Biomass: resources & conversion technologies

Overview

- Definitions
 - photosynthesis
 - biomass compositions and structure
- Potential: theoretical vs. real
- Conversion
 - **1. Solids** (wood; energy crops)
 - combustion
 - pyrolysis
 - gasification
 - solids-derived liquid/gaseous fuels (='secondary' biofuels)
 - 2. Liquids (bioethanol; biodiesel)
 - fermentation
 - extraction
 - application as 'primary' biofuels (engines)
 - 3. Gas (biogases)
 - anaerobic digestion

Learning objectives (intro part)

- Know and distinguish the various types of biomasses
 (as well as the appropriate conversion route per biomass type)
- Know (theoretical) biomass potential (photosynthesis efficiency) and the estimates of <u>real</u> biomass <u>potential</u>
- Quantify the 'energy vs. food' competition for biomass resource
- Explain advantages (& drawbacks) of biomass as energy carrier; in particular for residual biomass
- Know ~ the chemical structure of biomass ('ligno-cellulose')
- Estimate the LHV of a biomass from its composition

Theoretical photonic (solar) capture potential

PHOTOSYNTHESIS

$$6 \text{ CO}_2 + 6 \text{ H}_2\text{O} + \text{photons} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 \text{ (glucose)} + 6 \text{ O}_2$$

Extraterrestrial radiation arriving at the Earth's outer atmosphere: **5.5 E+24 J/yr** (=1368 W/m², solar constant)

Solar radiation on Earth's surface (where vegetation can capture it) averages out on a yearly basis to 5.1 E+23 J/yr (which is ~160 W/m² or 5 GJ/m².yr \approx 1400 kWh/m².yr)

Compared to the world annual primary energy:

→ theoretical potential ≈ 1000 times the human primary energy need

Theoretical photosynthesis efficiency

$$6CO_2 + 6H_2O \Rightarrow C_6H_{12}O_6 + 6O_2 \qquad \text{glucose synthesis: } \Delta G = 2862 \text{ kJ/mol}$$

$$\div 6 \qquad CO_2 + H_2O \qquad \Rightarrow \\ \text{in chloroplasts} \qquad -(HCOH) - + O_2 \qquad \Delta G = 477 \text{ kJ/mol}$$

$$P.A.R. (= 43\% \text{ of total irradiation})$$

$$photosynthetic active radiation$$

Considering red (660 nm), blue (450 nm) or white light (400-700 nm: the visible spectrum),

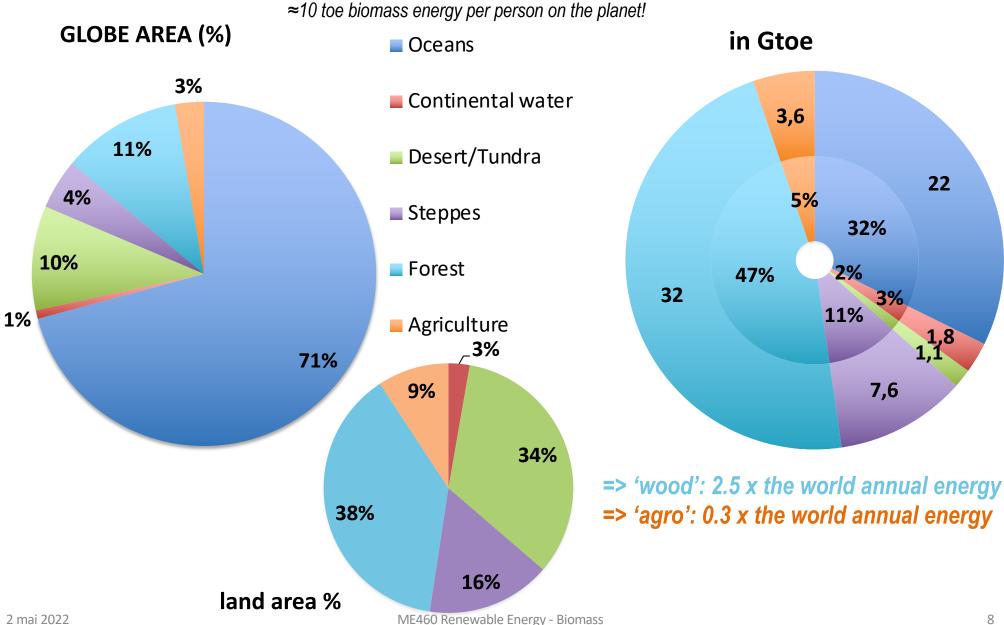
and Planck's formula,

$$E_{photon} = h.v = h.\frac{c}{\lambda}$$
 h = 6.62 .10⁻³⁴ Js : Planck's constant c = 3.10⁸ m/s : speed of light

photon energy amounts to $\frac{2.10^{-16}}{\lambda (in \ nm)} J/photon$

Hence for 1 mol of photons (x 6.02
$$10^{23}$$
) $\rightarrow \frac{120}{\lambda (in nm)}$ MJ/mol $\rightarrow \frac{120}{\lambda (in nm)}$ white (577 nm): 208.1 kJ/mol

Theoretical P.S. efficiency (white light) is then, considering 8 photons for –HCOH- synthesis:


Real biomass photosynthetic 'efficiency'

Process / Maximal solar input on ground level: 1400 kWh/m².yr or 160 W/m² =	100%
Solar radiation energy → photosynthetic active part, PAR (400-700 nm)	43%
Maximum capture by leafs (canopy) = 80% (effective square meters available)	34.4%
Maximum photonic energy capture efficiency into glucose = 28.6% (p. 5)	9.8%
1/3 on average of the glucose energy is used for the plant metabolism (respiration)	6.6%
Max. practical efficiency of 'C-4' 'energy' plants (corn, sorghum, sugar cane), on daily basis (24h)	5%
Max. practical efficiency of 'C-3' common plants (=95% of biomass, e.g. wheats, rice, trees,), on daily basis (24h)	3%
→ from the available 5.1 E+23 J/yr radiation (1400 kWh/m².yr), thus 3% is theoretically captured by common biomass (42 kWh/m².yr = 150 MJ/m².yr)	1.5 E+22 J/yr (4.8 W/m ²)
Climate factors, shading, and biomass density per m^2 drop this capture efficiency by another factor ~5 (\rightarrow 1 W/ m^2 = 30 MJ/ m^2 .yr \approx 2 kg wood/ m^2 .yr = 1 L of gasoline)	0.6% 3 E+21 J/yr

1 W/m² is a poor storage density! (20 tonnes (dry) / hectare.yr) p.8 Even for a '2 kW-society', every citizen would need his personal 2000 m² 'storage' surface

Biomass production of the biosphere

3 10²¹ J/yr = 3000 EJ ≈ 70 Gtoe ≈ 95 TW ≈ 5 x the world annual primary energy

Sustainable biomass potential

- Primary production of biomass in the biosphere (3*10²¹ J)
 ≈ 200*10⁹ tonnes (dry) /yr (assuming 15 MJ per kg dry biomass)
- Theoretically exploitable: 57% (without oceans, desert,...)
- Technically sustainable*: ca. 9%
 - = agriculture (5%) + ~10% of forestry (47%), cf. previous slide
 - (≈ 4% of the Earth's total surface, or ≈ 13% of the emerged lands)
 - $= 18*10^9 \text{ tonnes (dry) / yr}$
 - $= 270*10^{18} J = 270 EJ (6.4 Gtoe)$
 - = 50% of world annual primary energy (550 EJ)

(>half of which (150 EJ, 3.6 Gtoe) is used/meant for food, mainly)

Influence factors::

→ An important part can be recovered as energy from the residues

nutrition, moisture, CO₂ concentration, light, temperature, leaf anatomy,...

 \rightarrow in practical terms, the sustainable biomass energy potential could amount up to $\approx \frac{1}{3}$ (180 EJ) of the present human energy needs.

The main source is wood (>120 EJ) and the remainder from other biomass sources, an interesting source being <u>residual</u> biomass (i.e. 'waste streams' – cf. further below)

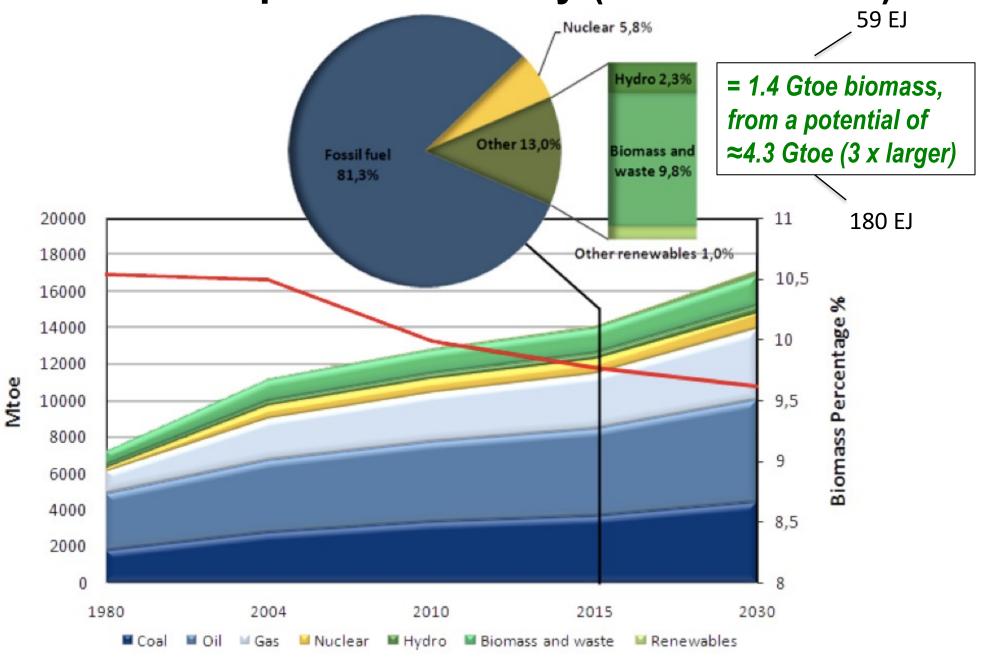
2 kW per person = 17 MWh/yr = 10 m^3 of wood blocks \approx 20 trees

Biomass is <u>dilute</u> energy storage.

Fossil fuel = concentrated biomass over millions of years, losing oxygen and producing " CH_4 " (natural gas), " CH_2 " (oil) and "CH" (coal)

Examples of <u>real</u> biomass yield

(in case of 0.6% efficiency = 30 MJ/m^2 .yr = 300 GJ/ha.yr; 1 ha = 1 hectare = $10'000 \text{ m}^2$)


Plant	Energy output (GJ/ha/year)		
1. Switchgrass	185215		
2. Miscanthus	Up to 785 (calc. with LHV=17,8 MJ/kg)		
3. Sugar beet	6296		<u>real</u> yield ≈
		L	typically even
4. Rape seed	1478		only 10-30%
5. Sweet sorghum	5458	ŀ	of the basic
6. Wheat	2347		photosynthetic
8. Wood (forest)	100 (calc. on 50% dm with 10 t/ha yield)		yield!

Sources:

- 1: I.C. Madakadze et al.:Light interception, use-efficiency and energy yield of switchgrass (*panicum virgatum* L.) grown in a short season area. Biomass and Bioenergy, vol 15, No. 6, pp. 475-482, 1998
- 2) 2: I. Lewandowski et al.:Miscanthus: European experience with a novel energy crop, Biomass and Bioenergy 19 (2000) 209-227
- 3-6: P. Venuri, G. Venuri: Analysis of energy comparison for crops in European agricultural systems. Biomass and Bioenergy 25 (2003) 235-255

4) Phyllis database available at http://www.ecn.nl/phyllis/

Biomass exploitation reality (~11% of world)

Is there competition with food? (cf.exercise)

- An adult human being is a **120 W** machine. Assume we get our energy from 80% vegetables (= 'direct' biomass) and 20% from meat (= 'indirect' biomass). (Assume efficiency from primary biomass-to-meat = 10%)
- How much MJ/day, and kWh/yr, do you need in food from primary biomass?
- How much primary biomass does the world consume in this way? (7.5 billion people)
- Discuss the result in view of the biomass potential for energy, and current agricultural production.

Motivation for biomass use as energy resource

- the primary yearly biomass production (3000EJ) is >5-fold the total world human primary energy consumption (560 EJ)
- agricultural land is <10% of the total land area;
 agricultural production = 5% of the biosphere energy production (152 EJ); this is enough to feed the planet, leaving residual energy
- optimised **cultivation** can raise the **effective photosynthetic efficiency** above the average value of 0.6% (=30 MJ/m².yr); the theoretical limit is 3% to 5% storage efficiency for C3 and C4 plants (i.e. a maximal potential up to 100-250 MJ/m².yr)
- marginal land areas can be used for 'energy crops/cultures'
- technologies for production and conversion are relatively well established or developed
- CO₂ neutral, and less overall polluting emissions (vs. fossil)

Biomass use for energy

Advantages

- renewable
- ≈100% use of collected matter
- rel. conventional technologies
- environmentally benign
- employment, labour intensive
- fuel import savings
- energy supply security

Drawbacks

- dispersed resource
- seasonal production
- low energy density
- requires transport and storage means
- some of the transformations involved are cumbersome (mechanical and chemical treatments,...)

Biomass classification by water content

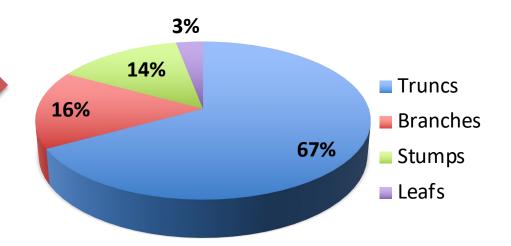
- 'dry' < 15 wt% humidity
- 'humid' 15-30 wt% H₂O
- 'slurry' 30-90 wt% H₂O (without 'structure')
 - e.g. animal manure
 - e.g. 'molasse' (=the sirupy byproduct from sugar plants)
- 'liquid' $> 90 \text{ wt}\% \text{ H}_2\text{O}$
 - waste waters
 - sewage
 - industrial effluents with 'high' organic charge (e.g. food industry)

Biomass classification by human activity

- natural biomass (=protected areas, no human interference)
- residual biomass (=organic <u>waste streams</u> from human activity)
 - passive use of biomass (recoverable as energy resource)
 - agricultural residues
 - forestry maintenance
 - animal breeding / farming
 - industry (industrial solid and liquid wastes, e.g. food industry)
 - urban centers (municipal solid waste; sewage)
- cultivated biomass → active use of the land for energy
 - agricultural excess (e.g. non-edible parts of the harvest)
 - 'energy crops' (non-food)

Residual biomasses (='waste streams' from human activity)

Agriculture residues


- cereal crops
- fruit trees, vineyards, olive trees (lignic)
- industrial crops (oily plants)

Forestry

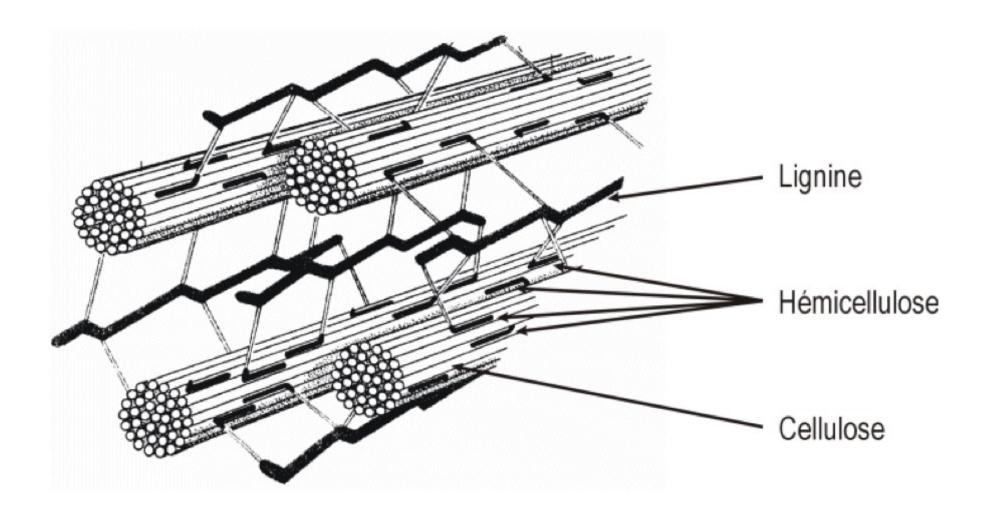
- trimming residues
- wood industry
 - sawdust, bark, shavings
- forestry maintenance (1-2 kg/m²)

- manure
- slaughterhouses
- Industry (solids, liquids: effluents with organic charge)
- Public waste (municipal solid waste MSW; sewage WWTP)
 (estimate for liq. wastes = 150-300 L/day/person containing 0.4 kg organic dry solids)

Estimate of *residual* biomass, primary and final energy = energy recovered from waste streams (cf. exercise)

<u>Assumptions / Conversion factors:</u>

- 1. agriculture residues: from total production (152 EJ), discount human food requirement (cf. exercise p.13). Assume that from the remainder, $\approx \frac{1}{2}$ is used to feed animals, $\approx \frac{1}{4}$ is used for composting, and the rest (assume 10%) is recoverable as energy
- 2. forestry: assume 2 kg/m² per year of dry wood (LHV:17 MJ/kg); assume 2% of the world's forests area is trimmed (from where this 'waste wood' is recovered)
- 3. animal manure: assume a production of 1 m³ of biogas per day (with 50% CH₄ content) per large farm animal (cow-equivalent) and there are half as many 'cow-equivalents' as people (LSU: livestock unit).
- 4. <u>solid</u> organic **wastes** from our activities (kitchen waste, park&garden waste, food industry): assume 1 kg dry organic matter waste per week per person, converted to 500 L biogas per kg dry waste, with a CH₄ content of 60%
- 5. human <u>liquid</u> organic **waste** (sewage): assume a production of 30 L biogas per day per person, with a CH₄ content of 65%
- 6. Finally, you need to assume realistic conversion efficiencies from primary to final energy (whether heat or power) for the different sources!


Residual biomass: advantages

- low cost production (can even be zero or negative cost 'fuel')
- closed cycle: minerals (inorganic part) are reused for fertilising
- local exploitation (= low transport cost)
- reduced contamination or load on waste management
- 'free' energy recovery, which amounts to at least several % (and up to 10%) of total energy needs!
 - e.g. for Switzerland: 56 PJ incinerated solid wastes (of which ≈50% is considered renewable), 40 PJ wood use and 5 PJ of biogas (both of which are much *under*exploited) = total of 100 PJ = 8% of Swiss primary energy need

'Residual' biomass energy: Swiss case

- 56 PJ incinerated solid wastes (MSW/ISW, waste wood; in part NG-assisted)
 - (Remark: only ≈50% of this is in fact renewable (rest = fossil origin, mainly plastics))
- 40 PJ indigenous wood use (=> potential could easily be doubled)
- 5 PJ of biogas (largely *under*exploited)
 - => could be increased >5-fold (≈30 PJ)
- = present total of 100 PJ = 8% of Swiss primary energy
 - ca. 6.5% of final energy; **5% of Swiss electricity** (as renewable: **3%**)
 - electricity 10.2 PJ (20% efficiency) from incinerated solid wastes (2.85 TWh); in addition 30% heat is produced and distributed as district heat
 - electricity 1.2 PJ (27% efficiency) from biogases (0.3 TWh) => 0.5% of total electricity
 - electricity production from wood is negligible

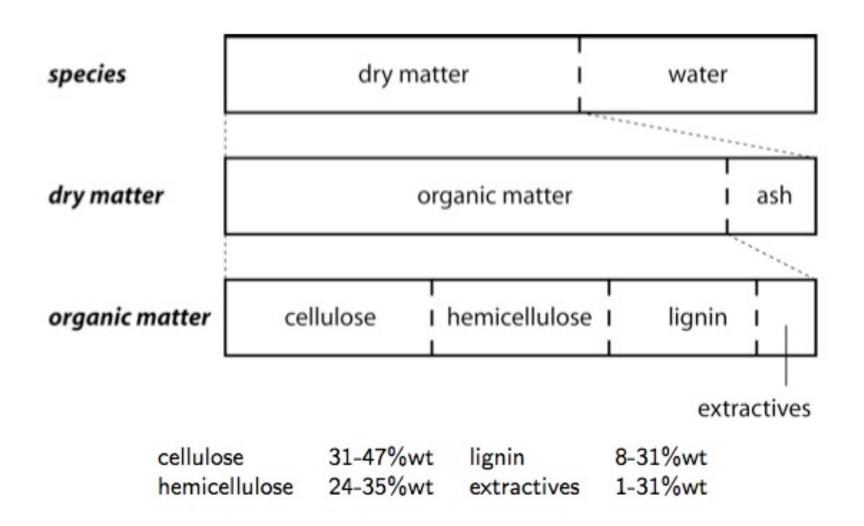
Ligno-cellulosic biomass structure

Cellulose

- 40-80 wt% in plants, 17.5 MJ/kg (C:H:O ≈ 30:45:25 at%)
- 'soft' part in plants
- <u>linear</u> polymer of up to 10'000 glucose (C6) molecules:
 (C₆H₁₀O₅)_n

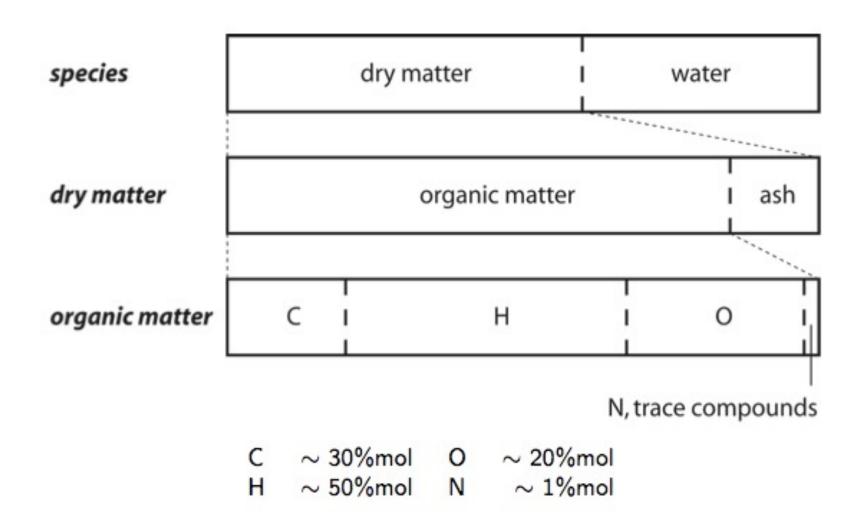
Lignine

- complex aromatic polymer
- ca. $(C_{10}H_{12}O_4)_n$
- 25-35 wt% in wood
- 10-25% in plants
- responsible for slow growth and rigidity
- 26.6 MJ/kg


 $(C:H:O \approx 40:45:15 \text{ at}\%)$

Hemi-cellulose (xylose)

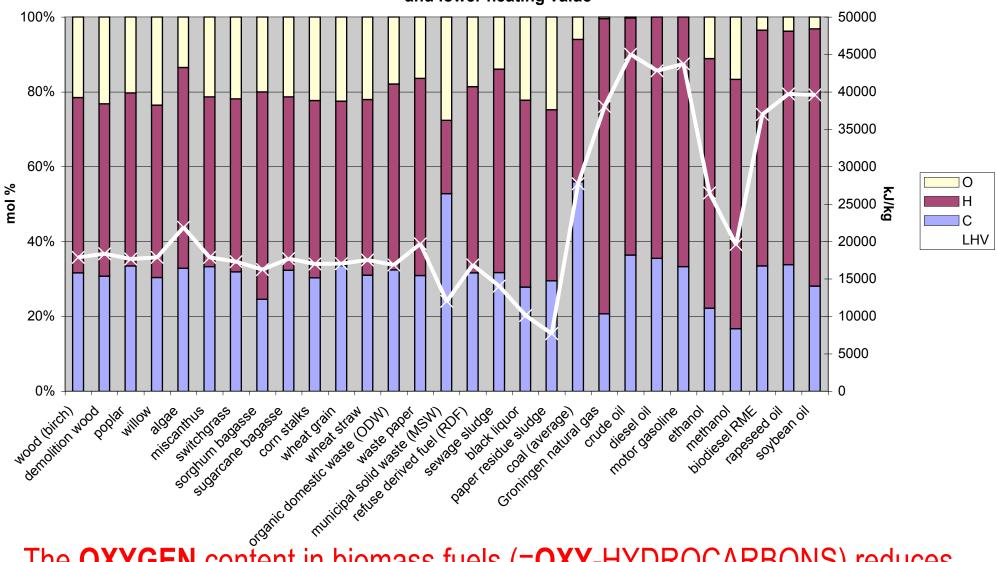
- 15-30wt% of plants, $C_5H_8O_4$, **17.5 MJ/kg** (C:H:O \approx 30:45:25 at%)
- 'connects' lignine to cellulose
- 'shorter' polymer of 50-200 sugar molecules (C5 structures)
- 5 sugars: xylose, arabinose, galactose, glucose, mannose


Structural composition

macromolecular description:

Chemical composition

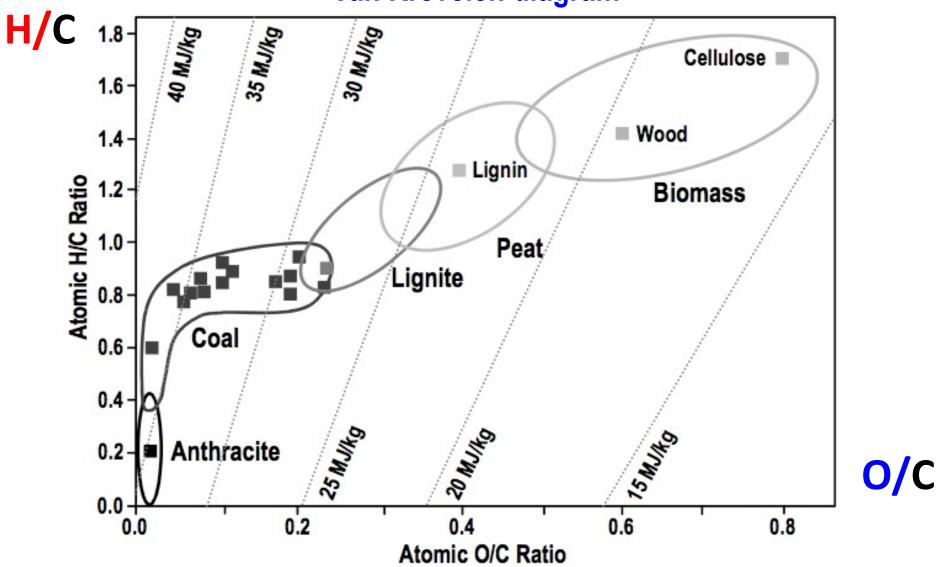
atomic description:

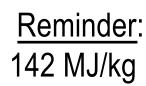


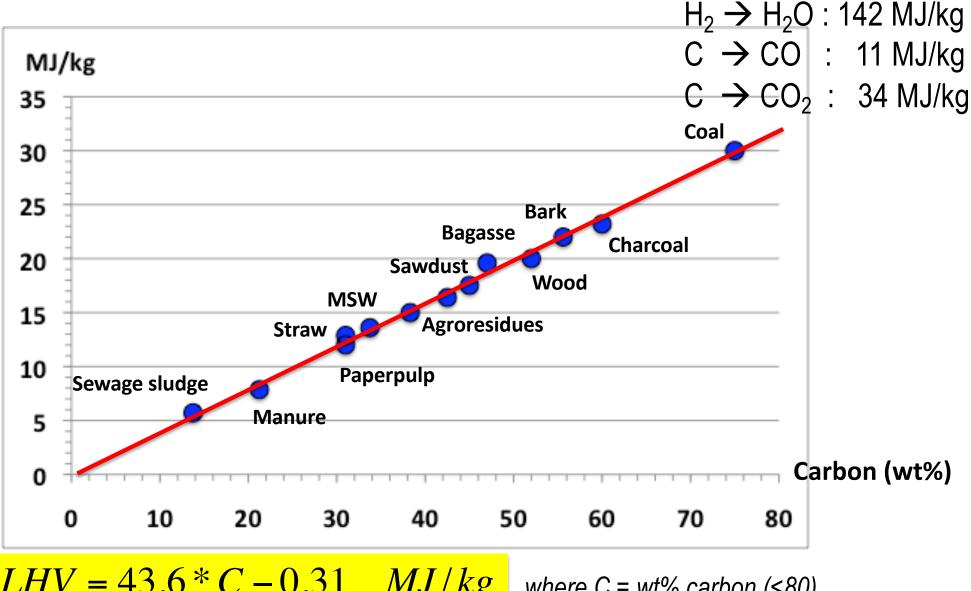
'Dry' wood (with 11% humidity)

Element	Weight %
С	47
Н	6
0	35
N	0.1
S	0.0
Ash	1
Water	11

Composition and energy content of fuels


Elementar composition of biomass, fossile fuels and biofuels and lower heating value


The **OXYGEN** content in biomass fuels (=**OXY**-HYDROCARBONS) reduces the LHV to <**20 MJ/kg** compared to >40 MJ/kg for (fossil) HYDROCARBONS

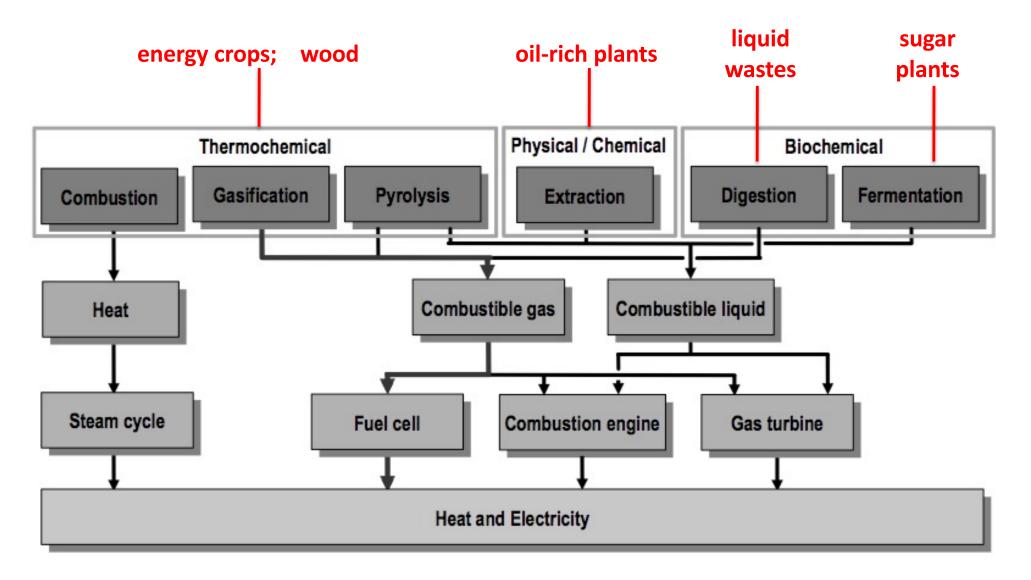

Heating value and C/H/O composition

Van Krevelen diagram

Heating value vs. carbon content

$$LHV = 43.6 * C - 0.31$$
 MJ/kg where C = wt% carbon (<80)

Compositions of biomasses


Source	С	Н	0	N	S	Inorg.	LHV MJ/kg
carbon	100						29.3
coal	70-80	5	5-20	1-1.5	1-3	4-15	30-34
wood	52	6	40	0.1	0	1	21
bagasse	47	6	35	0	0	11	21
untreated sewage	45.5	7	26	2.4	0.5	19	16.4
cattle manure	42.7	5.5	31	2.4	0.3	18	17
rice residue	39	5.4	38	0.5	0	18	15
MSW	34	4.6	22	0.7	0.4	38	13
paperpulp	31	7	51	0.5	0.2	10	12
sewage sludge	14	2	11	1	0.7	71	5

$$LHV = 43.6 * C - 0.31$$
 MJ/kg where C = wt% carbon (<80)

The carbon content alone is a reasonable measure for the heating value.

As if the LHV (expressed per kg fuel) gain due to H were 'lost' due to the presence of O mass in the fuel.

Biomass conversion schemes overview

F. Nagel (PSI)

BIOMASS CONVERSION ROADMAP

Source Solid (wood, straw) Wet (waste, manure) Sugar/starch Oil crops

Process Combustion Gasification **Pyrolysis** Methanation Fermentation Extraction + esterification

Product Heat Woodgas Woodoil Biogas **Bioethanol Biodiesel**

Service Heat / CHP **Electricity** (Transport) Fuels Chemicals