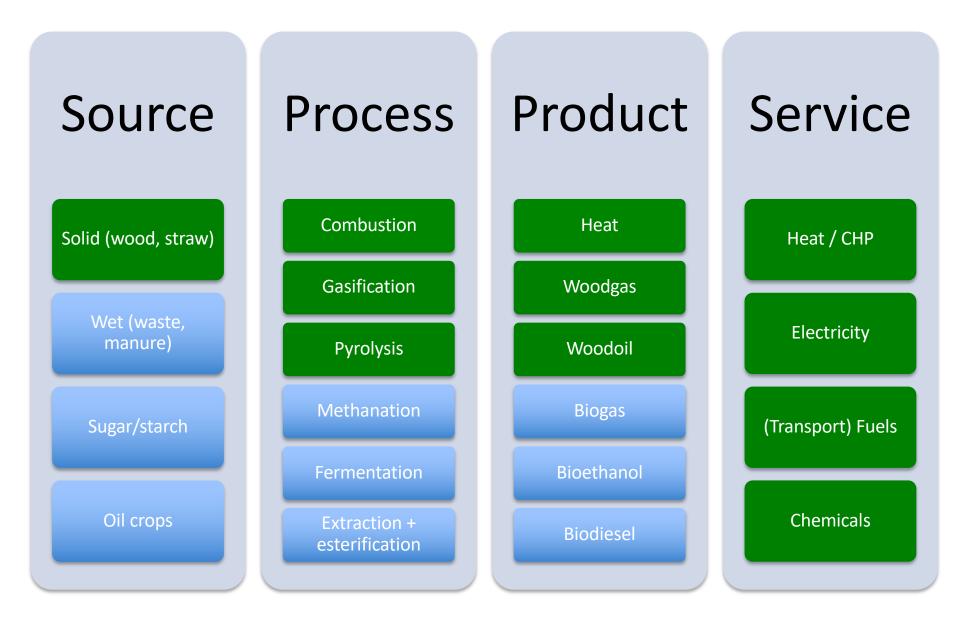
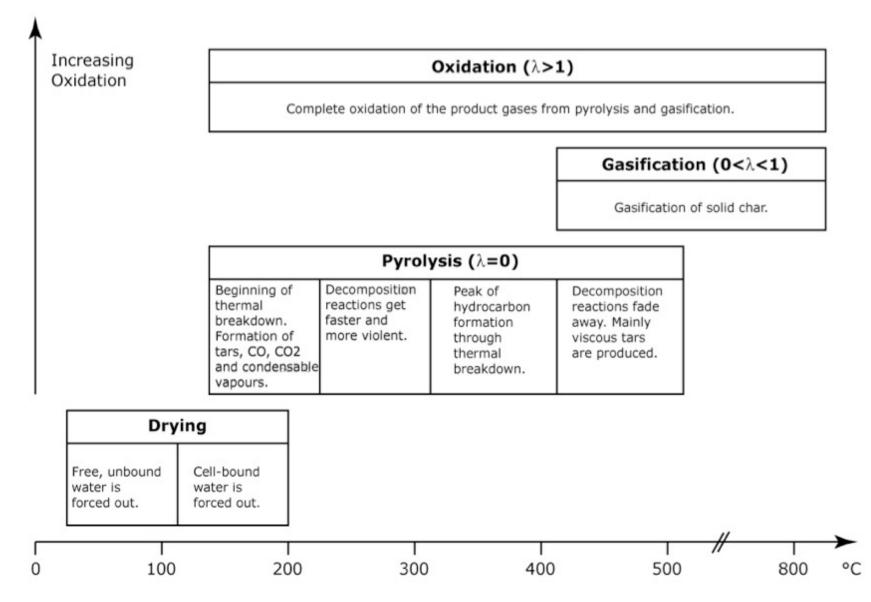
Biomass: solids Wood conversion (and energy crops)


Learning objectives

- Distinguish **pyrolysis** / gasification / combustion of wood
- Know different (wood) gasification concepts and their basic characteristics
- Know wood **impurities**, and cleaning processes
- Know different uses of wood (/solid wastes) in **power plants**, their power **sizes** and electrical **efficiencies**

Uses of wood


- energy use:
 - ca. 50% of forest 'waste'
 - mostly in direct combustion for heat
- other uses:
 - construction, furniture, packaging
 - paper production
 - wood chemistry (*xylochemistry*): CH₄, alcohols, pharmaceuticals
 - annex products: cork, resin, rubber, tannins,...

Biomass roadmap: energy uses of wood

Combustion / Gasification / Pyrolysis

\rightarrow distinguished by the amount of oxygen addition (λ):

Thermochemical conversion :

Process	T(°C)	λ	Product
Pyrolysis	400-700	0	combustible gas + liquid + solid
Gasification	700-900	Air: 0.2 to 0.5 Steam: 0.4 to 3	Low LHV gas High LHV gas Incombustible solid
Combustion	800-1300	≥ 1	Incombustibles (gas, solid)

Direct wood combustion

- theoretical air-factor for dry wood : 6 kg air / kg wood;
 in practice: 8.4 kg air / kg wood
- combustion temperature:
 - open chimney 600°C
 - wood pellet firing 1300°C
- combustion efficiency depends on:
 - combustion degree, wood humidity, air factor, insulation losses, exhaust fumes temperature
 - for dry wood : 70-80% efficient; for solid 'wastes': only 50% efficient
- wood **drying** may consume up to **10%** of the primary energy
- **pelletizing** (extrusion) requires **2%** of primary energy
 - 50-70 kWh_{el} (180-250 MJ) for the extrusion of 1 tonne compacted wood

Wood : heating value

- cellulose/hemicellulose : 17.46 MJ/kg (45 wt% carbon)
- lignine : **26.63 MJ/kg** (60 wt% carbon)

$$LHV_{dry} = 17.46 * C + 26.63 * (1 - C) \pm 0.4 MJ/kg$$

with C = cellulose+hemicellulose, 1-C = lignine content

- hardwood (oak, beech, maple, teak, walnut, poplar, birch):
 22% lignine, 500 kg/m³, 19.5 MJ/kg, slow growth, dark color, loose leaves
- softwood (all pinewoods and resinous trees, cedar, larch):
 29% lignine, 300 kg/m³, 20.1 MJ/kg, fast growth, light color, evergreen
- aromatics (only 1 wt% in wood) have highest LHV of 35 MJ/kg

Humidity

<u>'dry'</u> wood : between 5% (@30°C, 20% RH) and 27% (@0°C, 95% RH) water content by weight
 'green' wood: 25-65% humidity

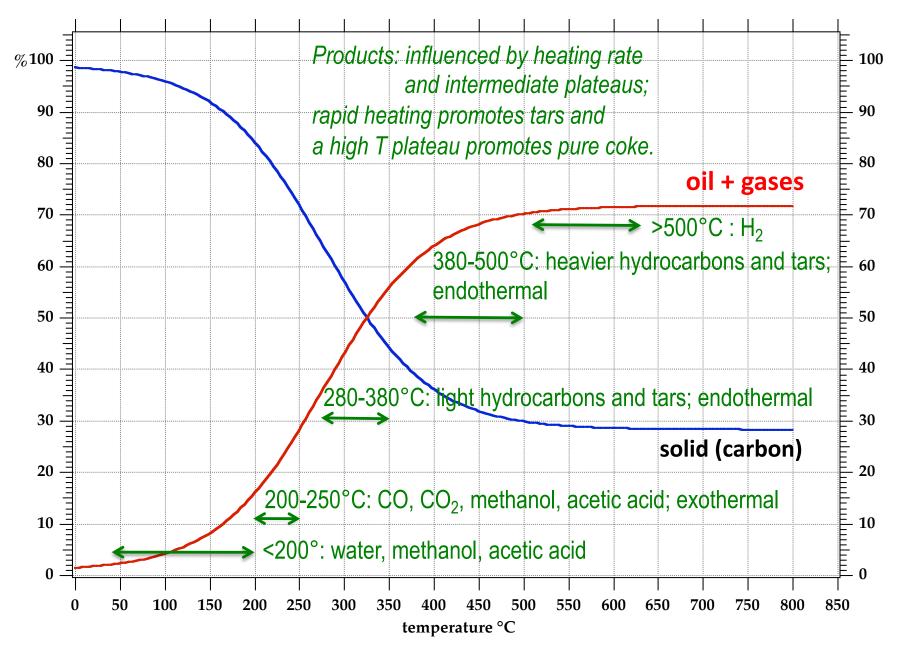
• <u>'captive'</u> humidity: H₂O retained *within* the fibres; this water is removed **irreversibly** when dried (and the fibres then contract)

'<u>free'</u> humidity: H_2O retained *between* the fibres; this depends on the ambient conditions (**reversible** uptake and release of water)

• humidity reduces the LHV per kg:

1. due to the density loss when H_2O replaces wood

- 2. due to the evaporation heat required (2.44 MJ/kg H_2O)
- \rightarrow for typical dry wood (15%-25%) : 14-16 MJ/kg

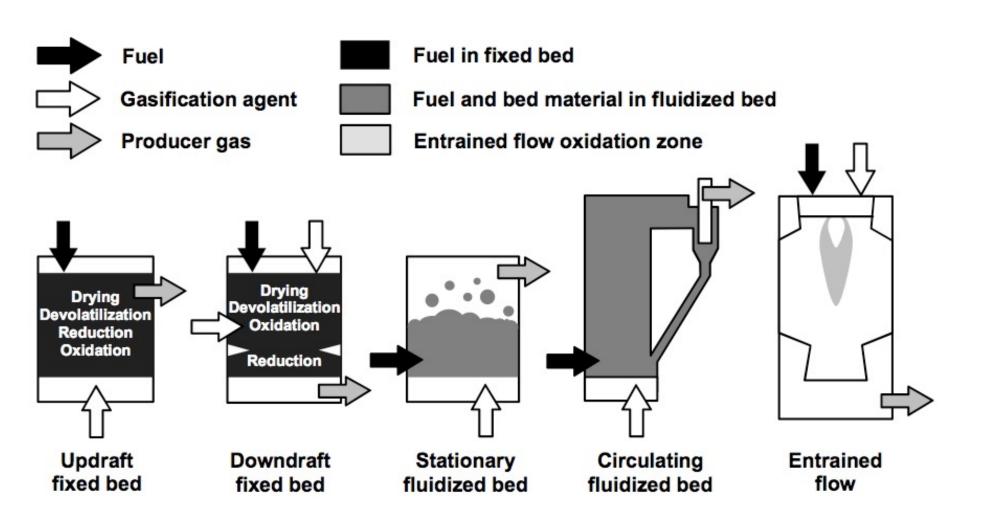

 $LHV_{humid} = LHV_{dry} * (1 - 1.14 * W)$

W = water content in weight fraction

Pyrolysis (= "wood distillation")

- 1000 kg dry wood generates:
 - -200 kg gas CO, H₂, CO₂, CH₄
 - 360 kg pyrolysis 'oil'
 - 12 kg acetic acid, 30 kg methanol, 10 kg acetone, etc.
 - 110 kg 'tars' (condensable oxyhydrocarbons)
 - 65 kg creosol oil (30 kg cresoles/gaiacoles, 3 kg phenol, 32 kg others like methanol ('wood alcohol'), aromatic essences,...)
 - 10 kg furfural
 - 35 kg wood 'pitch' (bottom residue)
 - 330 kg charcoal (90% carbon)

Pyrolysis products as f(T)


Pyrolysis energy balance (cf. exercise)

- <u>Input</u>:
 - 17 MJ/kg dry wood
 - heat supply (endothermal) : 2.4 MJ
 - (=delivered from burning the liberated gases)
- <u>1 kg dry wood delivers</u>:
 - -200 L of gas with a LHV equal to 1/3 that of natural gas (per m³)
 - 0.45 kg of liquids with a LHV equal to 1/3 that of oil
 - 0.3 kg of charcoal with a LHV equal to that of coal
- Compute the energy balance

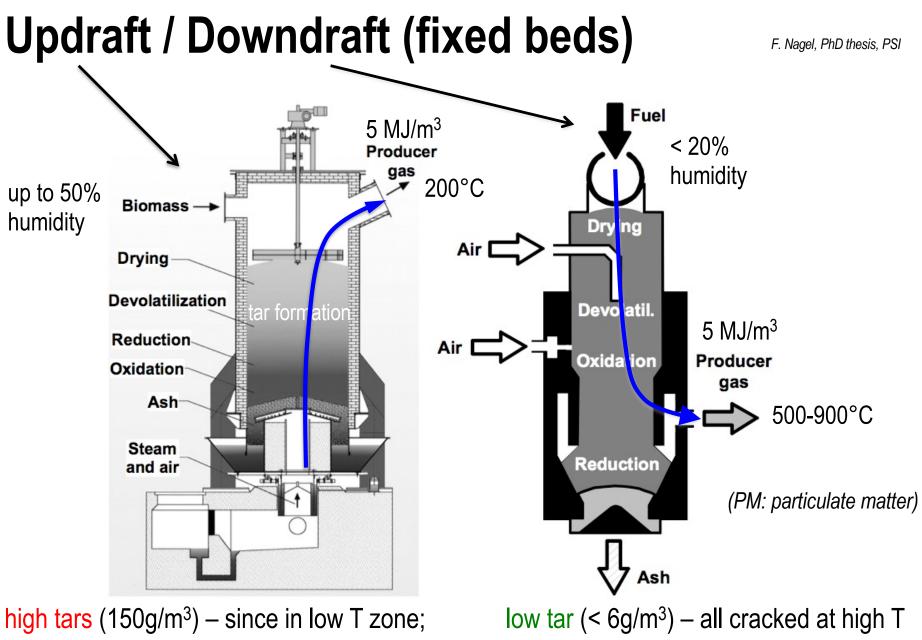
(for the total balance, and for the solids energy (carbon) only)

Wood (and other solid waste) gasification concepts

http://www.youtube.com/watch?v=86ihCjTA0NE

F. Nagel, PhD thesis, PSI

Gasification subprocesses (temperature zones)


Process	Nature	T-range (°C)	Subproduct
Drying	Endothermal	<200°C	dried biomass
Devolatilisation (= thermal decomposition without oxidant)	Endothermal	200-600°C	H_2 , CO, CO ₂ , CH ₄ , C _x H _y , tars, charcoal
Reducing	Endothermal	600-1000°C	reforming, shift, methanation reactions
Oxidising	Exothermal	1000-1600°C	CO ₂ , H ₂ O

Classification of gasifier concepts:

- 1. <u>Reactor type</u>
 - fixed bed
 - *fluidised* bed
 - entrained flow
- 2. <u>Heat supply</u>
 - direct
 - indirect

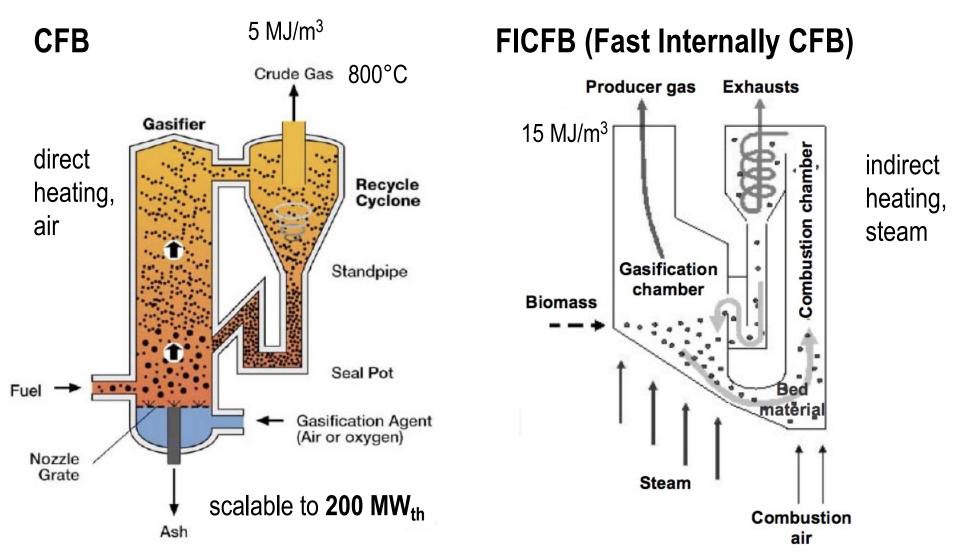
- 3. Gasification agent
 - air (exo)
 - O₂ (exo)
 - steam (endo)
- 4. <u>Stages</u> – single
 - two

http://www.youtube.com/watch?v=GkHKXz3VaFg

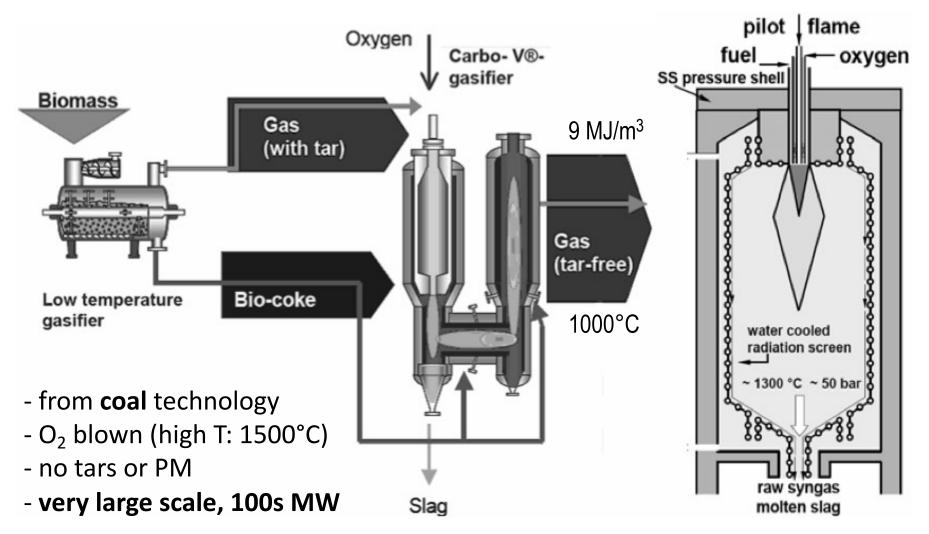
low PM (since wood inlet top zone acts like a particle filter); scalable to 20 MW_{th}

low tar (< 6g/m³) – all cracked at high T higher PM (no filtering by wood) **2 MW_{th}** max (limited heat transfer from the sides for thermal homogeneisation) 17

Differences up/down-draft


- Up:
 - the upward flow entrains the volatiles (tars) through the wood layers in the cold drying stage, where they cannot be decomposed, but the wood retains the particulate matter (PM)
 - exit temperature must be high enough to avoid tar condensation
 - robust and scalable

• Down:


- the downward flow entrains the volatiles (tars) into the hottest combustion zone where these are cracked to CO and H_2
- limited in power size; more critical thermal management

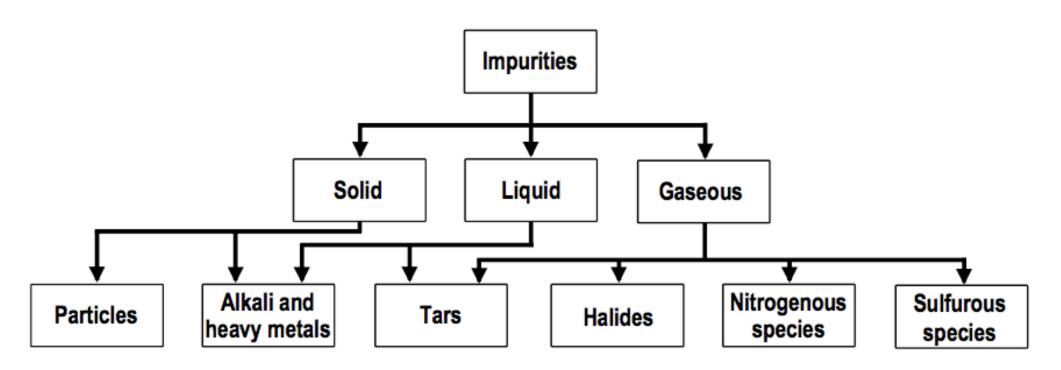
Circulating fluidised beds (CFB)

no distinct temperature zones like for up/down-draft; isothermal due to the circulation

Entrained flow gasifiers

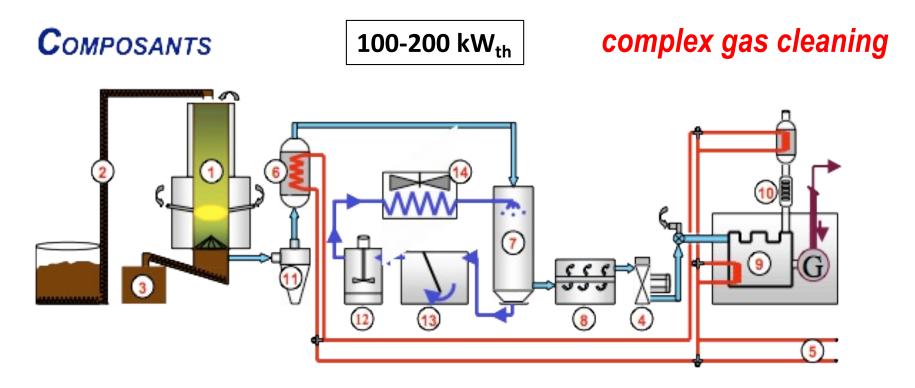
F. Nagel, PhD thesis, PSI (2010)

Gasification comparison


F. Nagel, PhD thesis, PSI (2010)

	Unit	Updraft	Down- draft	Fluid. Bed	Circul. FB	Entrain. flow
Gasification agent	[-]	Air	Air	Air/O ₂ / H ₂ O	H ₂ O	O ₂
H ₂		10-14	15-21	15-22	17-36	29-40
CO		15-20	10-22	13-15	36-51	39-45
CO ₂	[mol-%]	8-10	11-13	13-15	7-15	18-20
CH₄	[1101-76]	2-3	1-5	2-4	0.1-0.6	0.05-0.1
C ₂		-	0.5-2	-	1.4-7.5	-
N ₂		53-65	37-63	44-57	0-39	0.1-9
LHV	[MJ/m _{n³ (dtf)]}	3.7-5.1	4.0-5.6	3.6-5.9	14.2-18.1	8.8-9.3
Gas temperature	[°C]	75-300	500-900	800-950	800-950	800-1000
Cold gas efficiency	[%]	>90ind.tar	65-75	70-85	60-70	50-70
Particle load	$[g/m_n^3 (dtf)]$	0.1-3	0.02-8	20-100	8-100	-
Tar load		10-150	0.01-6	2-50	1-20	0
Tar signature	[-]	mostly oxygen- ated	aromatic	oxygen- ated and aromatic	oxygen- ated and aromatic	none
Alkali phase		solid	liquid	liquid	liquid	liquid/ gaseous
Sulfur signature		partially organic	mainly inorganic	partially organic	partially organic	inorganic
Feed size & geometry		non- sensitive	homoge- neous	homoge- neous	homoge- neous	Suspen- sion
Feed humidity		<50 %	<20 %	<15 %	<15 %	-
Process robustness		stable	sensitive, bridge building	stable	stable	sensitive, slagging
Reactor size	[MW _{th}]	0.1-20	0.1-2	1-50	20-200	30-600

Gasification energy balance (downdraft, air) *(exercise)*


- <u>Input</u> 1 kg dried wood (15wt% residual humidity)
- delivers 2 m³ producer gas of : 18% CO / 16 % H₂ / 2 % CH₄ / 14% CO₂ / 50% N₂
 (LHV: 305 kJ/mole (CO); 241 kJ/mole (H₂); 800 kJ/mole (CH₄))
- What is the energy content per m³ of producer gas? How does this compare to natural gas?
- What is the 'cold gas efficiency' (=energy balance) of the process?

Impurities from wood

- this is a complex issue for downstream engines, turbines,...
- tars = fuel (avoid condensation, but also fouling)
- cleaning needed (hot or cold)

Wood gasification plant

Légende :

- 1. Réacteur
- 2. Chargement du bois
- Evacuation des cendres
- Ventilateur
- 5. Circuit de chauffage

- 6. Echangeur de chaleur
- 7. Colonnes de lavages
- Filtrations
- 9. Moteur à gaz et génératrice
- 10. Catalyseur

- 11. Cyclone
- 12. Cuve de floculation
- 13. Décanteur
- 14. Aéro-refroidisseur

(Wood)Gas cleaning

• Particulate matter (PM)

- scrubbing (<100°C, H_2O)
- electrostatic precipitation (wet @65°C, dry @500°C)
- cyclone (centrifugal)
- (ceramic) filters

• Tars :

- condense <100°C</p>
- they can be decomposed thermally (1000°C) or catalytically (800°C)

- Alkali and halides
 - they condense on PM

- Sulphurs :
 - thermally cracked to H_2S
 - absorb H₂S on ZnO (400°C)

Wood gasifier (15 kW_{th}) pilot lab

Improved setup for long duration test

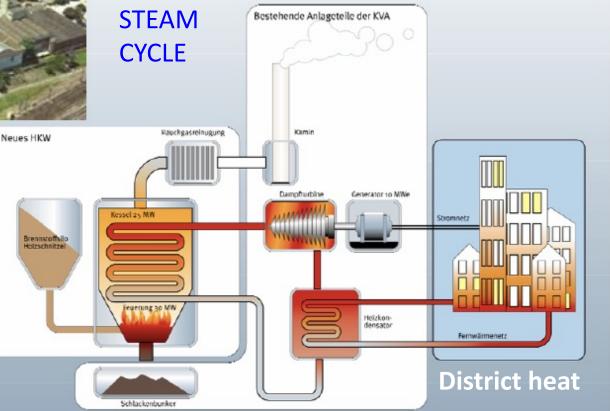
Flexible setup for testing hot gas cleaning and high temperature fuel cells

Technical features

- Autonomous biomass-pellet operation with big bag (600 kg)
- Updraft gasifier (2 kg/h, 0.3 bar)
- □ Hot gas filter (400 550°C)
- □ SMR, ATR (700 900°C)
- □ Inertial filter at 650°C & 400°C
- Autonomous sampling system for gas analysis.
- Monitoring of gas composition with μGC (24/24 h)
- Automatic cell phone alarm in case setup is leaving prefixed operation window
- Remote control

Hot gas cleaning (candle filter)

Result of 400 h duration test of hot gas filter Successful removal of dust from raw gas, improvements required on ash handling


ME460 - Renewables - Wood

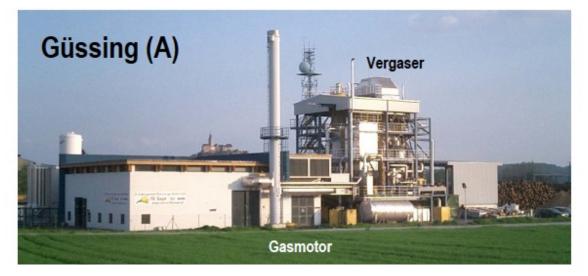
S. Biollaz, PSI-TPE 28

Waste incineration plant (incl. wood waste)

 $\frac{\text{Basel (CH)}}{30 \text{ MW}_{\text{th}}, 4 \text{ MW}_{\text{e}}, 21 \text{ MW}_{\text{heat}}}$ since 2008
170'000 m³/yr = 43'000 t/yr

Zürich (CH) 42 MW_{th}, 11 MW_e, 28 MW_{heat} since 2010 265'000 m³/yr=66'000 t/yr

Co-combustion / Co-gasification wood+coal


http://www.bbc.com/news/science-environment-20269615

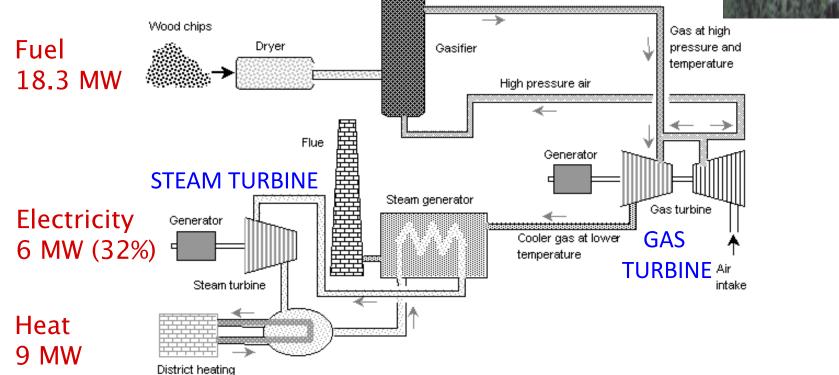
<u>Co-gasification IGCC (NL)</u> 580 MW_{th}, 250 MW_e with **10%-15% biomass (30 MWe)** started in 1998 (with biomass: 2006) 100'000 t/yr wood S. Biollaz, PSI-TPE

<u>Coal plant Drax (UK)</u> 6 * 660 MWe with **10% biomass** = **400 MWe** 1.5 Mt/yr biomass

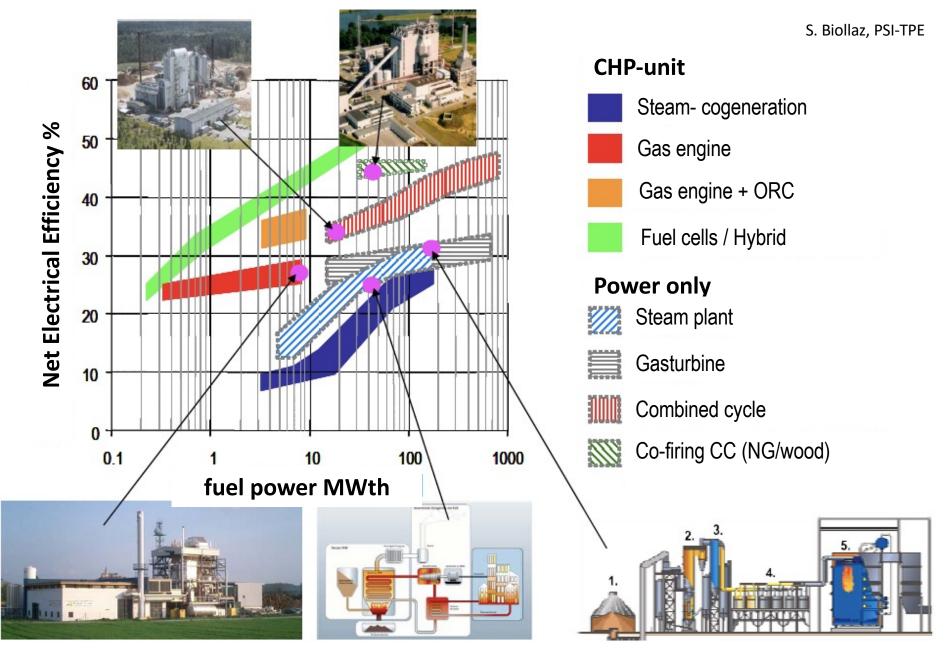
Cogeneration / IGCC

<u>Cogeneration, Güssing (AUT)</u> 8 MW_{th}, **2 MWe**, 4 MW_{heat} Since 2002; 50'000 h operation 15'000 t/yr wood

IGCC Värnamo demo (SWE) 18 MW_{th}, 6 MWe 1996-1999 7000 h operation S. Biollaz, PSI-TPE

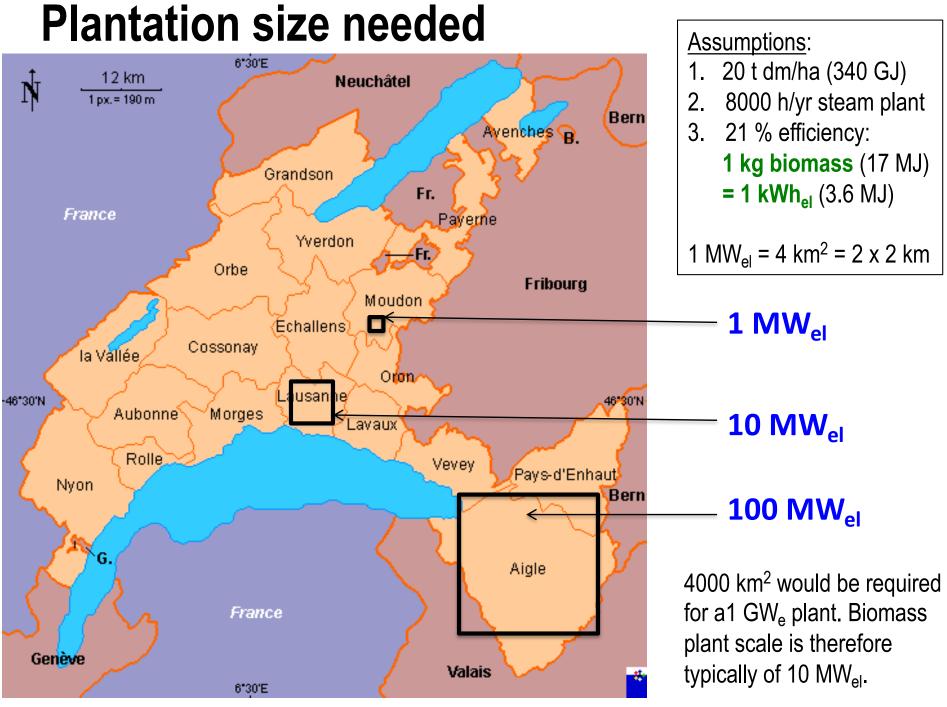


Wood IGCC


'BIG-CC' : Biomass Integrated Gasification combined cycle

Varnamo (SWE)

Electrical efficiencies from wood



'Energy crops' : characteristics

(as opposed to food crops)

Differentiation factors	Energy crops	Food crops
energy balance (OUT:IN)	very positive	positive, but lower yield
plant utilisation	≈ 100%	only a fraction is commercial
calorific value	as high as possible (incl. weeds, organotoxic plants)	human nutritive value is the only priority
local environmental production	possible for wild plants, extreme conditions, marginal lands	traditional agriculture
nutrient recycling (as fertilizers)	yes (local exploitation)	no (consumption away from production site)

Possible energy crops : herbaceous, woody, aquatic

Biomass = cheap fuel

- 300 € / ha with 20 tonnes dry matter (300 GJ)
 - \rightarrow 1 \in / GJ (thermal)
 - → 2 ct € / kWh_{el}
- crude oil: 1 barrel = $159 L \approx 6 GJ$
 - at 108 \$/barrel, oil cost is **17** \$ /GJ (0.7 \$/L)
- natural gas now: **30 \$** / **GJ** (11 ct € / kWh)
- coal price: 280 \$ / tonne (=24 GJ) \rightarrow 11 \$ / GJ