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Games

◦ The mathematical discussion of games can be traced back to 16th century by Gerolamo Cardano.

◦ From 17th-19th century, many different games are analyzed, such as the card game le Her and chess game.

◦ John von Neumann published the paper On the Theory of Games of Strategy in 1928.

◦ John Nash formalized Nash equilibrium in broad classes of games.

Figure: John von Neumann Figure: John Nash
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Normal form games

◦ What is normal form game?

◦ Equilibria

◦ Dynamics for games

I Iterated best response

I Fictitious play

I Gradient ascent
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Normal form games

◦ There is a set of players/agents: I

◦ Joint action: a = (ai)i, where ai ∈ Ai is the action of agent i ∈ I

◦ Reward/Payoff: ri(a) is the reward received by agent i with a joint action a

◦ The game can be represented as above is called normal form game

◦ Other types of games:
I Extensive form games
I Markov games
I Continuous action games
I Cournot oligopolies
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Strategies

◦ Strategy/Policy: πi ∈ ∆(Ai): πi(ai) is the probability that agent i selects action ai

I pure strategy (deterministic policy): only play one action

I mixed strategy (stochastic policy): a distribution over the set of actions

◦ Strategy profile: one strategy of each player π = (πi)i

◦ Each player wants to maximize its payoff

◦ The expected payoff of player i when a strategy profile π is used

ri(π) =
∑
a

ri(a)
∏
j∈I

πj (aj) .︸                                         ︷︷                                         ︸
expected payoff

Remark: We will see why mixed strategies can be necessary to consider.
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A special case: Two-player games

◦ The game with two players

◦ The payoffs of two player normal form games can be represent with matrix forms

◦ Prisoners dilemma [10]: each agent can choose to cooperate or defect

Bob
cooperate defect

Alex cooperate 1/1 −1/2
defect 2/−1 0/0

◦ Example: if Alex plays defect and Bob plays cooperate they receive 2 and -1 respectively.
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A special case: Two-player zero-sum games

◦ The sum of two players’ payoffs are zero, i.e., r1(a1, a2) = −r2(a1, a2)

◦ The payoff of a two-player zero-sum normal form game can be represented with a matrix A

◦ A(i, j) is the payoff of player 1 (loss of player 2) when choosing i-th action and player 2 chooses its j-th action

◦ The expected payoff of player 1 / loss of player 2:

r1(π1, π2) = (π1)>Aπ2

◦ Player 1 wants to maximize (π1)>Aπ2 and player 2 wants to minimize it
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Response models

◦ What will a player do if other players’ strategies are fixed at π−i , (π1, . . . , πi−1, πi+1, . . . , πn)?

◦ A best response of agent i to the policies of the other agents π−i is a policy πi such that

ri (πi,π−i) ≥ ri
(
π̃i,π−i

)
, ∀π̃i

◦ A softmax response of agent i to the policies of the other agents π−i is a policy πi such that

πi (ai) ∝ exp (λri (ai,π−i))

Remarks: ◦ A best response can be either deterministic or mixed.

◦ when λ→∞ coincides softmax response with best response.
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Normal form games

◦ What is normal form game?

◦ Equilibria

I Dominant Strategy Equilibrium

I Nash Equilibrium

◦ Dynamics for games

I Iterated best response

I Fictitious play

I Gradient ascent
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Dominant strategy equilibrium

◦ A dominant strategy πi for player i is a strategy that is a best response against all π−i

ri (πi,π−i) ≥ ri
(
π̃i,π−i

)
, ∀π̃i,π−i

◦ In a dominant strategy equilibrium, every player adopts a dominant strategy.

◦ Dominant strategy and dominant strategy equilibrium may not exist.

◦ (defect, defect) is a dominant strategy equilibrium in prisoner dilemma game

Bob
cooperate defect

Alex cooperate 1/1 −1/2
defect 2/−1 0/0

◦ Bob can always improve his payoff by defecting (irrespectable of Alex’s strategy)
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Nash equilibrium

◦ In a Nash equilibrium (NE) π?, no player can improve its expected payoff by changing its policy if the other
players stick to their policy.

◦ Or we can say, π?i is the best response for each agent i if other agents stick to π?−i.

◦ In NE, we can write for each agent i

ri(π?) ≥ ri(πi,π?−i), ∀πi.

◦ All dominant strategy equilibria are Nash equilibria (the reverse does not hold).
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Nash equilibrium - good news

◦ Rock-paper-scissor game

Bob
rock paper scissor

Alex
rock 0/0 −1/1 1/−1
paper 1/−1 0/0 −1/1
scissor −1/1 1/−1 0/0

◦ No dominant strategy equilibrium. No pure NE.

◦ Each player playing a mixed strategy ( 1
3 ,

1
3 ,

1
3 ) is a NE.

Theorem (Existence of Nash equilibrium [9])
In a normal form game with finite players and actions, there exists a Nash equilibrium in mixed strategies.
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Computing Nash equilibrium

◦ Consider a game with different payoff matrices

r1(π1, π2) = (π1)>Aπ2 (player 1)

r2(π1, π2) = (π1)>Bπ2 (player 2)

◦ Bad news Computing mixed NE in normal form games is intractable in general [2, 3].

◦ Good news However, NE of zero-sum games (A = −B>) can be efficiently computed as we will see.
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Nash equilibria in two-player zero-sum games
◦ We can find a Nash equilibrium by solving a minimax formulation

◦ Consider the following bilinear minimax optimization problems

max
π1∈∆d1

min
π2∈∆d2

(π1)>Aπ2 (player 1)

min
π2∈∆d2

max
π1∈∆d1

(π1)>Aπ2 (player 2)

◦ NE corresponds to (π?1 , π?2) such that

(π1)>Aπ?2 ≤ (π?1)>Aπ?2 ≤ (π?1)>Aπ2, ∀π1, π2

◦ It is also called a saddle point for the function f(π1, π2) = (π1)>Aπ2.
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Connection with minimax optimization

◦ More generally (x?, y?) is called a saddle point for f if

f(x?, y) ≤ f(x?, y?) ≤ f(x, y?) (1)

Theorem (Minimax theorem)
Let X ∈ Rd1 and Y ∈ Rd2 be compact convex sets. If f : X × Y → R is a continous function such that f(·, y)
is convex for any y and f(x, ·) is concave for any x then

max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y). (minimax equality)

Proposition: ◦ (x?, y?) is a saddle point for f if and only if the minimax equality holds and

x? ∈ arg min
x∈X

max
y∈Y

f(x, y), y? ∈ arg max
y∈Y

min
x∈X

f(x, y).
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Normal form games

◦ What is normal form game?

◦ Equilibria

I Dominant Strategy Equilibrium

I Nash Equilibrium

I Correlated Equilibrium

◦ Dynamics for games

I Iterated best response

I Fictitious play

I Gradient ascent
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Iterated best response

◦ Each player iteratively find the best response to other player’s strategies

Iterated best response (IBR)
for t = 1, ... do
Each player i updates its strategy πt+1

i such that

ri
(
πt+1
i ,πt−i

)
≥ ri

(
πi,π

t
−i
)
, ∀πi

end for

Remark: ◦ Players can update simultaneously or sequentially.
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Non-convergence of iterated best response - bad news

◦ Starting from (T,L), two players update simultaneously.

◦ After 2 iterations, it arrives NE (B,R).
Player Y
L R

Player X T 1/2 3/1
B 2/1 4/3

◦ Starting from (A, B), two players update simultaneously.

◦ (A,B) → (B,A) → (A,B)→...

◦ It avoids NEs (A,A) and (B,B).

Player Y
A B

Player X A 1/1 0/0
B 0/0 1/1
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Convergence of IBR in potential games - good news

◦ The potential function for a game is a function Φ : A → R such that

ri (ai, a−i)− ri
(
ãi, a−i

)
= Φ (ai, a−i)− Φ

(
ãi, a−i

)
, ∀ai, ãi ∈ Ai, a−i ∈ A−i.

◦ A game with a potential function is called potential game.

Player Y
cooperate defect

Player X cooperate 1/1 −1/2
defect 2/−1 0/0

Table: Prisoner’s dilemma

Player Y
cooperate defect

Player X cooperate Φ = 0 Φ = 1
defect Φ = 1 Φ = 2

Table: Potential function

Proposition
If a potential game is finite, it has at least one pure Nash equilibrium. If players use iterated best response
sequentially (or one at a time), the dynamic will terminate at a NE after finite step.
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Fictitious play

◦ Required feedback In fictitious play each agent i counts opponent’s actions Nt(j, aj) for j , i. The initial
counts N0(j, aj) can be based on agents’ initial guess.

◦ Behavioural assumption Each agent i assumes its opponents are using a stationary mixed strategy the
same as empirical distribution of their actions

π̃tj(aj) =
Nt(j, aj)∑

āj∈Aj
Nt(j, āj)

.

◦ Each agent i maximizes their reward assuming other agents are playing π̃t−i.

at+1
i = max

ai

ri(ai, π̃
t
−i).
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Non-convergence of fictitious play - bad news

◦ Fictitious play is not guaranteed to converge.

◦ Consider the following game (also known as the Shapley game [12])

Player Y
Left Center Right

Player X
Top 0/0 1/0 0/1
Middle 0/1 0/0 1/0
Bottom 1/0 0/1 0/0

Table: Sharpley’s dilemma

◦ The policy cycles: (T,C)→ (T,R)→ (M,R)→ (M,L)→ (B,L)→ (B,C)→ (T,C)→ . . .

◦ After one play stays on a wining position long enough, the other player will change its action

◦ Empirical distributions do not converge.
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Convergence of fictitious play in some games - good news

◦ Fictitious play converges for zero-sum games

Theorem ([11])
For two-player zero-sum games the empirical distribution of fictitious play converges to a NE, i.e.
(π̃t1, π̃t2)→ (π?1 , π?2) where (π?1 , π?2) is a NE.

Karlin’s conjecture [4]
The convergence rate of fictitious play for zero-sum games is O(1/

√
T ).

Remark: ◦ Still an open problem
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Gradient ascent

◦ Take the gradient of value function at πt: ∂ri(π)
∂πi(ai)

∣∣
π=πt

.

◦ Apply gradient ascent to each agent

πt+1
i (ai) = πti (ai) + αti

∂ri (π)
∂πi (ai)

∣∣∣
π=πt

.

◦ Project πt+1
i to a valid probability distribution.

◦ Note that

∂ri (π)
∂πi (ai)

∣∣∣
π=πt

=
∂

∂πi(ai)

(∑
a

ri(a)
∏
j

πj (aj)

)∣∣∣∣∣
π=πt

=
∑
a−i

ri (ai,a−i)
∏
j,i

πtj (aj) .
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Gradient ascent in two-player zero-sum games

◦ The bilinear minimax optimization
min

π2∈∆d2
max

π1∈∆d1
(π1)>Aπ2

◦ Gradient ascent (also called gradient descent ascent or GDA in this case)

πt+1
1 = P∆d1

(
πt+1

1 + αt1Aπ
t
2
)
,

πt+1
2 = P∆d2

(
πt+1

2 − αt2A
>πt1
)
.

◦ Gradient descent ascent with constant stepsizes (i.e. αt1 = α1 and αt2 = α2) does not always converge for
bilinear minimax optimization [6].
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Gradient ascent in two-player zero-sum games - non-convergence

◦ The function f(x, y) = xy has saddle point (0, 0).

◦ GDA update xt+1 = xt − αyt, yt+1 = yt + αxt

◦ Since x2
t+1 + y2

t+1 = (1 + α2)(x2
t + y2

t ), it does not converge to the saddle point.

◦ GDA with constant stepsize may not converge even if f(x, y) is convex-concave!
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Extra-gradient - a simple fix to GDA
◦ Minimax optimization:

min
x∈X

max
y∈Y

f(x, y).

◦ Extra-gradient (EG) update:

xt+ 1
2

= PX
(
xt − α∇xf(xt, yt)

)
, yt+ 1

2
= PY

(
yt + α∇yf(xt, yt)

)
xt+1 = PX

(
xt − α∇xf(xt+ 1

2
, yt+ 1

2
)
)
, yt+1 = PY

(
yt + α∇yf(xt+ 1

2
, yt+ 1

2
)
)
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Convergence of extra-gradient

◦ Assumption 1: f(x, y) is convex-concave,

◦ Assumption 2: f(x, y) is L-smooth,

◦ Assumption 3: D2
X = 1

2 maxx,x′ ‖x− x′‖2 and D2
Y = 1

2 maxy,y′ ‖y − y′‖2 are finite.

Theorem
If the assumptions above holds, then EG with stepsize α = 1

2L satisfies

f (x̄T , y)− f (x, ȳT ) ≤
2L(D2

X +D2
Y )

T
.

for any x ∈ X and y ∈ Y where x̄T = 1
T

∑T

t=1 xt and x̄T = 1
T

∑T

t=1 yt.

Remarks: ◦ The time average (x̄T , ȳT ) produced by EG converges to a saddle point.

◦ For strongly-convex strongly-concave see Mathematics of Data lecture 12 2021 (EE-556) [1]
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Beyond normal form games / convex-concave

◦ So far focused on normal form (contained in convex-concave)

General zero-sum games
Consider

min
x∈X

max
y∈Y

f(x, y) (2)

where f(·, y) is nonconvex and f(x, ·) is nonconcave.

Remarks: ◦ If f(x, y) = x>Ay and X = ∆ and X = ∆ this reduces to a normal form game.

◦ x,y can be the parameters of deep neural networks (e.g. generative adversarial networks)
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Beyond normal form games / convex-concave

◦ A Nash equilibrium (NE) is a pair (x?, y?) ∈ X × Y for which,

f(x?, y) ≤ f(x?, y?) ≤ f(x, y?) ∀x ∈ X , y ∈ Y (3)

◦ A local Nash equilibrium (LNE) is a pair (x?, y?) ∈ X × Y for which,

f(x?, y) ≤ f(x?, y?) ≤ f(x, y?) for all (x, y) in a neighborhood U of (x?, y?) in X × Y (4)

◦ A first order stationary point (FOSP) is a pair (x?, y?) ∈ X × Y for which,

∇xf(x?, y?)>(x− x?) ≥ 0 ∀x ∈ X

∇yf(x?, y?)>(y − y?) ≤ 0 ∀y ∈ Y
(5)

Remarks: ◦ NE ⇒ LNE ⇒ FOSP

◦ In case f is not convex-concave Nash equilibrium may not exist
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Nonconvex-nonconcave - bad news

◦ Computing FOSP is PPAD-complete (similar to NP-completeness) [5]

◦ Large family of methods (including extra-gradient) may not converge to FOSP [8]

◦ Example [8]
f(x, y) = y(x− 0.5) + φ(y)− φ(x) where φ(u) =

1
4
u2 −

1
2
u4 +

1
6
u6 (6)

Figure: Neither last iterate (red) or time average (blue) of extra-gradient does converge to a FOSP.
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Summary

◦ Normal form games:
I What is normal form game?
I Equilibrium
I Algorithms for games

Table: Does the algorithm converge?

Setting (solution concept) Best response Fictitious play GDA Extra-gradient
Potential games (NE) Yes Yes Yes Yes
Normal form games (NE) No No No No
Zero-sum games (NE) No No No1 Yes
general zero-sum games (FOSP) No No No No

Remarks: ◦ All require full access on the payoff vector (oracle based)

◦ Weaker feedback model (loss based):
I only access to randomly sampled pure strategy of opponents (e.g. Exp3 [7])

1The time average converges for an appropriate stepsize selection.
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