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Markov games

◦ What is Markov game?

◦ Value functions and Nash equilibrium

◦ Algorithms for Markov games

I Nonlinear programming

I Fictitious play

I Policy gradient

I Nash Q-learning
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Markov games

◦ A Markov game (MG) can be viewed as a MDP involving multiple agents with their own rewards

◦ Introduced by L.S.Shapley [5] as stochastic games, referred to with a tuple (S,A, P, r, γ)

◦ A Markov game is an extension of normal form game with multiple stages and a shared state s ∈ S

◦ Joint action: a = (ai)i, where ai ∈ Ai is the action of agent i ∈ I

◦ Transition function: P (s′ | s,a) is the likelihood of transitioning from a state s to s′ under an action a

◦ Reward function: ri(s,a) is the reward received by agent i at state s with a joint action a

◦ Discount factor: γ

◦ Stationary policy: πi(ai | s) is the probability that agent i selects action ai at state s

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 4/ 34



An example

◦ Consider the interaction between drivers in the traffic as a markov game.

© eyetronic, Adobe Stock

I agents: commuters/drivers in the traffic
I states: locations of all cars
I action: which road to drive for each car
I reward: negative of time spent on the road
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Normal form games and Markov games

action state transition reward policy multi-stage
Normal form game ai ∈ Ai no no ri(a) πi(a) no

Markov game ai ∈ Ai s ∈ S P (s′ | s,a) ri(s,a) πi(ai | s) yes

◦ We focus on infinite horizon Markov games

◦ Compared to a normal form game, agents in MG consider not only the current reward of the action...
...but also its effect in the long run!

◦ Compared to an MDP, MG has multiple agents and the reward also depends on other agents’ action.
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Markov games

◦ What is Markov game?

◦ Value functions and Nash equilibrium

◦ Algorithms for Markov games

I Nonlinear programming

I Fictitious play

I Policy gradient

I Nash Q-learning
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Value function

◦ Value function: the expected γ discounted sum of rewards for a player i starting from state s,
when all players play their part of the joint policy (πi)i∈I :

V πi (s) = E

[
+∞∑
t=0

γtri
(
st,at

)
| s0 = s,at ∼ π

(
· | st

)
, st+1 ∼ P

(
· | st,at

)]
.

◦ Action-value function:

Qπi (s,a) = E

[
+∞∑
t=0

γtri
(
st,at

)
| s0 = s,a0 = a,at ∼ π

(
· | st

)
, st+1 ∼ P

(
· | st,at

)]
.

Remarks: ◦ Relation between Qπi (s,a) and V πi (s)

Qπi (s,a) = ri(s,a) + γ
∑
s′∈S

P
(
s′ | s,a

)
V πi
(
s′
)
.

◦ Each agent wants to maximize its value.
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Response model – best response

◦ The expected reward to agent i from state s when following joint policy π is

ri(s,π(·|s)) =
∑
a

ri(s,a)
∏
j∈I

πj (aj | s) .

◦ The probability of transitioning from state s to s′ when following π is

P
(
s′ | s,π(·|s)

)
=
∑
a

P
(
s′ | s,a

)∏
j∈I

πj (aj | s) .

◦ Best response policy for agent i is a policy πi that maximizes expected utility given the fixed policies of
other agents π−i. This best response can be computed by solving the MDP with

P′
(
s′ | s, ai

)
= P
(
s′ | s, ai,π−i(s)

)
r′ (s, ai) = ri (s, ai,π−i(s)) .
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Nash equilibrium

◦ In a Nash equilibrium (NE) π?, no player can improve its value by changing its policy if the other players
stick to their policy.

◦ Or we can say, π?i is the best policy for agent i if other agents stick to π?−i.

◦ In NE, we can write for each agent i

V π
?

i (s) ≥ V
πi,π

?
−i

i (s), ∀πi, ∀s ∈ S.

◦ ε-Nash equilibrium:
V πi (s) + ε ≥ max

πi
V πi (s), ∀i, ∀s ∈ S.
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Existence of Nash equilibrium

Theorem (Existence of Nash equilibrium [3])
All finite Markov games with a discounted infinite horizon have a Nash equilibrium.

Exercise: ◦ Show this with the theorem of the existence of Nash equilibrium in the normal form games.

Hint: ◦ Construct a new normal form game with each player and state pair
in the original Markov game, i.e. (i, s), as an agent in the new game.
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Markov games

◦ What is Markov game?

◦ Value functions and Nash equilibrium

◦ Algorithms for Markov games

I Nonlinear programming

I Fictitious play

I Policy gradient

I Nash Q-learning
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Nonlinear optimization to find NE [2]

◦ Minimizes the sum of the lookahead utility deviations

◦ Constrains the policies to be valid distributions

◦ Assume we know reward and transition functions

minimize
π,V

∑
i∈I

∑
s

(Vi(s)−Qi(s,π(·|s)))

subject to Vi(s) ≥ Qi (s, ai,π−i(·|s)) for all i, s, ai∑
ai

πi (ai | s) = 1 for all i, s

πi (ai | s) ≥ 0 for all i, s, ai,

where Qi(s,π(·|s)) = ri(s,π(·|s)) + γ
∑

s′
P (s′ | s,π(·|s))Vi (s′).
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Nonlinear optimization: Equivalence between the optimal solution and NE

Theorem (Equivalence between optimal solution and NE[2])
A joint policy π? is a NE with value V ? if and only if (π?, V ?) is a global minimum to this nonlinear
programming.

Remarks: ◦ The nonlinearity arises in ri(s,π(·|s)) and P (s′ | s,π(·|s)).

◦ The proof of the theorem uses the following lemma.

Lemma
In an MDP, V ? is the optimal value with the optimal policy π? if and only if

V ?(s) = r(s, π?(·|s)) +
∑
s′∈S

P
(
s′ | s, π?(·|s)

)
V ?(s′), ∀s ∈ S

V ?(s) ≥ r(s, a) +
∑
s′∈S

P
(
s′ | s, a

)
V ?(s′), ∀s ∈ S, a ∈ A.
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Nonlinear optimization: Equivalence between the optimal solution and NE

◦ We are ready to prove the theorem.

Proof.
◦ (=⇒) Assume π? is a NE with value V ?

1. The second and third constraints hold trivially.
2. The first constraint makes the optimum at least 0.
3. The lemma implies the first constraint is feasible and the objective value at (π?, V ?) is 0.

◦ (⇐=) Assume (π?, V ?) is a global minimum to the nonlinear programming
1. The optimum is 0 and is achievable by the reasoning above.
2. By the lemma, three constraints and the objective at (π?, V ?) being 0 implies that π? is a NE with value
V ?.

�
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Fictitious play in Markov games

◦ Required feedback Each agent i counts opponent’s actions at state s: Nt(j, aj , s) for j , i, s ∈ S.

◦ Behavioural assumption Each agent i assumes its opponents use the empirical distribution as the same
stationary mixed strategy

π̃tj(aj | s) =
Nt(j, aj , s)∑

āj∈Aj
Nt(j, āj , s)

.

◦ Each agent i considers the following MDP,

Pt
(
s′ | s, ai

)
= P
(
s′ | s, ai, π̃t−i(s)

)
rt (s, ai) = ri

(
s, ai, π̃

t
−i(s)

)
,

and computes
Qti(s, ai, π̃

t
−i(·|s)).

◦ Each agent i updates their policy as follows

πt+1
i (s) = arg max

ai

Qti(s, ai, π̃
t
−i(·|s)) ∀s ∈ S.
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Policy gradient methods

◦ Also referred to as gradient ascent.

◦ Take the gradient of value function at πt: ∂V πi (s)
∂πi(ai|s)

∣∣∣
π=πt

.

◦ Apply gradient ascent to each agent

πt+1
i (ai | s) = πti (ai | s) + αti

∂V πi (s)
∂πi (ai | s)

∣∣∣∣
π=πt

.

◦ Project πt+1
i to a valid probability distribution.
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Policy gradient algorithms in linear quadratic (LQ) games

◦ Generalization of LQR to multiple agents setting

◦ Continuous, vector valued state s ∈ Rm and action space ai ∈ Rdi for agent i.

◦ Linear dynamics for state transition: with matrices A ∈ Rm×m and Bi ∈ Rdi×m

st+1 = Ast +
n∑
i=1

Bia
t
i.

◦ Consider the linear feedback policy ai = πi(s) = −Kis with Ki ∈ Rm×di .

◦ Player i’s loss function is quadratic function: with Qi ∈ Rm×m, Ri ∈ Rdi×di and initial state distribution D0

fi(K1, ...,Kn) = Es0∼D0

[
∞∑
t=0

(st)TQist + (ati)
TRia

t
i

]
.
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Non-convergence of policy gradient algorithms in linear quadratic games

◦ Each player wants to minimize its loss fi(K1, . . . ,Ki, ...,Kn)

◦ (K?
1 , ...,K

?
n) is a Nash equilibrium if for each agent i

fi (K?
1 , . . . ,K

?
i , . . . ,K

?
N ) ≤ fi (K?

1 , . . . ,Ki, . . . ,K
?
N ) , ∀Ki ∈ Rdi×m.

◦ Policy gradient algorithms
Kt+1
i = Kt

i − αi
∂f

∂Ki
(Kt

1, ...,K
t
n).

Theorem (Non-convergence of policy gradient in LQ games [4])
There is a LQ game that the set of initial conditions in a neighborhood of the Nash equilibrium from which
gradient converges to the Nash equilibrium is of measure zero.

◦ Remark: When the initial policy is close enough to NE and stepsize is small enough, it still may not converge.
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Non-convergence of policy gradient algorithms in linear quadratic games

◦ Implement policy gradient on two LQ games with two players with dimension d1 = d2 = 1 and m = 2.

◦ Nash equilibrium is avoided by the gradient dynamics.

◦ Players converge to the same cycle from different initializations.
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Two-player zero-sum Markov games

◦ What is two-player zero-sum Markov games?

◦ Bellman operators in two-player zero-sum Markov games

◦ Algorithms for two-player zero-sum games

I Value iteration

I Policy iteration and its variants
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Two-player zero-sum Markov games

◦ Markov games with two agents

◦ Sum of two agents’ rewards is 0, i.e. r1(s, a1, a2) = −r2(s, a1, a2) = r(s, a1, a2) for any s ∈ S.

◦ Value function:

V π1,π2 (s) = E

[
+∞∑
t=0

γtr
(
st, a

t
1, a

t
2
)
| s0 = s, at1 ∼ π1 (· | st) , at2 ∼ π2 (· | st) , st+1 ∼ P

(
· | st, at1, a

t
2
)]

.

◦ Agent 1 wants to maximize the value function and agent 2 wants to minimize it.

◦ There exists a unique value for all Nash equilibrium

V ?(s) = min
π1

max
π2

V π1,π2 (s) = max
π2

min
π1

V π1,π2 (s).
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Applications of two-player zero-sum Markov games

◦ Includes many sequential games. When one wins, the other loses.

◦ Poker.

◦ Tennis.

◦ Go
I agents: players
I states: the states of the board
I action: move in each turn
I reward: zero for all non-terminal steps; the terminal reward at the

end of the game: +1 for winning and -1 for losing.
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Two-player zero-sum Markov games

◦ What is two-player zero-sum Markov games?

◦ Bellman operators in two-player zero-sum Markov games

◦ Algorithms for two-player zero-sum games
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Bellman operators in two-player zero-sum Markov games

◦ Let r(s, π1(s), π2(s)) the expected immediate reward/cost (player 1/player 2) at state s under policies π1, π2.

◦ Define the operator Tπ1 as follows,

[Tπ1V ] (s) = max
π1

min
π2

[
r(s, π1(s), π2(s)) + γ

∑
s′

P(s′ | s, π1(s), π2(s)) · V (s′)

]
◦ Define the operator Tπ2 as follows,

[Tπ2V ] (s) = min
π2

max
π1

[
r(s, π1(s), π2(s)) + γ

∑
s′

P(s′ | s, π1(s), π2(s)) · V (s′)

]
◦ Tπ1 and Tπ2 are equivalent. Let T ≡ Tπ1 ≡ Tπ2

◦ The fixed point of T is V ?.
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Two-player zero-sum Markov games

◦ What is two-player zero-sum Markov games?

◦ Bellman operators in two-player zero-sum Markov games

◦ Algorithms for two-player zero-sum games

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 26/ 34



Value iteration for two-player zero-sum Markov games

Value iteration for two-player zero-sum Markov games [5]
for each stage t do
Apply the Bellman operator T at each iteration

V t+1 = T V t.

end for

Theorem (Convergence of value iteration)∥∥Vt −V?
∥∥
∞
≤ γt

∥∥V0 −V?
∥∥
∞
.
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Policy iteration for two-player zero-sum Markov games

◦ π1 is said to be greedy, denoted as π1 ∈ G(V ) if and only if for each state s ∈ S,

π1(·|s) := arg max
π1(·|s)

min
π2(·|s)

[
r(s, π1(s), π2(s)) + γ

∑
s′

P(s′ | s, π1(s), π2(s)) · V (s′)

]

Policy iteration for two-player zero-sum Markov games
for each stage t do
find πt1 ∈ G(V t−1)
compute V t = minπ2 V

πt1,π2

end for

Remarks: ◦ The first step requires the solution of |S| linear programs.
◦ The second step to compute V t = minπ2 V

π1,π2 requires solving the MDP with transition
Ea1∼πt1(·|s)[P (· | s, a1, a2)] and reward −Ea1∼πt1(·|s)[r(s, a1, a2)].
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Value and Policy Iteration in zero-sum Markov games

Pros
I Compute Nash Equilibrium.
I Simple to implement.

Cons
I Computationally expensive.
I Model-based (they need the exact description of the Markov game).

Model-free methods for NE
I Policy gradient [1]
I Optimistic mirror decent + actor-critic [6]
I Natural policy gradient + actor-critic [Alacaoglu et al.]
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Policy gradient in two-player zero-sum Markov games

Policy gradient in two-player zero-sum Markov games [1]
for each stage i = 1 to ... do
A trajectory {(st, αt1, αt2)}H−1

t=0 is sampled according to policies πi1, πi2.
I Player 1 updates πi+1

1 as follows,

πi+1
1 ← Πeucl

[
πi1+

(
H−1∑
t=0

r(st, αt1, αt2)

)
·
H−1∑
t=0

∇ log(πi1(at1|st)

]
I Player 2 updates πi+1

2 as follows,

πi+1
2 ← Πeucl

[
πi2−

(
H−1∑
t=0

r(st, αt1, αt2)

)
·
H−1∑
t=0

∇ log(πi2(at2|st)

]
where Πeucl[·] is the euclidean projection to the set of policies.

end for
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Policy gradient in two-player zero-sum Markov games

Theorem (Informal, [1])
Policy-gradient in two-player zero-sum games requires O(1/ε12.5) stages to converge to an ε-Nash Equilibrium.

Policy gradient in two-player zero-sum Markov games
I Model-free
I Each player needs to learn only her individual experienced payoffs.
I Efficient and simple to implement.

Cons
Huge sample-complexity, PL needs to sample O(1/ε12.5) trajectories to find an ε-NE.
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Other model-free methods for two-player zero-sum Markov games
◦ Recent methods model-free drastically improve on the sample complexity.

Optimistic gradient decent/ascent with actor-critic [6]
I At each stage i a trajectory {(st, αt1, αt2)}H−1

t=0 is sampled according to πi1, πi2.
I Agent 1 (resp. agent 2) estimates the Q̂i(s, a1) as follows,

Q̂i(s, a1)←

∑H−1
t=0 1[st = s, at1 = a1] ·

(
r(at1, at2, st) + γV i−1(st+1)

)∑H−1
t=0 1[st = s, at1 = a1]

← Critic

I At each state s, optimistic gradient ascent (descent for player 2) uses Q̂i(s, a) to update πi(·|s).

Convergence [6]
Optimistic gradient decent/ascent with actor-critic in two-player zero-sum games requires O(1/ε4) stages to
converge to an ε-Nash Equilibrium.

State of the art [Alacaoglu et. al.]
Natural policy gradient with actor-critic in two-player zero-sum games requires O(1/ε2) stages to converge to
an ε-Nash Equilibrium.
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Summary

◦ Markov games
I What is Markov game?
I Value functions and Nash equilibria
I Algorithms for Markov games

◦ Two-player zero-sum Markov games
I What is two-player zero-sum Markov games?
I Bellman operators in two-player zero-sum Markov games
I Algorithms for two-player zero-sum games
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