Artificial Neural Networks (Gerstner). Solutions for week 10

Applications of Reinforcement Learning

Exercise 1. Why target networks help

States s(7) are represented by three-dimensional vectors (sgj), sgj), U)) Actions are labeled by a 1-dimensional
index a = {1,2}. We look at semi-gradient @Q-learning with hnear function approximation, i.e. Q(s\%), a) =
Z? | Wai$ (J) . We start with w,; = 0 for all a and i.

Assume we observe state s(t) = (1,1,0), take action a = 1, receive reward r = 1 and observe the next state
2 =(0,1,1)
s ,1,1).

a. Compute Q(s™), 1) with the semi-gradient learning rule Aw,; = n(r + ymax, Q(s',a’) — Q(s(l),a))sg—l)
with vy =1 and n =0.1.
b. Show that Q(s(?),1) has also changed.

c. Assume Q(s,a) = >, Wa;isi + €, where € is a Gaussian noise term with mean 0 and variance . Show
that (max, Q(s,a)) > max,(Q(s,a)).
Hint: Evaluations are for fixed state s. Expectations run over the Gaussian variable e. The noise term
€ is drawn independently for each action. Exploit that the mean of the Gaussian vanishes and that
expectations can be easily evaluated for linear operators.

Solution:

a. Awy; = 0.1 (1 + 1max,0—0)-1=0.1, Similarly Awis = 0.1, Awyz =1 (1 + 1lmax,,0—0)-0=0.
With these updates we get Q(s™),1) = 3=, wy;s; = 0.2

b. Q(s?,1) was 0 before the update and is now Q(s®,1) = 3", wh—sz@ =0.1.

c. Let’s call the maximal expected Q-value Q(s,a*) = max,(Q(s,a)). If the noise terms where always such
that argmax, Q(s,a) = a*, (max, Q(s a)) would be equal to Q(s,a") = max,(Q(s,a)). However, for all
cases where arg max Q(s7 a) = a # a* we have Q(s a) > Q(s a*) and averaging both sides, we conclude:

(max, Q(s,) > Q(s,a”).

Exercise 2. Q-learning with function approximation

ai, r11 =0 ai, ro1 =1

S1

Consider the MDP shown above, with two states, two actions and deterministic rewards (where T' represents
the terminal state). We want to learn the Q—values associated with the states using Q-learning, with discount
factor v = 1.

a. (Tabular Case) The agent starts with all Q—values equal to 0. As in Dyna—Q, we assume that the agent
can store observed transitions in memory. The agent observes all 4 possible transitions, then updates
the Q—values for sy by alternating between observations of (s2,a1,721) and (s2,ag,722) until learning
converges. The agent then similarly alternates between observations of (s1,a1,711) and (s1, az,712) until
learning converges.

(i) What are the Q—values after convergence in so, and finally after convergence in s1?

(ii) Do the Q—values after each stage result in the optimal policy?

b. (Function Approximation) Now assume that the states are given to us with the vector—based obser-
vations shown below. We will learn the Q—values using the linear network shown on the right.

As before, assume a Dyna—Q-style learning where the agent learns the weights after observing all transi-
tions. Start with W11 = W12 = W13 — W21 = W22 — W23 = 0.

(i) What will the converged weights be after alternating between the two possible sy observations? Hint:
Note that certain weights will always be updated in exactly the same way, and should therefore
converge to the same value.

(ii) After sy convergence, what is the policy in s1? How does this differ from the tabular case after so
convergence, and why?

(iii) What weights would result in the correct Q—value predictions for all (s, a) pairs? Are they unique?

(iv) How can an arbitrary tabular Q-learning problem be represented using a simple linear neural network
like the one shown on the right? Hint: consider how the input space could be represented such that
semi—gradient descent results in each weight converging exactly to Q(s,a) for some (s, a) pair.

Wy,

Q(

X1

T 87021)

3
T1

82 = 1‘2 =
€3

Q(saG‘Q)

—_ 0 O K

Solution:

a. (i)

Q(s1,a1) Q(s1,a2)

Q(s2,a1) Q(s2,a2) (Start)

=

(After so convergence)

(After s; convergence)

N~ N OO

(ii) With a discount factor of 1, the optimal policy is to take a; in $; and as in sq, achieving a reward
of 2. After ss convergence, the Q—values in s; are equal, so they do not represent an optimal policy.
The final Q—values do represent the optimal policy.

b. (i) Noting that the updates should result in wis = w3 and way = wag, we can expect the weights to
converge to

w11 Wi2 wWi13| 0 0 0
Lﬂm Wa2 wzz’l N {0 0 0} (Start)
{0 0.5 0.5

0 1 1] (After so convergence)

(ii) Unlike the tabular case, the Q-values for s; are now Q(s1,a1) = 0.5 and Q(s1,az2) = 1, resulting in a
policy that does not give equivalent weight to the two actions (and in this case is suboptimal). This
occurs because x5 = 1 for both states, so their updates are correlated.

(iii) One possible solution is to fix w12 = wes = 0. In this case, the value of x5 is irrelevant and the state
representations become effectively orthogonal. The optimal weights are given by

w11 W12 wWi13| 2 0 1
w91 W22 W23 - 1 0 2
which we can see as equivalent to the tabular solution given above.

In general, we can notice that the weights for Q(s, as) can be solved without using the values of any
other states, and amount to solving a system of 2 equations with 3 unknowns. Since this solution
will not be unique, the optimal weights are not unique either.

(iv) The semi-gradient descent rule for the network above gives the weight update

8Q(Staat)

Awj; = a(rm + 7y max Q(5141,a:) — Q(s¢, at)) D

applied only for the observed action a; = j. Note that this is equivalent to tabular Q-learning with

Wy = Q(iaj) if

0Q(st,a;) J1, if sy =4 and ay = j
dwj; |0, otherwise.

Since
N states.

% = x;, this can be enforced by using a one-hot input representation with N inputs for
ji

Exercise 3. The maximization bias and Double—Q learning

Consider the MDP given below, with two non—terminal states A and B and terminal states represented by grey

boxes.
PO a0 ==

From State A, the action “right” transitions directly to a terminal state with reward 0, while the action “left”
transitions to State B with reward 0. From State B, the agent can take any one of M actions, each of which
has a reward distributed on every step according to N'(—0.1,0.5) (i.e. a Normal distribution with mean —0.1
and variance 0.5). We assume a discount factor v = 1.

a. What is the true (expected) value of State B? As a result, what are the optimal Q—values Q(A, left) and
Q(A,right), and therefore the optimal policy from State A?

b. Assume M = 20. Write a short function on your computer (5-8 lines) to simulate Q-learning starting from
State B and taking a random policy. Start with all Q—values equal to 0 and the learning rate a = 0.05, and
run it several times for 5000 trials. Is the resulting value of State B according to V(B) = max,, Q(B, a;)
usually positive or negative? Why? What effect will this have on the learned policy for State A7

c. This effect is referred to as the Maximization Bias, and can be addressed using the Double Q-learning
algorithm below.

Double Q-learning, for estimating (), = ()2 = g,

Algorithm parameters: step size a € (0,1], small £ > 0
Initialize Q1(s,a) and Q2(s,a), for all s € 8T, a € A(s), arbitrarily except that Q.(terminal,-) =0
Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using the policy e-greedy in Q1 + Q2
Take action A, observe R, S’
With 0.5 probabilility:
Qu(S,4) « Qu(S,4) + (R +1Qu (S, argmax, Qu(S', a) - Qu(S, 4))
else:
Qa(5, A) + Qa(S, A) + a(R + Qi1 (S, argmax, Q2(5', a)) — Qa(S, A))

S+ 8
until S is terminal

Re—write your function above to learn two different sets of Q—values and update one of them at random with
each new observation. Check the value of State B according to both Vi(B) = Q1 (B, argmax, (Q2(B, a;))
and V2(B) = Q2(B,argmax, (Q1(B,a;)). Do these estimates more accurately reflect the true value of
State B?

Solution:

a. Since all actions from State B give the same reward distribution, the policy is irrelevant to the value of
the state. The true expected value is therefore simply the mean, —0.1. As a result, Q(A4,left) = —0.1.
Since Q(A,right) = 0, the opimal policy is to take the right action.

b. A possible function (in Python) is

import numpy as np
def simulate (num_steps):
num-_actions = 20
qs = np.zeros(num_actions)
for i in range(num _steps):
a = np.random. choice (num_actions)
gs[a] += 0.05%(np.random.normal (—0.1,0.5) — gs[a])
return gs
print (np.max(simulate (5000)))

The result is usually positive, despite the negative bias of the Normal distribution. As a result, Q(A, left)
will also usually be positive and the agent will favour the “left” action, although we know from above that
“right” is optimal.

To understand why, we note that the mean 57 Y-, Q(B, a;) is usually close to —0.1, where each Q(B, a;)
is computed from a subsample of N'(—0.1,0.5). However, we take max,, Q(B,a;) to determine the state
value. The maximum subsample mean will usually be higher than the true mean, and it is probable that
at least one subsample will result in a positive Q—value. This Maximization Bias becomes problematic
when the task stochasticity (i.e. Q-—value variance) dominates over the difference in expected values of
different actions (which in this case is 0).

¢. The new function using Double Q-learning should look like

import numpy as np
def simulate2(num_steps):
num_actions = 20
gsl = np.zeros(num_actions)
qs2 = np.zeros (num_actions)
for i in range(num_steps):
a = np.random. choice (num_actions)
if np.random.random() < 0.5:
gsl[a] += 0.05%(np.random.normal (—0.1,0.5) — qgsl[a])
else:

gs2[a] += 0.05%(np.random.normal (—0.1,0.5) — gs2[a])
return gsl, gs2
gsl, gs2 = simulate2(5000)
print (qgsl [np.argmax(qs2)], qs2[np.argmax(qsl)])

and the resulting values should be close to —0.1.

Exercise 4. From Policy Gradient to eligibility traces

In this exercise you will show that eligibility traces appear naturally in any policy gradient algorithm. Eligibility
traces are nice because they lead to a transparent and easy—to—interpret algorithm. Moreover, eligibility traces
enable a direct online implementation of the algorithm in distributed hardware (or biology).

Consider a discrete multistep reinforcement learning problem with the usual graph, the usual notations and
transitions: an action a; leads you (stochastically) from state s; to s;+1 and on this transition you collect the
reward 7;. Suppose that you always start in state s;—g = Sgstart- We assume that there is a simple terminal
state siqrger. When you reach this state you get a particularly strong positive reward.

Your policy m(at|s¢,0) depends on parameters 6. For the moment your aim is to optimize the parameters of

the policy such that you maximize the expected discounted reward E[Return(sstart — S’mmet)] = (ro +yr1 +
2

VErg +).

We proceed in five steps.

a. Derive a batch version of the policy gradient algorithm over multiple time steps by optimizing E[Return(sstqrt —
Starget) = (ro +r1 + ¥*r2 + ...) through gradient descent.

Hint: Use the log-likelihood trick seen in class. Start as for blackboard 3 (slide 35 of Lecture 10) and take
the derivative with respect to parameter ¢;.

b. A batch algorithm means averaging over many episodes. Transform the batch algorithm into an online
algorithm where you consider one episode at a time. Assume that in one episode you traverse the state-
action sequence: So, ao,To; S1,01,71; S2,A2,T2; S3,03,73; S4, 04,74} S5 = Starget-

Show that the parameter updates can be written as

d
Al = [ro + yr1 + ¥2ra +7°rs + vty

@ln[w(ao [s0,0)]

d
+ [yr1 4+ %2 +4°rs + ’Y4T4]%ln[7f(a1|817 0)]
J

d

n [y?re +7%rs + 74T4]ﬁln[7r(a2|52’ 0)]
i

d
+ [v*rs +v*ra]—In[r(as|ss, 0)]
do;

; w4r41d;fjm[w<a4|84,e>} (1)

Hint: redo the calculation (blackboard 3) on page 35 and compare your result with the result on page 36
(Lecture 10).

c¢. So far we were only interested in maximizing the discounted future reward from the INITIAL state, with
the discount factor computed relative to that state (¢t = 0). However, while you move along the trajectory
you pass by other states s1, so, s3, 84. For each of these states s;, you should now also optimize the future
expected discounted reward starting from s;; that is you want to maximize E[Return(s; — Starget)] =
(re +rea1 + Y2rean + ...).
More generally, you should optimize the future discounted returns from every step ¢, assuming that the
discounting started at the current step or at any possible step m in the past (i.e. m < t). Assume that m
runs from —oo to t.

Redo the calculation in (b), but calculate the parameter update resulting from returns starting in arbitrary
states with arbitrary initial discount factors.

Hint: Copy, but time-shift the results from (b).

d. Sum all the updates from (b) and (c) and reorder all terms from (b) and (c) such that updates that are
multiplied with the same reward are grouped together.

Show that this results in updates of the form
A0 D (an]sn, 0)] + Y- Infr(an_1[sn_1,0)] + 72— I (an_s|sn_2,0)] + @)
j = CTny 5, T\ Qn |Sn, 0 TAn—1|Sn—1, 0 T\An—-2|Sn—2,
J o, 7 an; 1{%n—1 7o, 2]9n—2

with some constant ¢. What is this constant?

e. Now we introduce eligibility traces by defining for each parameter 6; a ’shadow variable’ z; which, in each
time step t, decreases by a factor A < 1
Zj —)\Zj (3)

and then (in the same time step) increase by an amount

L il (as]se, 0)] (4)

Zj de

where a; is the action taken in time step t.

What is the relation of A and v? What is the final weight update?

f. Suppose that all rewards are zero, except the reward in the final time step r4 > 0. Furthermore
suppose that parameter 6 is only sensitive to ag,ss. To be specific, say ﬁﬁln[ﬂ(aﬂs%ﬁ)] > 0 and

Inlr(ay]st, 0)] = 0 for ¢ # 2.

How can you interpret the resulting algorithm? How much will the parameter ¢; change?

Solution:

a. We will take Gs;,q, = 70 +771 +72ry+... as a Monte Carlo sample of the total discounted future returns
from taking action ag in state sg. Our goal is to maximize E;[< G, q, >], Where < G4, > is the
expected discounted future returns starting from (sg, ag).

We will start by only optimizing over our policy in the first state, 7w(ag|so,). We then have

Ew(ao‘sg)[< GSO’QU >] Z/ < GSU,ao > 7r(a0|so)da0.

ao

Taking the derivative and moving it inside the integral gives us

OEr(ao]50)[< Gso.a0] _ 0
90; - /ao < Gsga0 > afojﬂ(aoboﬁ)dao

The log-likelihood trick tells us that

opla) =) = pla) - mpla).

~—

Applying this above gives

aEﬂ'(aO\SO) [Gso,ao]
06

0
= / < Gsyoa0 > W(ao\so,ﬁ)% In7(agl|so, 0)dag
ao J

Unfortunately, we don’t have direct access to the expected discounted returns < Gy, 4, > under every
action ag. However, we can approximate it from the batch returns under each action, just as we can
approximate m(ag|sg,8) from the proportion of times the agent took action ag in state sg under the policy.

Assume that, over M episodes, a particular state—action pair (sg, ag) was experienced Nj times. Then,

0,20

N, N,
s0.a0 Mk s0,a0 vk
< G > 7r(a ‘8 9) ~ Zk:l Gso,ao Nso,ao _ Zk:l Gso,ao
50,00 0120, ~ -
Nay ao M M

where G* ,.ao Tepresent the returns on a particular episode k. Replacing the integral with a sum over all

the batch episodes, we can then approximate the gardient as

AQ? ZGSOM‘% In7(ap|so, 6)

where A9 represents the contribution to the gradient from 7(ag|so, 6).

Finally, the full return < G, q, > depends on all the other actions taken in the episode as well. However,
an action a; only affects the components of G? that came after time step ¢, which is equal to v*G"

S0,a0 St,at "
Therefore,

M
AQ; = Z éhata—elnﬂ'(aﬂst,ﬁ)

Adding them together gives

z:@;wﬁmﬂm%m

zltO

. Transforming the batch algorithm into an online algorithm can be done by simply removing the averaging
over M, i.e.

T
A9] = Z ’thStaat 52] lnﬂ—(at|8t7 9)
t=0

For the given episode, we have

Ab; =G Inm(aglso,0) ++'G Inm(ai|s1,0)

0 0
50,00 80 §1,a1 69

+72GS2, In 7(asz]s2,)+73G In7(as|ss,)—&—74(}’54’ In7(aqls4,0).

Mw %“w Mw

Evaluating Gs, o, = rt + Y741 + 72742 . .. gives the result above.

. Optimizing for the returns starting from an arbitrary step m on the trajectory gives us

T t
0
Agj = Z Z ’YtimGSty(lt 89 1nﬂ(at|5t’)

where we recover the original gradient when m runs from 0 to 0. Performing a change of variables with
b=1t—m yields

T oo

0
— b
Aoj o ZZ’Y G‘stvaf 89 lnﬂ'(at|8t,)

t=0 b=0

and recognizing the infinite geometric series gives us

T

0
1
1 — ;Gst,at 80 DTl'(at|8t,)

d. Substituting for the returns in the above yields

T P
_— Vrivi| = Inm(ag|se,)
x|
Performing another change of variables with n = ¢ 4+ k and eliminating ¢ gives

T n

T 3) USRI

,yn =0 ¢=0

n

—CZTHZW—IHW (@n—i|Sn—i,0) (5)

which is equivalent to the expression above, with ¢ = ﬁ

2t =)\z Y Inw(agst, 9)

J 0,

0 0
= A(Az;~ 24 0; In7(ai_1|st—1,0)) + a6, In7(at|st, 0)

0 0
=)\Qz;- 24)\8711’171' az—1)8¢—1,0) + %lnw(at\stﬁ)

ta
= iz:; Al% In7(at—;|s¢—i, 0),

where in the last line we have assumed that z? = 0 (i.e. the shadow variables were all initialized to 0).

With v = A, we note that this is equivalent to the last sum in Equation 5. In this case, we can express
the policy gradient update using our shadow variables as

f. In this case, Equation 6 simplifies to

Al = cmz‘.1

=cra Z)\’— Inm(ag—;|$4—i,0)

=cA mi In7(az|ss2,6)

0,

Since In7(az|s2,0) > 0, an increase in the value of the parameter 6; will increase the probability of taking
as in sy again. In addition, since r4 > 0, all terms are positive and the value of 8, will increase.

The magnitude of increase depends on the magnitude of r4. In other words, 6; will increase more if it
contributed to a larger reward, due to its effect on the policy 2 steps before receiving the reward.

The magnitude of increase also depends on A2. If the discount factor X is small, it suggests that earlier
actions contribute little to later rewards; as a result, the gradient will also be small since it relates to the
policy several steps before actually receiving the reward.

