
Artificial Neural Networks (Gerstner). Solutions for week 11

Deep Reinforcement Learning 2

Exercise 1. Uncorrelated mini-batches in A2C.

In the lecture you have seen a simple example of a single weight w that changes with temporally correlated
updates ∆w (red dots and red curve on slide 6). Reshuffling the updates in time led to a more stable learning
dynamics (blue dots and blue curve). This example illustrates the effect of sampling iid from the replay buffer
for off-policy methods like DQN. For on-policy methods, the proposed solution is to run multiple actors in
parallel.

a. Sketch a figure similar to the one on slide 6 for 4 parallel actors and 2 to 3 episodes per actor. Mark the
starts of new episodes for each actor with vertical lines. Hint: the episodes can have different lengths.

b. Draw in the same figure approximately the values 1
4

∑4
k=1 ∆w(k) for all time points.

c. Write a caption to the figure that explains, why the proposed solution of A2C helps to stabilize learning.

Solution:

0 20 40 60 80 100 120 140 160 180

−2

−1

0

1

time

∆
w

actor 1
actor 2
actor 3
actor 4
average

In this example the updates ∆w tend to become more and more negative at the beginning of each episode while
they tend to grow again later during each episode. If the episodes of all agents start at the same time, this
is also reflected in the average weight update (see first 60 time steps), even though averaging helps already to
avoid the most extreme updates. After time step 60, the average weight update is more balanced, because the
different agents are in different parts of their episode.

Exercise 2. Proximal Policy Optimization.

a. In the derivation of Proximal Policy Optimization methods the ratio rθ′(st, at) = πθ′ (at;st)
πθ(at;st)

appeared on

the last line on slide 17. Convince yourself that the equality on the last line of slide 17 is correct by
explicitly writing out the expectations in the same way as we did on slide 16.
Hint: Write something like Est,at∼pθ′ ,πθ′ [

∑∞
t=0 γ

tAθ(st, at)] =
∑
... =

∑
... = Est,at∼pθ′ ,πθ ...

b. Show that the summands in the loss function of PPO-CLIP can also be written in the form

`(rθ′) = min(rθ′γ
tAθ, g(ε, γtAθ)), with g(ε, A) =

{
(1 + ε)A A ≥ 0
(1− ε)A A < 0

c. Sketch `(r) as a function of r in two figures: one where Aθ is positive and one where Aθ is negative.

d. Write a caption to your figures that explains, why one can safely run a few steps of gradient ascent on
L̂CLIP(θ′) without risking that πθ′ would move too far away from πθ.

Solution:

a. Using an expanded form of the expectation similar to the one in slide 16, we have

Est,at∼pθ′ ,πθ′
[∞∑
t=0

γtAθ(st, at)
]

=

∞∑
t=0

Est,at∼pθ′ ,πθ′
[
γtAθ(st, at)

]
=

∞∑
t=0

∑
st,at

γtAθ(st, at)πθ′(at; st)pθ′(st)

=

∞∑
t=0

∑
st,at

γtAθ(st, at)
πθ′(at; st)

πθ(at; st)
πθ(at; st)pθ′(st)

=

∞∑
t=0

∑
st,at

γtAθ(st, at)rθ′(at; st)πθ(at; st)pθ′(st)

=

∞∑
t=0

Est,at∼pθ′ ,πθ
[
γtAθ(st, at)rθ′(at; st)

]
.

(1)

b. The goal is to show the identity
`1(r,A) = `2(r,A), (2)

where
`1(r,A) = min(rA, clip (r, 1− ε, 1 + ε)A),

`2(r,A) = min(rA, g(ε, A)).
(3)

To do so, we show that for different values of r and A, two functions are equal:
Case 1. When 1 − ε ≤ r ≤ 1 + ε: For this case, r is not clipped for `1, and we have `1 = rA. Then,
if A ≥ 0, we have `2(r,A) = min(r, 1 + ε)A = rA, and if A < 0, we have `2(r,A) = min(rA, 1 − εA) =
max(r, (1− ε))A = rA.
Case 2. When 1 + ε < r: Then we have `1(r,A) = min(rA, (1 + ε)A), which is equal to (1 + ε)A if A ≥ 0
and is equal to rA if A < 0. At the same time, when A ≥ 0, we have `2(r,A) = min(r, 1 + ε)A = (1 + ε)A,
and when A < 0, we have `2(r,A) = min(rA, (1− ε)A) = max(r, 1− ε)A = rA.
Case 3. When r < 1− ε: It is very similar to case 2 - note that r cannot be negative.

c.

Aθ > 0 Aθ < 0

1− ε 1 1 + ε
r

`

1− ε 1 1 + ε
r

`

d. If Aθ > 0, gradient ascent on ` increases r until it reaches 1 + ε. For r > 1 + ε the gradient is zero. If
Aθ < 0, gradient ascent on ` decreases r until it reaches 1− ε. For r < 1− ε the gradient is zero.

Exercise 3. Deep Deterministic Policy Gradient.

a. How many input and output neurons does the Q-network of DQN have, if the input consists of 100-
dimensional vectors and there are 10 possible actions?

b. How many input and output neurons does the Q-network of DDPG have, if the input consists of 100-
dimensional vectors and the action space is 10 dimensional?

c. Explain, why it would not be a good idea to use Q̂(sj+1, aj+1) in line 7 of the DDPG algorithm (slide 24).

d. Explain, why it would not be a good idea to use Q̂(sj+1, π̂(sj+1) + ε) in line 7 of the DDPG algorithm.

Solution:

a. Input of DQN is the state, and its out put is a set of values for each action, then we need 100 input
neurons and 10 output neurons.

b. Input of DDPG is a pair of state and action, and its output is the value corresponding to that pair. So,
we need 100 + 10 = 110 input neurons and only 1 output neuron.

c. Like DQN, DDPG is an off-policy method, i.e. the learning rule should update the greedy policy. Let us
see what happens if we take the action aj+1, which is equal to πψj+1(sj+1)+ε, where by ψj+1 we mean the
parameters of the policy at time j + 1, which is changing through time. We can see three problems with
using this on-policy action in the update rule. First, we should not use on-policy next actions with replay
buffers as in DQN or DDQP, because Q̂(sj+1, aj+1) may become very different from arg maxa Q̂(sj+1, a)
when θ and ψ are changing over time. Second, since ψ is changing we loose the stabilizing effect of the
target network. Third, we do not want our updates to depend on exploration through the dependence on
the random variable ε (see d.).

d. In DDPG, the Gaussian random samples ε are used for exploration, similarly as we may choose a random
action with probability ε in ε-greedy exploration when there is a countable number of actions. Ideally,
arg maxa Q̂(sj+1, a) = Q̂(sj+1, π̂(sj+1)), but most likely arg maxa Q̂(sj+1, a) 6= Q̂(sj+1, π̂(sj+1)+ε), which
is why we do not want to use π̂(sj+1) + ε to update the policy.

Exercise 4. Background Planning.

In this exercise we look again at the simple map of Europe on slide 29. You will run value iteration with goal
Vienna. This means that we will keep V (V) = 0 all the time.

a. Initialize all V- and Q-values to zero.

b. Apply the update rule of value iteration (equation 1 on slide 29) to all cities in parallel. Hint 1: keep
V (V) = 0 and don’t worry, if you find e.g. V (Z) = −2. Hint 2: “In parallel” means, that you should
assume V (s′) = 0 when running this step for the first time and take the value that you obtained in the
previous iteration otherwise.

c. Repeat step b. until convergence.

d. Convince yourself that value iteration found the optimal solution. Write down, how you convinced yourself
that the optimal solution was found.

Solution:

a. V(Z) = 0, V(P) = 0, V(N) = 0, V(F) = 0, V(M) = 0, V(R) = 0, V(L) = 0, V(V) = 0, V(B) = 0

b. V(Z) = -2, V(P) = -7, V(N) = -3, V(F) = -4, V(M) = -3, V(R) = -4, V(L) = -2, V(V) = 0, V(B) = -4

c. V(Z) = -4, V(P) = -11, V(N) = -6, V(F) = -6, V(M) = -5, V(R) = -8, V(L) = -4, V(V) = 0, V(B) = -8

V(Z) = -6, V(P) = -15, V(N) = -8, V(F) = -7, V(M) = -7, V(R) = -11, V(L) = -6, V(V) = 0, V(B) = -12

V(Z) = -7, V(P) = -19, V(N) = -10, V(F) = -7, V(M) = -9, V(R) = -13, V(L) = -8, V(V) = 0, V(B) = -15

V(Z) = -7, V(P) = -22, V(N) = -12, V(F) = -7, V(M) = -9, V(R) = -15, V(L) = -9, V(V) = 0, V(B) = -17

V(Z) = -7, V(P) = -24, V(N) = -12, V(F) = -7, V(M) = -9, V(R) = -15, V(L) = -9, V(V) = 0, V(B) = -19

V(Z) = -7, V(P) = -24, V(N) = -12, V(F) = -7, V(M) = -9, V(R) = -15, V(L) = -9, V(V) = 0, V(B) = -19

d. We can manually check some values. For example, the shortest path from Lausanne to Vienna goes
through Zurich and costs -9, which is the final value that was found by value iteration.

