}) \to (\mathsf{A},\mathsf{B}) {\rightarrow} ...$$

 \circ It avoids NEs (A,A) and (B,B).

Convergence of IBR in potential games - good news

 \circ The potential function for a game is a function $\Phi:\mathcal{A}\to\mathbb{R}$ such that

$$r_{i}\left(a_{i},a_{-i}\right)-r_{i}\left(\widetilde{a}_{i},a_{-i}\right)=\Phi\left(a_{i},a_{-i}\right)-\Phi\left(\widetilde{a}_{i},a_{-i}\right),\quad\forall a_{i},\widetilde{a}_{i}\in\mathcal{A}_{i},a^{-i}\in\mathcal{A}_{-i}.$$

• A game with a potential function is called potential game.

Proposition

If a potential game is finite, it has at least one pure Nash equilibrium. If players use iterated best response sequentially (or one at a time), the dynamic will terminate at a NE after finite step.

Fictitious play

- Required feedback In fictitious play each agent *i* counts opponent's actions $N_t(j, a_j)$ for $j \neq i$. The initial counts $N_0(j, a_j)$ can be based on agents' initial guess.
- \circ Behavioural assumption Each agent *i* assumes its opponents are using a stationary mixed strategy the same as empirical distribution of their actions

$$\widetilde{\pi}_j^t(a_j) = \frac{N_t(j, a_j)}{\sum_{\bar{a}_j \in \mathcal{A}_j} N_t(j, \bar{a}_j)}.$$

 \circ Each agent i maximizes their reward assuming other agents are playing $\widetilde{\pi}_{-i}^t$.

$$a_i^{t+1} = \max_{a_i} r_i(a_i, \widetilde{\pi}_{-i}^t).$$

lions@epfl

Non-convergence of fictitious play - bad news

• Fictitious play is not guaranteed to converge.

• Consider the following game (also known as the Shapley game [12])

 $\circ \text{ The policy cycles: } (T,C) \rightarrow (T,R) \rightarrow (M,R) \rightarrow (M,L) \rightarrow (B,L) \rightarrow (B,C) \rightarrow (T,C) \rightarrow \ldots$

o After one play stays on a wining position long enough, the other player will change its action

• Empirical distributions do not converge.

EPEL

Convergence of fictitious play in some games - good news

• Fictitious play converges for zero-sum games

Theorem ([11]) For two-player zero-sum games the empirical distribution of fictitious play converges to a NE, i.e. $(\widetilde{\pi}_1^t, \widetilde{\pi}_2^t) \rightarrow (\pi_1^\star, \pi_2^\star)$ where $(\pi_1^\star, \pi_2^\star)$ is a NE.

Karlin's conjecture [4]

The convergence rate of fictitious play for zero-sum games is $O(1/\sqrt{T})$.

Remark: • Still an open problem

Gradient ascent

• Take the gradient of value function at
$$\pi^t$$
: $\frac{\partial r_i(\pi)}{\partial \pi_i(a_i)}\Big|_{\pi=\pi^t}$

• Apply gradient ascent to each agent

$$\pi_i^{t+1}(a_i) = \pi_i^t(a_i) + \alpha_i^t \left. \frac{\partial r_i(\boldsymbol{\pi})}{\partial \pi_i(a_i)} \right|_{\boldsymbol{\pi} = \boldsymbol{\pi}^t}.$$

 \circ Project π_i^{t+1} to a valid probability distribution.

 \circ Note that

$$\frac{\partial r_i\left(\boldsymbol{\pi}\right)}{\partial \pi_i\left(a_i\right)}\Big|_{\boldsymbol{\pi}=\boldsymbol{\pi}^t} = \left.\frac{\partial}{\partial \pi_i(a_i)}\left(\sum_{\boldsymbol{a}} r_i(\boldsymbol{a})\prod_j \pi_j\left(a_j\right)\right)\right|_{\boldsymbol{\pi}=\boldsymbol{\pi}_t} = \sum_{\boldsymbol{a}_{-i}} r_i\left(a_i, \boldsymbol{a}_{-i}\right)\prod_{j\neq i} \pi_j^t\left(a_j\right).$$

Gradient ascent in two-player zero-sum games

• The bilinear minimax optimization

$$\min_{\pi_2 \in \Delta^{d_2}} \max_{\pi_1 \in \Delta^{d_1}} (\pi_1)^\top A \pi_2$$

 \circ Gradient ascent (also called gradient descent ascent or GDA in this case)

$$\begin{split} \pi_1^{t+1} &= \mathcal{P}_{\Delta^{d_1}} \left(\pi_1^{t+1} + \alpha_1^t A \pi_2^t \right), \\ \pi_2^{t+1} &= \mathcal{P}_{\Delta^{d_2}} \left(\pi_2^{t+1} - \alpha_2^t A^\top \pi_1^t \right). \end{split}$$

• Gradient descent ascent with constant stepsizes (i.e. $\alpha_1^t = \alpha_1$ and $\alpha_2^t = \alpha_2$) does not always converge for bilinear minimax optimization [6].

EPEL

Gradient ascent in two-player zero-sum games - non-convergence

• The function f(x, y) = xy has saddle point (0, 0).

 \circ GDA update $x_{t+1} = x_t - \alpha y_t$, $y_{t+1} = y_t + \alpha x_t$

 \circ Since $x_{t+1}^2+y_{t+1}^2=(1+\alpha^2)(x_t^2+y_t^2),$ it does not converge to the saddle point.

 \circ GDA with constant stepsize may not converge even if f(x,y) is convex-concave!

Extra-gradient - a simple fix to GDA

• Minimax optimization:

$$\min_{x \in X} \max_{y \in Y} f(x, y).$$

• Extra-gradient (EG) update:

$$\begin{aligned} x_{t+\frac{1}{2}} &= \mathcal{P}_X\left(x_t - \alpha \nabla_x f(x_t, y_t)\right), \qquad y_{t+\frac{1}{2}} = \mathcal{P}_Y\left(y_t + \alpha \nabla_y f(x_t, y_t)\right) \\ x_{t+1} &= \mathcal{P}_X\left(x_t - \alpha \nabla_x f(x_{t+\frac{1}{2}}, y_{t+\frac{1}{2}})\right), \quad y_{t+1} = \mathcal{P}_Y\left(y_t + \alpha \nabla_y f(x_{t+\frac{1}{2}}, y_{t+\frac{1}{2}})\right) \end{aligned}$$

Convergence of extra-gradient

 \circ Assumption 1: f(x, y) is convex-concave,

• Assumption 2: f(x, y) is L-smooth,

• Assumption 3: $D_X^2 = \frac{1}{2} \max_{x,x'} \|x - x'\|^2$ and $D_Y^2 = \frac{1}{2} \max_{y,y'} \|y - y'\|^2$ are finite.

Theorem

If the assumptions above holds, then EG with stepsize $\alpha = \frac{1}{2L}$ satisfies

$$f(\bar{x}_T, y) - f(x, \bar{y}_T) \le \frac{2L(D_X^2 + D_Y^2)}{T}.$$

for any $x \in X$ and $y \in Y$ where $\bar{x}_T = \frac{1}{T} \sum_{t=1}^T x_t$ and $\bar{x}_T = \frac{1}{T} \sum_{t=1}^T y_t$.

Remarks: • The time average (\bar{x}_T, \bar{y}_T) produced by EG converges to a saddle point.

• For strongly-convex strongly-concave see Mathematics of Data lecture 12 2021 (EE-556) [1]

lions@epfl

Beyond normal form games / convex-concave

• So far focused on normal form (contained in convex-concave)

General zero-sum games

Consider

$$\min_{x \in X} \max_{y \in Y} f(x, y) \tag{2}$$

where $f(\cdot, y)$ is nonconvex and $f(x, \cdot)$ is nonconcave.

Remarks: • If $f(x,y) = x^{\top}Ay$ and $\mathcal{X} = \Delta$ and $\mathcal{X} = \Delta$ this reduces to a normal form game.

m

 $\circ x, y$ can be the parameters of deep neural networks (e.g. generative adversarial networks)

lions@epf

Beyond normal form games / convex-concave

 \circ A Nash equilibrium (NE) is a pair $(x^\star,y^\star)\in\mathcal{X} imes\mathcal{Y}$ for which,

$$f(x^{\star}, y) \le f(x^{\star}, y^{\star}) \le f(x, y^{\star}) \quad \forall x \in \mathcal{X}, y \in \mathcal{Y}$$
(3)

 \circ A local Nash equilibrium (LNE) is a pair $(x^{\star},y^{\star}) \in \mathcal{X} imes \mathcal{Y}$ for which,

 $f(x^{\star}, y) \leq f(x^{\star}, y^{\star}) \leq f(x, y^{\star}) \quad \text{ for all } (x, y) \text{ in a neighborhood } \mathcal{U} \text{ of } (x^{\star}, y^{\star}) \text{ in } \mathcal{X} \times \mathcal{Y}$ (4)

• A first order stationary point (FOSP) is a pair $(x^\star, y^\star) \in \mathcal{X} \times \mathcal{Y}$ for which,

$$\nabla_{x} f(x^{\star}, y^{\star})^{\top} (x - x^{\star}) \ge 0 \quad \forall x \in \mathcal{X}$$

$$\nabla_{y} f(x^{\star}, y^{\star})^{\top} (y - y^{\star}) \le 0 \quad \forall y \in \mathcal{Y}$$
(5)

Remarks: \circ NE \Rightarrow LNE \Rightarrow FOSP

 \circ In case f is not convex-concave Nash equilibrium may not exist

Nonconvex-nonconcave - bad news

• Computing FOSP is PPAD-complete (similar to NP-completeness) [5]

Large family of methods (including extra-gradient) may not converge to FOSP [8]

• Example [8]

$$f(x,y) = y(x-0.5) + \phi(y) - \phi(x) \quad \text{where} \quad \phi(u) = \frac{1}{4}u^2 - \frac{1}{2}u^4 + \frac{1}{6}u^6 \tag{6}$$

1

1

EPFL

Figure: Neither last iterate (red) or time average (blue) of extra-gradient does converge to a FOSP.

Summary

- Normal form games:
 - What is normal form game?
 - Equilibrium
 - Algorithms for games

Table:	Does	the	algorithm	converge?
--------	------	-----	-----------	-----------

Setting (solution concept)	Best response	Fictitious play	GDA	E×tra-gradient
Potential games (NE)	Yes	Yes	Yes	Yes
Normal form games (NE)	No	No	No	No
Zero-sum games (NE)	No	No	No ¹	Yes
general zero-sum games (FOSP)	No	No	No	No

- Remarks: All require full access on the payoff vector (oracle based)
 - Weaker feedback model (loss based):
 - only access to randomly sampled pure strategy of opponents (e.g. Exp3 [7])

¹The time average converges for an appropriate stepsize selection.

References |

[1] Volkan Cevher.

Lecture 12: Primal-dual optimization II: Extra-gradient method (Mathematics of Data 2021). https://www.epfl.ch/labs/lions/wp-content/uploads/2022/01/lecture_12_2021.pdf.

[2] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-player nash equilibria. *Journal of the ACM (JACM)*, 56(3):1–57, 2009.

[3] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou.

The complexity of computing a nash equilibrium. *SIAM Journal on Computing*, 39(1):195–259, 2009.

[4] Constantinos Daskalakis and Qinxuan Pan.

A counter-example to karlin's strong conjecture for fictitious play.

In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pages 11–20. IEEE, 2014.

[5] Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis.

The complexity of constrained min-max optimization.

arXiv preprint arXiv:2009.09623, 2020.

 [6] Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Rémi Le Priol, Gabriel Huang, Simon Lacoste-Julien, and Ioannis Mitliagkas. Negative momentum for improved game dynamics.

In The 22nd International Conference on Artificial Intelligence and Statistics, pages 1802-1811, 2019.

References II

[7] Elad Hazan.

Introduction to online convex optimization. Foundations and Trends® in Optimization, 2(3-4):157–325, 2016.

[8] Ya-Ping Hsieh, Panayotis Mertikopoulos, and Volkan Cevher.

The limits of min-max optimization algorithms: Convergence to spurious non-critical sets. arXiv preprint arXiv:2006.09065, 2020.

[9] John F Nash Jr.

Equilibrium points in n-person games.

Proceedings of the national academy of sciences, 36(1):48-49, 1950.

[10] William Poundstone.

Prisoner's Dilemma/John Von Neumann, game theory and the puzzle of the bomb. Anchor, 1993.

[11] Julia Robinson

An iterative method of solving a game.

Annals of mathematics, pages 296-301, 1951.

[12] Lloyd Shapley.

Some topics in two-person games.

Advances in game theory, 52:1-29, 1964.

