
Biomass: liquids

BIOETHANOL

General characteristics

• Advantages:

- (indigenous) natural resource; reduces oil import
- known and simple technology; labour-intensive
- large application domain; usually small plants

• Limitations:

- production and substitution (for oil) are limited
- requires important infrastructure and land
- requires adaptations (engines)
- Rem: only ethanol is of interest; methanol is more difficult to synthesize (wood pyrolysis), toxic and best made from natural gas

Engine fuels

FUEL	MJ / kg	MJ / L	kg / L
Gasoline	43.9	32.2	0.73
Diesel	43	36.6	0.85
Ethanol	26.7	21.1	0.79
Methanol	20	15.9	0.80

Properties

Property	Ethanol	Methanol	Gasoline	Diesel
formula	C ₂ H ₅ OH	CH ₃ OH	C5-C12	C14-C19
molar weight	46.1	32	100	240
C wt% H wt% O wt%	52.2 13.1 34.7	37.5 12.5 50	86 14 0	86 14 0
Boiling point	78	65	30-220	240-360°C
Autoignition	423	470	257°C	
Explosion limits	4-19 vol%		1.4-7.6 vol%	
Octane index	106-111	106-115	79-98	
Cetane index	0-5	0-10	5-10	45-55

=> Ethanol is a **gasoline substitute**, not one for diesel

Biomass sources for bioethanol

- **1. Sugars**: sugar cane, melasse (=sirupy residue after sugar extraction), sweet sorghum, beet
 - direct fermentation
 - the plant *residues* (=bagasse) deliver the energy to operate the site
- 2. Amylaceous plants (**starch**, inulin): manioc, corn, potatoes, cereals, artichoke (*topinambour*)
 - requires a prior so-called saccharification step
 - no self-sufficiency like with sugar-only plants
- **3. Cellulosic**: wood, agro-residues, energy crops
 - requires aggressive hydrolysis (dilute acid at high temperature or concentrated acid at low temperature)
 - examples: american aloe, ficus indica, cat-tail plant

Bioethanol yield (land-use)

Source	t biomass / ha.yr	EtOH L / t biomass	EtOH L / ha.yr						
sugar cane	50	70	3500						
melasse	lasse								
sweet sorghum	35	86	3000						
manioc	12-20	180	2200-3600						
potato	15	125	1875						
corn	6	370	2200						
wood	5-20	160	800-3200						
100 g glucose yield in practice 47 g ethanol (59 ml anhydrous) LOW!									

 $0.35 L/m^2$

(1 m² of grapes vineyard yield 1 bottle of wine (0.7 L with 13% ethanol))

Energy balance

• aerobic respiration (O₂ from air):

 $C_6H_{12}O_6(\underline{2870kJ/mol}) + 6O_2 \rightarrow 6CO_2 + 6H_2O + \underline{38ATP(\underline{1160kJ}) + heat(37^\circ C)}$

- <u>40%</u> storage efficiency
- fermentation (the yeast uses O_2 from glucose, not from air) $C_6H_{12}O_6(2870kJ/mol) \rightarrow 2CO_2 + 2C_2H_5OH(2644kJ) + 2ATP(61kJ) + heat$
 - 90% theoretical efficiency to transform sugars into ethanol
 - the glucose energy stays in the ethanol and is not stored in the bacteria (only 2 ATP); above 13% ethanolic solution, the yeast bacteria do not survive (→ wine!)
- practical yield: 0.5 L ethanol from 1 kg glucose = 70% efficiency

Yields a pure CO_2 output stream : perfect for CO_2 capture! => C-negative process

Sugar cane

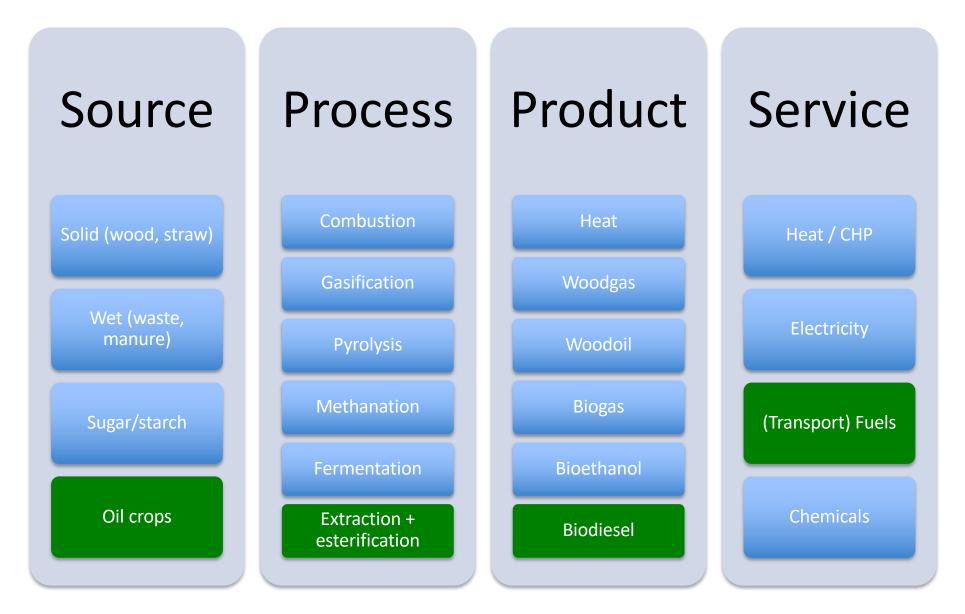
- cellulosic fibres (bagasse) containing sugars
- milling, washing and filtration separates the bagasse (=fuel for the site) from the sugar juice
- the juice is concentrated (\rightarrow melasse), sterilised and fermented with yeast

$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{invertase} 2C_6H_{12}O_6 \xrightarrow{zymase} 4C_2H_5OH + 4CO_2$$

- **1-3 days fermenting** yields a 8-10% alcohol solution (slow process)
- a 'stripping' filtration is then done to separate EtOH from solids and water
- distillation until the **96% EtOH**-4%H₂O azeotrope
- benzene addition + final distillation until anhydrous ethanol (99.7%)
- the distillation effluent (=animal food and fertilizer) is 10-13 times the produced ethanol volume (large volume process)
- for starches (manioc), the process is similar with one prior step: sugars are extracted from the milled/washed manioc by amylase and gluco-amylase enzymes (=saccharification step)

Ethanol efficiency effects in engines

- efficiency loss due to larger tank volume & weight: -1% loss
- Volume of combustion products is higher with ethanol
- Gain with higher octane number of ethanol +6% to10% compared to gasoline
- in total, the overall transport efficiency for ethanol is more efficient than gasoline in light duty vehicles (LDV)
- Benefits :
 - saving of 0.7-1 L gasoline (2.3-3 kg CO₂) per L EtOH
 - reduced emissions of CO, HC, SO_x, benzene (cleaner combustion)

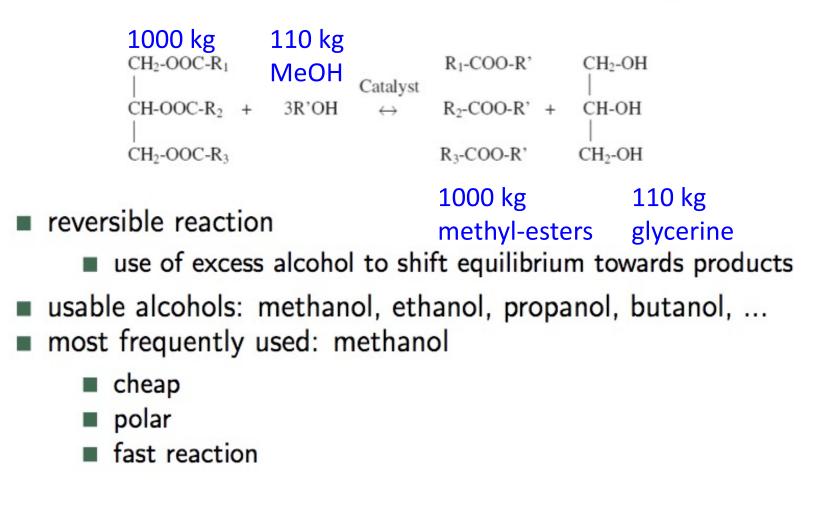

Source:

1) Wyman, Charles E. Handbook on Bioethanol: Production and Utilization. Tylor and Francis 1996. ISBN 1-56032-553-4

Bioethanol use

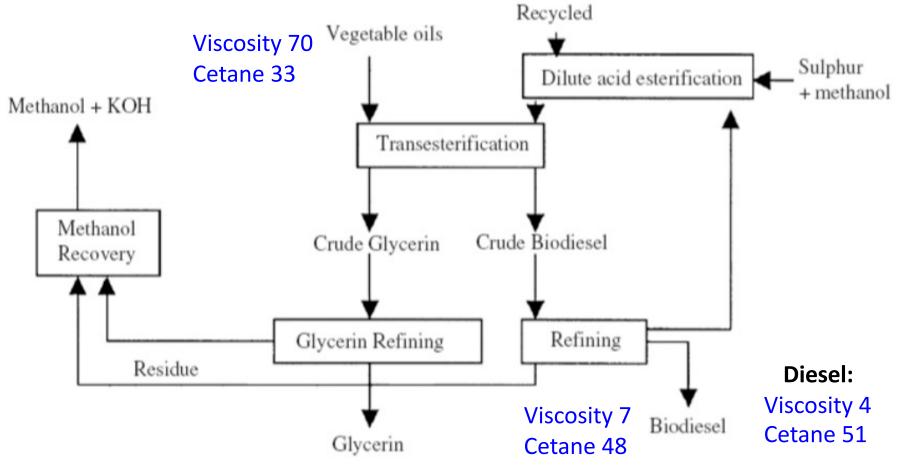
- as hydrated (96%, azeotrope) in all-ethanol engines (Brasil)
- as 'dry' (99.7%) blended with gasoline (5-10% in EU, USA; 24% in Brasil)
- its main drawback is the low yield and high land use; its application is expected to remain limited (≈5% of transport fuel), with notable exceptions like Brazil (which has huge land reserves and the appropriate climate for sugar cane and high yield (8000 L/ha.yr))

BIODIESEL


Biodiesel

- Source : oil-rich plants
 - rapeseed (colza), sunflower (tournesol), soyabean,...
 - Oil content = 40%
 - animal fats, frying oil
- Triglycerides : 1 mol glycerine + 3 mol fatty acids

Transesterification process


Transesterification (alkoholysis):

reaction of triglyceride and alcohol to esters and glycerol:

Process goal: oil viscosity reduction ÷ 10

Transesterification: Process scheme

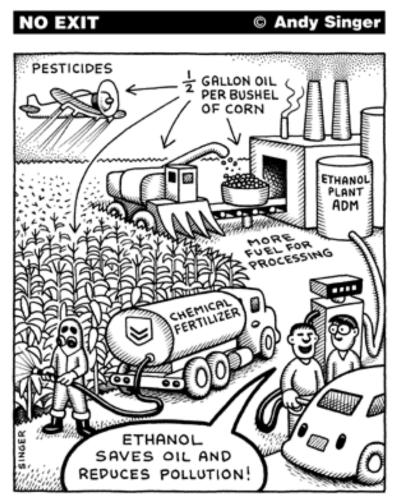
from: Marchetti, J.M. et al., Renewable and sustainable energy reviews 11, pp. 1300-1311, 2007.

Cost of biodiesel

very low yield! => land use!

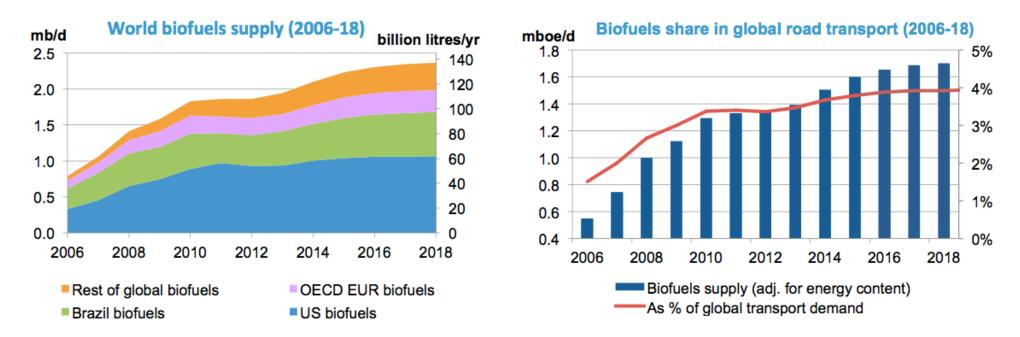
1 order of magnitude still further below ethanol yields

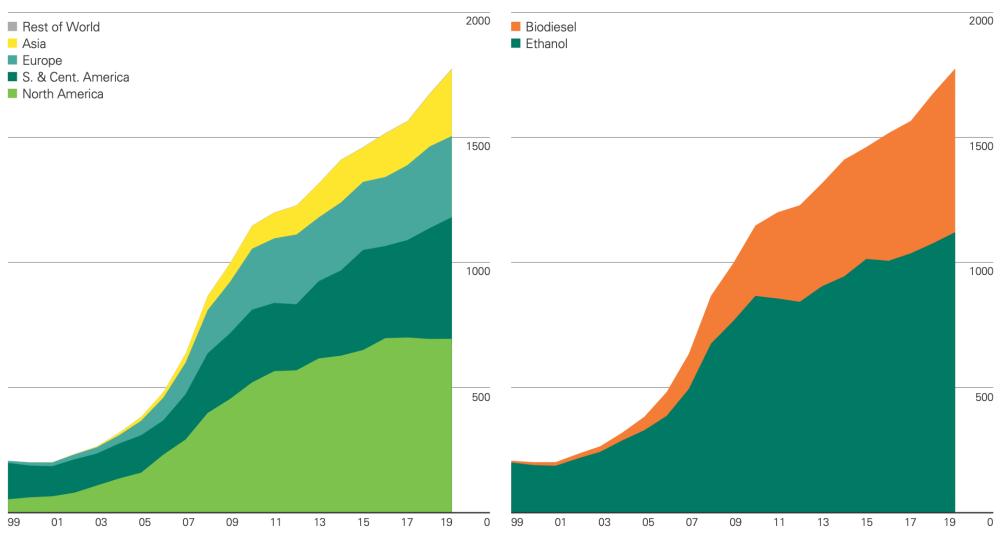
Crop	Seeds yield (t / ha)	Seeds oil content (%)	Seeds prod. cost (€ / t)	Oil cost (€/t)	Yield L / ha
Sunflower w.o. irrig.	0.76	44	302	687	380
Sunflower (irrigated)	2.214	44	267	606	1100
Rapeseed (colza)	1.49	40	264	661	680
Saf-flower (safran)	0.856	35	268	766	340
Cynara (<i>cardon</i>)	2.0	25	118	472	570
Biomass production Difference = transfo		ca. ⅓ ca. ⅔	 ca. 0.6 € / L		


Biodiesel vs. diesel

	Property	Rapeseed oil	Methyl- ester	Sunflower oil	Methyl- ester	Diesel
	Density kg/L	0.92	0.88	0.92	0.88	0.84
\checkmark	LHV MJ/L	34.3	33.1	34.1	33.0	35
	Viscosity mm ² /s 20°C	78	7.5	66	8	4
	Melting point °C	-2	-6	-18		
\checkmark	Cetane number	34	48	33	50	51
\checkmark	Carbon residue%	0.25	0.05	0.42	0.05	0.15
\checkmark	Sulfur %	0.0001	0.24	0.01	0.01	0.29

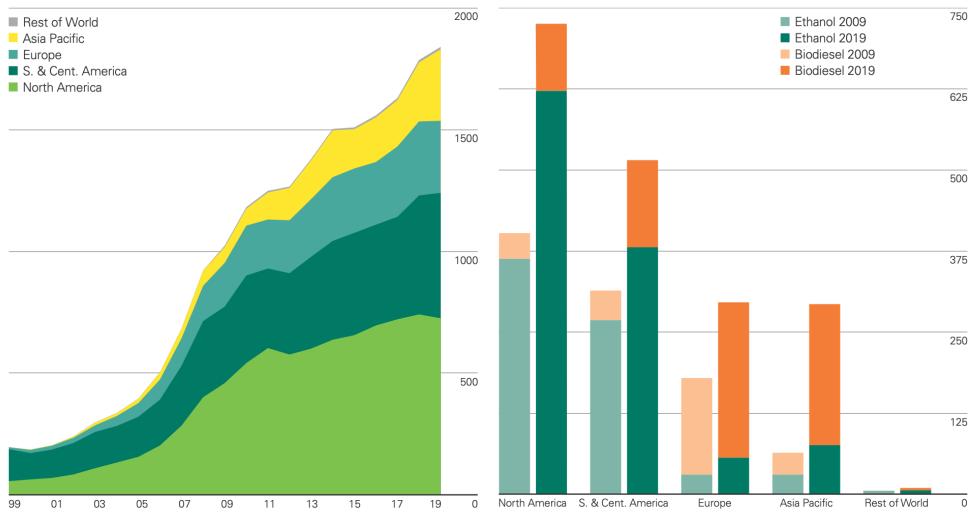
Biodiesel comments


- its low yield and high land use are worse than for bioethanol
- it has no clear advantages in cost or efficiency over (fossil) diesel
- But: diesel is used in many more engines than gasoline


IEA Facts on biofuels

- Biofuels world output (90%=ethanol) grows from 20 Mtoe (2005) to 92 Mtoe (2030), to meet 4% of road transport
- Current land use for biofuel production: 14 mio ha = 1% of arable land. By 2030 this would rise to 2.5% (i.e. the size of France+Spain).
- Cost of bioethanol production: 0.2 \$/L (Brasil), 0.3 \$/L (USA), 0.55 \$/L (EU); shipping costs are v. small
- Biofuels are expected to play a bigger role in future from **wood**-gasification (2nd gen)

World biofuels consumption


Thousand barrels of oil equivalent per day

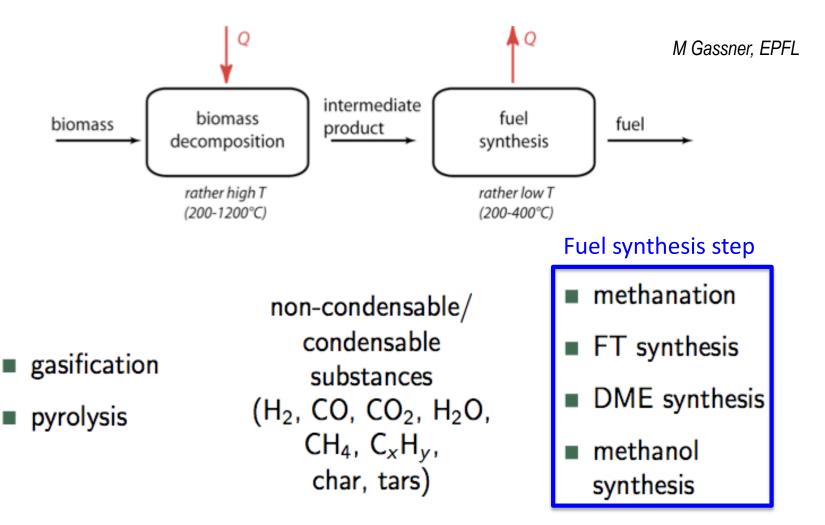
Biofuels consumption rose by 6% (100,000 boe/d). As with production, growth was driven mainly by Brazil (42,000 boe/d), most of which was ethanol and Indonesia (56,000 boe/d), which was largely biodiesel. At the global level, ethanol made up 63% of biofuels in 2019, but the share of biodiesel has risen continually. For example, biodiesel's share was 23% in 2009 but rose to 37% last year.

World biofuels production

Thousand barrels of oil equivalent per day

Biofuels production growth averaged 3% (54,000 barrels of oil equivalent per day or boe/d, less than half the 10-year average. Growth was led by Brazil (31,000 boe/d) and Indonesia (32,000 boe/d) but US output declined by 19,000 boe/d. Growth was weighted towards biodiesel, which grew by 34,000 boe/d driven largely by Indonesia. Biodiesel is the dominant fuel in Europe and Asia Pacific (making up 81% and 74% of biofuels respectively in 2019), while ethanol is the main fuel in North America (86% of total) and S&C America (74%).

Mobility fuels from wood: 'secondary' generation biofuels


- 1st generation
 - Biogas
 - Bioethanol
 - Biodiesel
 - limited conversion
 - slow processes
 - large residues

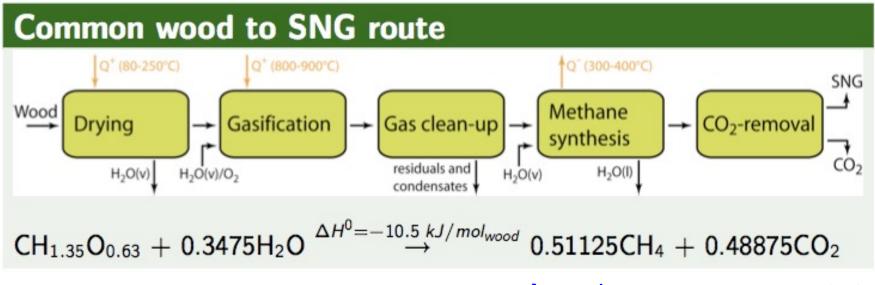
- 2nd generation
 - Wood gas derivatives

- efficient
- catalysed (thermochemical)

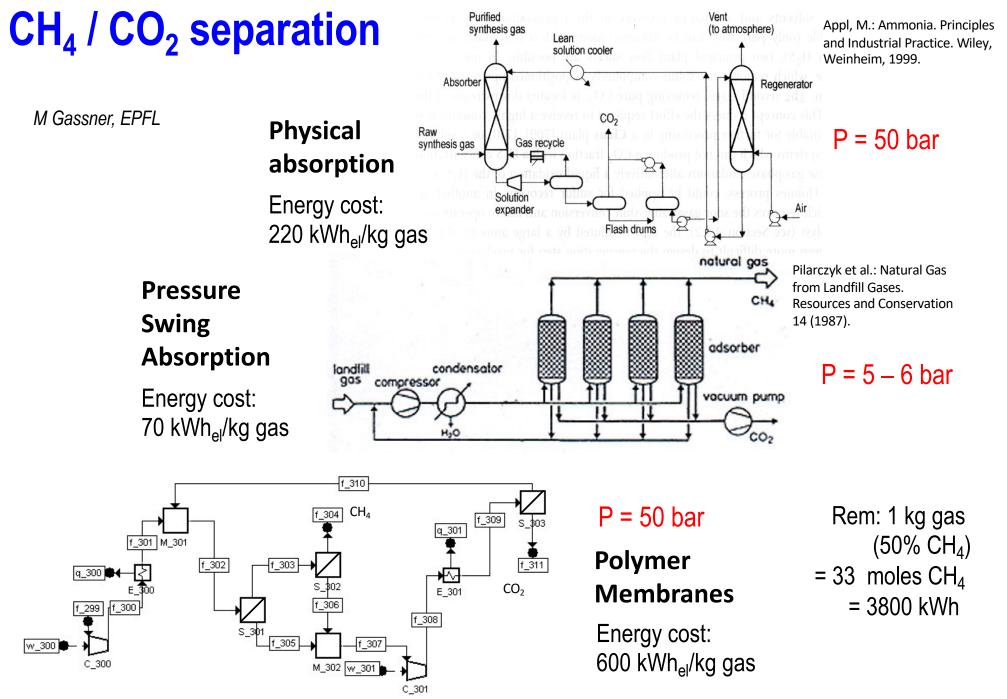
2nd generation biofuels

Thermochemical biomass to fuel reforming proceeds typically in two (or more) reaction steps:

Wood \rightarrow syngas \rightarrow methane

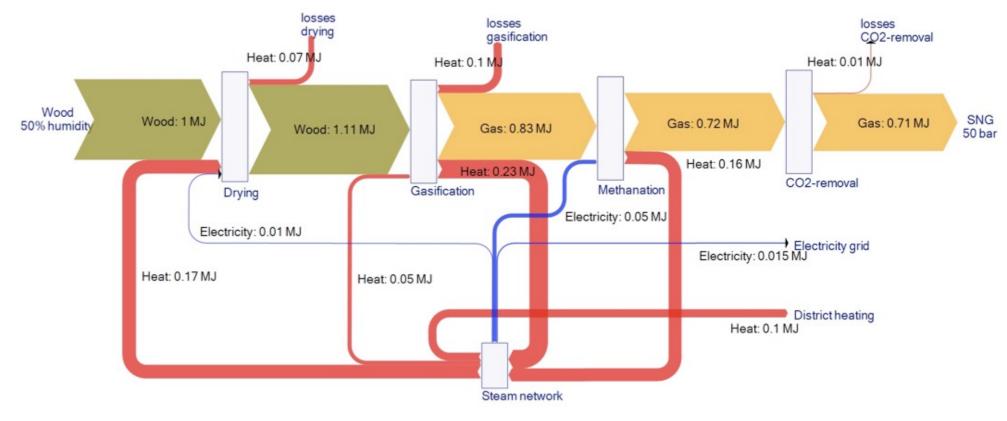

 $CO_2 + H_2 \rightleftharpoons CO + H_2O$

Gasification with producer gas to methane reforming:


$$CO + 3H_2 \rightleftharpoons CH_4 + H_2O \qquad \Delta h_r^0 = -206kJ/mol \quad (1)$$

$$C_2H_4 + 2H_2O \rightleftharpoons 2CO + 4H_2 \qquad \Delta h_r^0 = 210kJ/mol \quad (2)$$

$$\Delta h_r^0 = 41 k J/mol$$
 (3)


M Gassner, EPFL

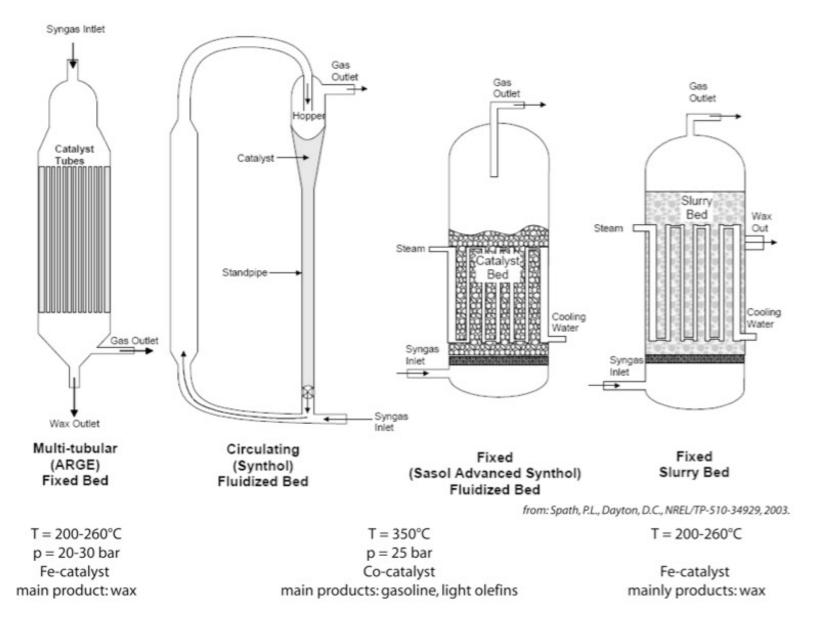
 \rightarrow CH₄/CO₂ separation needed

Efficiency for wood-to-CH₄: 70%

M Gassner, EPFL

Liquid synfuel fabrication from syngas

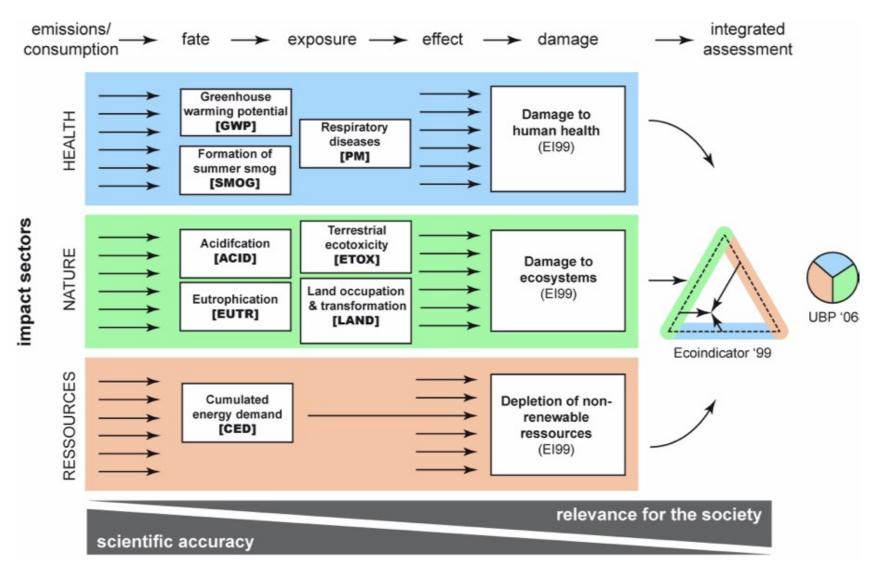
Fischer-Tropsch synthesis:

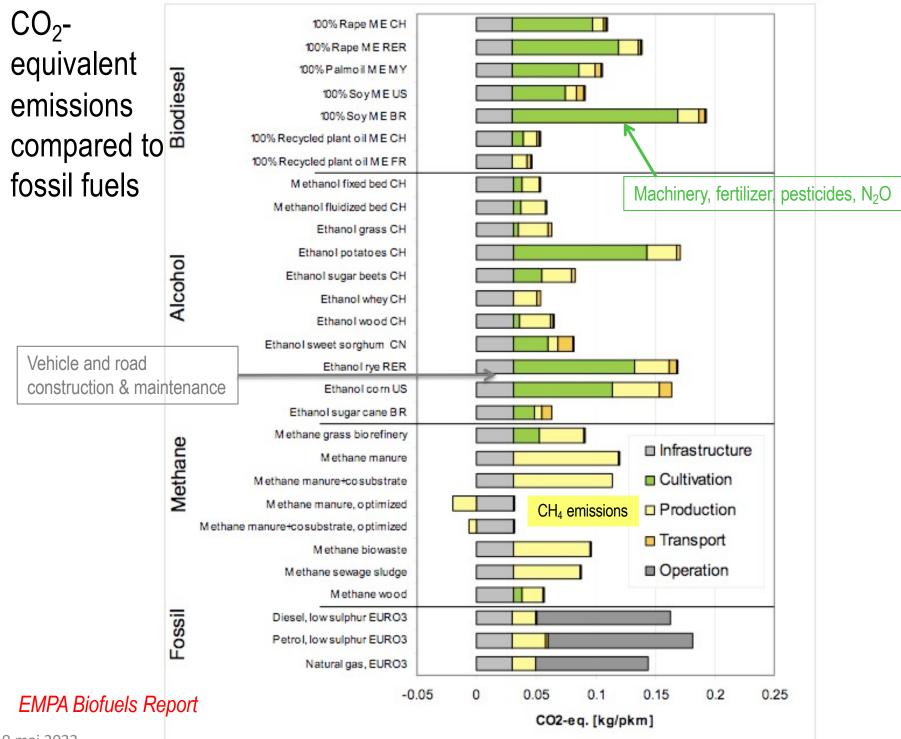

- chain growth reaction (polymerisation) to heavy-weight liquid hydrocarbons:
 - $CO + 2H_2 \rightarrow -CH_2 + H_2O$, $\Delta h_r^0 = -165 \text{ kJ/mol}$
- building blocks: H₂, CO
- CO/H₂-ratio adjustment via upstream water gas shift reaction:

 $\text{CO}_2 + \text{H}_2 \rightleftharpoons \text{CO} + \text{H}_2\text{O}$, $\Delta h_r^0 = 41 \text{ kJ/mol}$

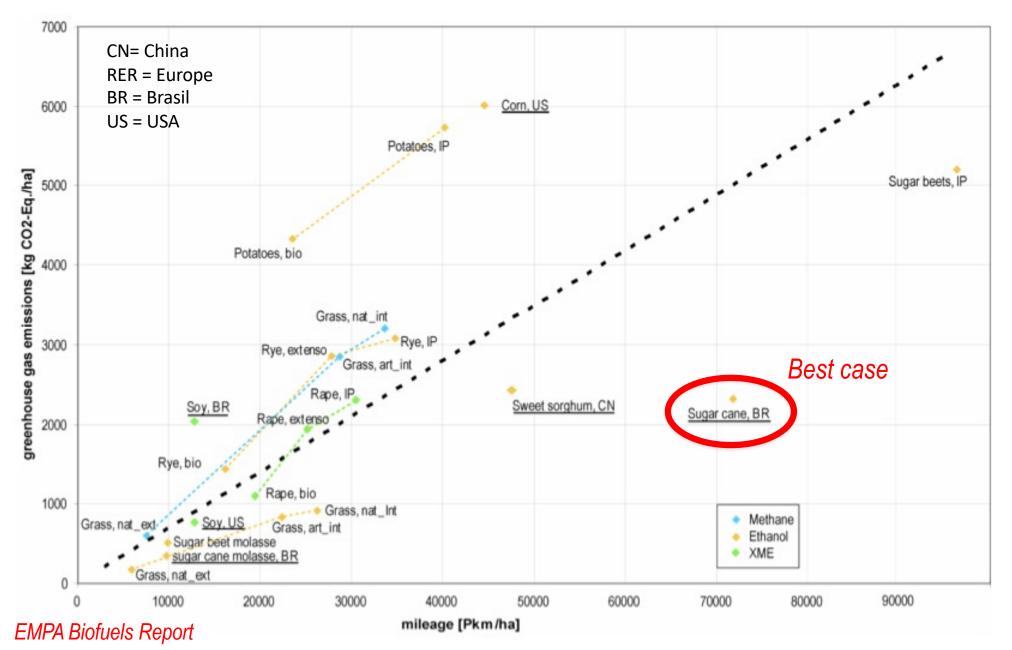
- postprocessing
 - hydrocracking with H₂ to remove double bounds
 - wax \rightarrow diesel + kerosene
 - metrochemical processing

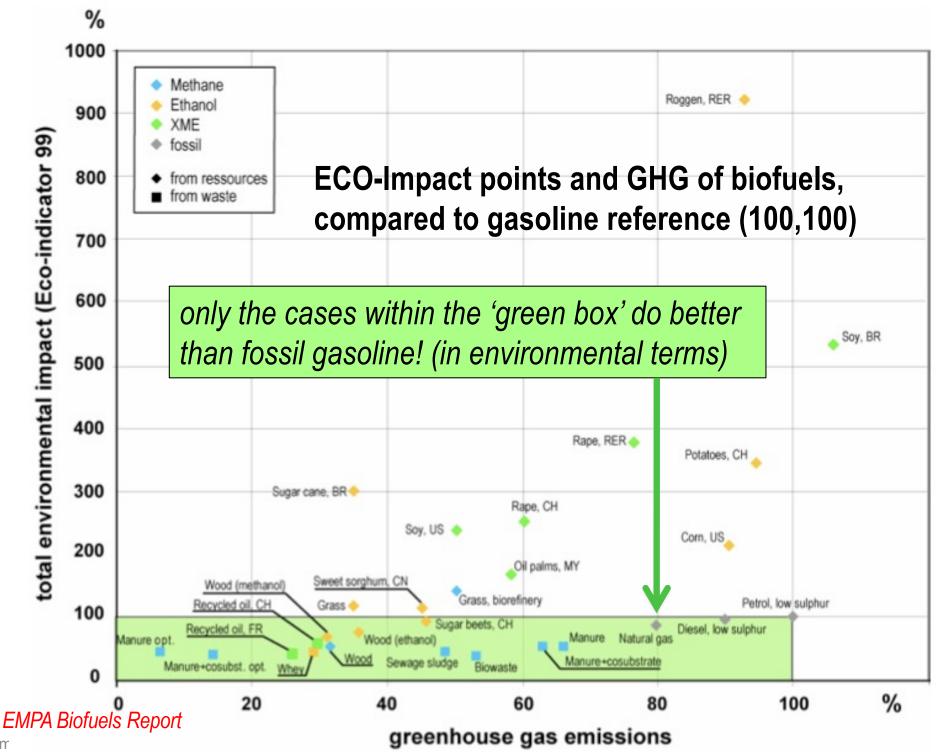
M Gassner, EPFL

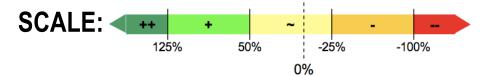

F-T technology is well established



M Gassner, EPFL

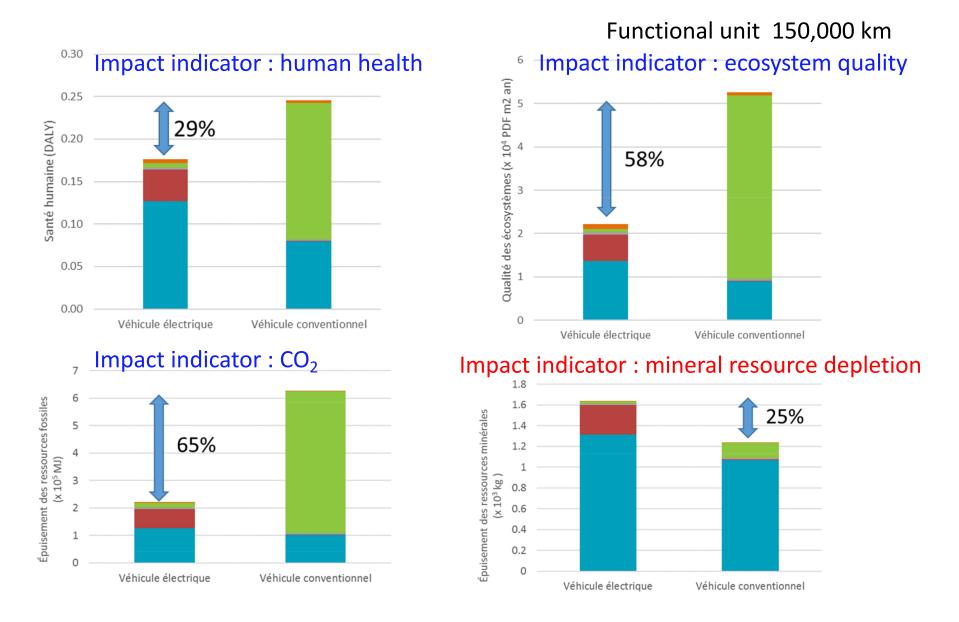

EMPA report (2007/2013) on biofuel assessment


• LCA study (Life Cycle Analysis), biofuels use in CH only


CO₂-equiv. emissions vs. transport-km (per ha land use)

GHG-	energy carrier	Wo	ood	Gra	ass	Man	ure	Wa	ste od	Wh	ey	Biow	aste		vage dge
impact	use path	min	max	min	max	min	max	min	max	min	max	min	max	min	max
	Heating	++	++												
	Cogeneration (CHP)	++	++	+	++	++	++			++	++	~	+	++	++
	Car (methane)	++	++	+	+	++	++	++	++	+	+	~	~	+	+
	Car (ethanol)	++	++	++	++					+	+				
	Municipal solid waste incineration "average technology"							++	++			~	~		
	Municipal solid waste incineration "latest technology"											++	++		
	Cement kiln							++	++					۲	~

'Best use' practice of the biofuels


	energy carrier	Wo	od	Grass		Manure		Waste wood		Whey		Biowaste			vage dge
	use path	min	max	min	max	min	max	min	max	min	max	min	max	min	max
EMPA	Heating	١	++												
Biofuels	Cogeneration (CHP)	۲	++	۲	۲	+	++			+	++	-	-	+	++
Report	Car (methane)	+	+	۲	۲	++	++	+	+	+	+	٢	٢	++	++
	Car (ethanol)	١	٢	+	+					++	++				
	Municipal solid waste incineration "average technology"							~	+			-	-	-	
ECO99'-	Municipal solid waste incineration "latest technology"											+	++		
impact	Cement kiln							+	+					-	-

Comparison electric vs. conventional car in Québec

Impact indicator : CO_2

Functional unit: 150,000 km 6 Changement climatique End of life (x 10⁴ kg éq. CO2) 5 Operation Δ 65% **Distribution from** 3 manufacturing site to user 2 Battery Vehicle manufacture 0 **Electric Vehicle Conventional Vehicle**

Comparison electric vs. conventional car in Québec

CIRAIG, 2016; https://www.hydroquebec.com/data/developpement-durable/pdf/analyse-comparaison-vehicule-electrique-vehicule-conventionnel.pdf

Summary on biomass in general

What you are expected to know:

- the composition of 'biomass'
- the essential numbers (potential, energy density,...)
- how to distinguish bio-mass,-gas,-ethanol,-diesel
- the conversion roadmap

Summary on biomass-to-<u>electricity</u>

- wood is under-used for power generation
- in direct combustion (alone, or with wastes, 1-20 MW_{el} plants), it reaches ≈20% efficiency with steam cycles (exception: cocombustion in coal plants), and usually additional cogenerated heat (30%)
- efficiency is improved with prior gasification and use in gas engines (< 5 MW_{el}) or combined cycles (multi-10-MW_{el})
- **biogases** are under-used for power generation (esp. from manure, agro-residues and MSW/ISW)
- they are converted in engines (0.1-1 MW_{el}) with 30-40% efficiency, and cogenerated heat

Summary on biomass-to-mobility fuels

- Bioethanol may be advantageous in a few cases (sugar-Brasil, corn-USA) as a gasoline additive or replacement but can only supply a few% of world mobility fuel
- **Biodiesel** of interest as diesel replacement (many more engines than for gasoline), but low production yield from land
- Biogas (as CH₄ in gas cars) is very valuable from manure, agro-residues, MSW as a natural gas substitute and still a largely untapped resource
- Wood-reserves could be used via gasification for upgrading to (2nd generation) biomethane and bioethanol