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Exercice 1.(a)(i) Let α ∈ L\K. As α2 ∈ K, it follows that α is a root of the polynomial x2+α2 ∈
K[x] and thus [K(α) : K] ≤ 2. On the other hand, we have that [K(α) : K] ≥ 2, as α /∈ K,
and we conclude that [K(α) : K] = 2 and K(α) = L.

(ii) The polynomial x2 + α2 ∈ K[x], where α ∈ L\K, admits α as a double root, hence it is
irreducible in K[x]. Now, as this is a unitary irreducible polynomial of degree 2 and as
α /∈ K, it follows that mα,K(x) = x2 + α2 and so we conclude that α ∈ L\K is inseparable.

(b)(i) Let α ∈ L\K be such that α2 /∈ K. First, we have that [K(α) : K] ≥ 2 and, as K(α) ⊆ L, it
follows that [K(α) : K] ≤ [L : K] = 2, and so [K(α) : K] = 2, hence K(α) = L.

Secondly, as α2 ∈ K(α) and α2 /∈ K, there exist a, b ∈ K, a 6= 0, such that α2 = aα + b.
Then: (

α

a

)2

=

(
α

a

)
+

b

a2
.

Set β = α
a ∈ K(α) and c = b

a2
∈ K. We have that K(α) = K(αa ) = K(β) and so L = K(β).

Moreover, β is a root of the unitary polynomial x2+x+ c ∈ K[x] and, as [K(β) : K] = 2, we
conclude that mβ,K(x) = x2 + x+ c.

(ii) Note that a polynomial of the form x2+x+c is always separable as the derivative is 1 6= 0. So,
β is automatically separable. Then, by Proposition 4.6.3 (d) we have that |Gal(K(β)/K)| ≥
2. Let τ ∈ Gal(K(β)/K), τ 6= IdK(β). Then τ(β) is a root of mβ,K(x), see Proposition
4.6.3 (a), and τ(β) 6= β, as τ 6= IdK(β). Now β + 1 ∈ K(β) is a root of mβ,K(x), as
(β + 1)2 + (β + 1) + c = β2 + β + c = 0, and we conclude that τ : K(β) → K(β) given by
τ(β) = β + 1 is an automorphism of K(β).

(iii) Assume there exists γ ∈ L\K such that γ2 ∈ K. Now, as L = K(β), we have that there exist
a, b ∈ K such that γ = aβ + b. Keeping in mind that β2 = β + c, it follows that:

γ2 = a2β + a2c+ b2 ∈ K.

It follows that a = 0 and γ = b ∈ K, a contradiction. Thus, for all γ ∈ L\K we have that
γ2 /∈ K and we argue as in item (b)(i) to show that mγ,K(x) = x2 + x+ cγ , where cγ ∈ K.

Exercice 2. (a) Let α ∈ Kp and assume that there exist β, γ ∈ K, such that α = βp and α = γp.

Let xp−α ∈ Kp[x]. We have that xp−α = xp−βp = (x−β)p and thus β is a root of xp−α
with multiplicity p. As deg(xp−α) = p, it follows that β is the unique distinct root of xp−α.
On the other hand, γ is a also a root of xp − α and thus γ = β.

(b) As φ ∈ Aut(Kp), for all α ∈ K there exists a unique βα ∈ K such that φ(αp) = βpα. Let
ψ : K → K be given by ψ(α) = βα for all α ∈ K. We will show that ψ ∈ Aut(K) and that
ψ is an extension of φ, i.e. ψ(αp) = φ(αp) for all α ∈ K.

First, let α, γ ∈ K. We know that there exist unique βα ∈ K, respectively βγ ∈ K, such that
φ(αp) = βpα, respectively φ(γp) = βpγ . Then:

φ((α+ γ)p) = φ(αp + γp) = φ(αp) + φ(γp) = βpα + βpγ = (βα + βγ)
p

and thus ψ(α+ γ) = βα + βγ = ψ(α) + ψ(γ) for all α , γ ∈ K. Similarly,

φ((α · γ)p) = φ(αp · γp) = φ(αp) · φ(γp) = βpα · βpγ = (βα · βγ)p



and thus ψ(α · γ) = βα · βγ = ψ(α) · ψ(γ) for all α , γ ∈ K. Lastly, we have that φ(1) = 1
and so ψ(1) = 1.

We have shown that ψ is a homomorphism of fields and, being a homomorphism of fields, we
have that ψ is injective. To show surjectivity, let β ∈ K. Then βp ∈ Kp and, as φ ∈ Aut(Kp),
there exists α ∈ Kp such that φ(α) = βp. Now, by point (a), we have that there exists a
unique γ ∈ K such that γp = α and therefore φ(γp) = βp. Hence, we have that ψ(γ) = β
and thus ψ is surjective.

We now show that ψ extends φ. For this let α ∈ K and let βα be the unique element of K
such that φ(αp) = βpα. Then ψ(α) = βα and we have:

φ(αp) = βpα = ψ(α)p = ψ(αp).

Lastly, we show the unicity of ψ. For this let ψ′ ∈ Aut(K) be an extension of φ. Note that
as both ψ and ψ′ are extensions of φ, we have:

ψ
′
(αp) = ψ(αp) (= φ(αp))

for all α ∈ K. Therefore ψ′(α)p = ψ(α)p, giving (ψ
′
(α)− ψ(α))p = 0 and thus ψ′(α) = ψ(α)

for all α ∈ K.

Exercice 3. (a) As α /∈ Kp it follows that for all β ∈ K we have βp 6= α and thus xp − α ∈ K[x]
does not admit roots in K. Let F be a decomposition field of xp − α over K and let β ∈ F
be a root of this polynomial. We have that:

xp − α = xp − βp = (x− β)p in F [x].

Let mβ,K(x) ∈ K[x] denote the minimal polynomial of β over K. As β is a root of xp − α, it
follows that mβ,K(x)|xp − α = (x− β)p. Therefore there exists some i, 1 ≤ i ≤ p, such that
mβ,K(x) = (x− β)i. Now, as mβ,K(x) ∈ K[x] we have that:

(x− β)i =
i∑

j=0

(−1)j
(
i

j

)
xi−jβj = xi − iβxi−1 + · · ·+ (−1)iβi ∈ K[x].

It follows that −iβ = 0 and so i = p. Therefore mβ,K(x) = (x−β)p = xp−α and we conclude
that xp − α ∈ K[x] is irreducible.

(b) To show that L is a field, we will show that the polynomial y2 − x(x− 1)(x+ 1) ∈ (Fp(x))[y]
is irreducible. As y2−x(x−1)(x+1) is a unitary polynomial, it is primitive and so, by Gauss
III, it is irreducible in (Fp(x))[y] if and only if it is irreducible in (Fp[x])[y]. Now, x ∈ Fp[x] is
irreducible and we use Eisenstein with p = x to deduce that y2−x(x−1)(x+1) is irreducible
in (Fp[x])[y].

(c) By Proposition 4.5.7, as char(L) = p, we have that L is perfect if and only if Lp = L. We
will show that x /∈ Lp.
Assume by contradiction that x ∈ Lp. Then, there exists f ∈ L such that x = fp. It follows
that f ∈ L is a root of the polynomial tp − x ∈ (Fp(x))[t]. As x ∈ Fp(x) is not a pth power,
see Exercice 3, it follows that the polynomial tp − x is irreducible in (Fp(x))[t], see item (a).
This shows that mf,Fp(x)(t) ∼ tp − x ∈ (Fp(x))[t].
Consider the chain of extensions:

Fp(x) ⊆ (Fp(x))(f) ⊆ L

and we have [(Fp(x))(f) : Fp(x)]|[L : Fp(x)]. But [L : Fp(x)] = 2 and [(Fp(x))(f) : Fp(x)] = p,
where p 6= 2. We have arrived at a contradiction.



(d) We have that L = (F2(x))[y]/(y
2 + x(x + 1)2). Note that the polynomial y2 + x(x + 1)2 ∈

(F2(x))[y] admits
√
x(x + 1) as a double root and so it is irreducible in (F2(x))[y]. Now,

by Proposition 4.2.25, it follows that L = (F2(x))(
√
x(x + 1)) = (F2(x))(

√
x) = F2(

√
x).

For the last equality, note that F2(
√
x) ⊆ (F2(x))(

√
x) and, as F2(x) ⊆ F2(

√
x), we have

(F2(x))(
√
x) ⊆ (F2(

√
x))(
√
x) = F2(

√
x).

As char(L) = 2, it follows that L is perfect if and only if L2 = L, see Proposition 4.5.7. But

L2 = {f(
√
x)2| f(

√
x) ∈ L} =

{(
f1(
√
x)

f2(
√
x)

)2

| f1(
√
x), f2(

√
x) ∈ F2[

√
x], f2(

√
x) 6= 0

}
=

{
f1(x)

f2(x)
| f1(x), f2(x) ∈ F2[x], f2(x) 6= 0

}
= F2(x)

and clearly
√
x /∈ L2.

Exercice 4. 1. Let Q ⊆ K. Let ϕ ∈ Aut(K) an automorphism ϕ : K → K. As automorphisms
of fields are in particular homomorphisms of rings, we use that ϕ(1) = 1, and get that ∀n ∈ Z,

ϕ(n) = ϕ(n · 1) = n · ϕ(1) = n.

If we let m,n ∈ Z, then

m = ϕ(m) = ϕ
(m
n
· n
)
= ϕ

(m
n

)
· ϕ(n) = ϕ

(m
n

)
· n,

from which it follows that ϕ
(
m
n

)
= m

n . This proves that ϕ acts as the identity on Q.

2. We use the same techniques as in Example 4.6.4, and denote G = Gal(K/Q) = AutQ(K).

• Let K = Q(i). The irreducible polynomial x2 + 1 ∈ Q[x] has two distinct roots in Q(i),
and they are i and −i. From Prop 4.6.3(1), it follows that every element in G sends i to i
or to −i. By Prop 4.6.3(2), there is at most one element in G for each possibility. By Prop
4.6.3(4), it holds that | Gal(K/Q) |= [Q(i) : Q] = 2, hence Gal(K/Q) = {idQ(i), σ} ∼=
Z/2Z, where (the identity sends i to i, and) σ sends i to −i. As σ is Q-linear, we have
that σ(a+ ib) = a− ib, the conjugation.

• Let K = Q(
√
7). Using the same steps as above, considering the irreducible polynomial

x2 − 7 ∈ Q[x], we get that Gal(K/Q) = {idQ(
√
7), σ} ∼= Z/2Z, where (the identity sends√

7 to
√
7, and) σ sends

√
7 to −

√
7. As σ is Q-linear, we have that σ(a+

√
7b) = a−

√
7b.

• LetK = Q( 3
√
2). The irreducible polynomial x3−2 ∈ Q[x] has only one root inQ( 3

√
2). As

by Prop 4.6.3(1), every root of this polynomial gets sent to a root of the same polynomial
by an element in G, and for each such possibility there is at most one element in G by
Prop 4.6.3(2), we conclude that G = {idQ( 3√2)} is trivial.

• Let K = Q(ω2), where ω = e2iπ/3. The irreducible polynomial x2+x+1 ∈ Q[x] has two
roots in Q(ω), which are ω and ω2. As for the first and second example, it follows that
G is cyclic of order two, consisting of the identity and σ, which sends ω to ω2.

Exercice 5. 1. The Frobenius morphism acts on the basis {1, α} as follows:

F (1) = 1, F (α) = α2 = 1 + α,

and hence, the matrix in the base {1, α} is

M =

(
1 1
0 1

)
.



We obtain the eigenvalues by finding the roots of the characteristic polynomial, p(λ)

p(λ) = det(M − λI) = det

(
1− λ 1
0 1− λ

)
= (1− λ)2 = (1 + λ)2,

since we are working in characteristic 2. Its root is 1, with multiplicity 2. The eigenspace for
this eigenvalue is E := {v ∈ F2

2 | (M + I)v = 0}, and consists of and all scalar multiples of

the vector
(
1
0

)
. As its dimension is 1 < 2, this matrix is not diagonalizable over F2.

2. The Frobenius morphism acts on the basis {1, β, β2} as follows:

F (1) = 1, F (β) = β2, F (β2) = β4 = ββ3 = β(β + 1) = β2 + β

and hence, the matrix in the base {1, β, β2} is

M =

1 0 0
0 0 1
0 1 1

 .

We obtain the eigenvalues by finding the roots of the characteristic polynomial, p(λ)

p(λ) = det(M −λI) = det

1− λ 0 0
0 −λ 1
0 1 1− λ

 = (1−λ)(λ2−λ− 1) = (1+λ)(λ2+λ+1),

since we are working over characteristic 2. The roots of this polynomials are 1, α, and α2,
with α from the first part of the exercise. The only root contained in F2 is 1. Its eigenspace
is E1 = {v ∈ F3

2 | (M + I)v = 0}, which consists of all scalar multiples of the vector (1, 0, 0).
Since the dimension of this eigenspace is 1 < 3, the matrix is not diagonalizable over F2. All
roots are contained in F2(α) = F4. The eigenspace of α is Eα = {v ∈ F3

2 | (M + αI)v = 0},
and consists of scalar multiples of the vector (0, 1, α). The eigenspace of α2 is Eα2 = {v ∈
F3
2 | (M + α2I)v = 0}, and consists of scalar multiples of the vector (0, 1, α2). As there are

three distinct eigenvalues in F4, the matrix is diagonalizable over F4.

Exercice 6.
In the following solutions, we use the same technique to find the minimal polynomials as in Example
4.6.11. With Proposition 4.6.10, it holds that for an element z ∈ Q(α, β), the minimal polynomial
is mz,Q =

∏
z′
(x− z′), where z′ is a Galois conjugate of z.

1. As in Example 4.6.4 (3), we see that G ∼= Z/2Z× Z/2Z. The elements in G are the identity,
σ, with σ(

√
3) =

√
3 and σ(

√
7) = −

√
7, τ with τ(

√
3) = −

√
3 and τ(

√
7) =

√
7, and τσ,

with τσ(
√
3) = −

√
3 and τσ(

√
7) = −

√
7.

The elements {1,
√
3,
√
7,
√
3
√
7} form a basis of Q(

√
3,
√
7) over Q. Now let z ∈ Q(α, β),

with z = a+ b
√
3 + c

√
7 + d

√
3
√
7. The conjugates of z are

z, a+ b
√
3− c

√
7− d

√
3
√
7, a− b

√
3 + c

√
7− d

√
3
√
7, a− b

√
3− c

√
7 + d

√
3
√
7.

As noted above, the minimal polynomial is

mz,Q = (x−z)(x−(a+b
√
3−c
√
7−d
√
3
√
7))(x−(a−b

√
3+c
√
7−d
√
3
√
7))(x−(a−b

√
3−c
√
7+d
√
3
√
7)),

if all factors are different. Hence the minimal polynomials of the elements
√
3,
√
3 +
√
7,
√
3 ·√

7,
√
3
−1 are

m√3,Q = x2 − 3

m√3+
√
7,Q = (x−

√
3−
√
7)(x−

√
3 +
√
7)(x+

√
3−
√
7)(x+

√
3 +
√
7)

m√3·
√
7,Q = (x−

√
3
√
7)(x+

√
3
√
7)

m√
3
−1
,Q = x2 − 1

3
.



2. We note that since β = −1 ∈ Q, it holds that Q(α, β) = Q(α). α is a root of the polynomial
x3 + 1. The other two roots are −1, and e−2iπ/3 = α. Since one of the roots is contained in
Q, over which every element of the Galois group acts as the identity we get by Prop 4.6.3 (1)
that every element of the Galois group G either sends α to α, or to α. By (b), there exists at
most one element for each possibility. Hence |G| ≤ 2. There are exactly two automorphisms,
one being the identity, and the other acting on α by sending α to α. Therefore, G ∼= Z/2Z.
Again, we calculate the minimal polynomial of an element z = (a+ bα) ∈ Q(α) as above. Its
minimal polynomial is mz,Q = (x− a− bα)(x− a− bα), if the factors are different. We get

mα,Q = (x− α)(x− α) = x2 − x+ 1

mα+β,Q = x2 + x+ 1

mα·β,Q = x2 + x+ 1

mα−1,Q = x2 − x+ 1

3. Let α = e(πi/3) and β = i. Since α = cos(π/3) + i sin(π/3) = 1
2 + 1

2 i
√
3, it follows that

α ∈ Q(i
√
3), and Q(α) ⊆ Q(i

√
3). With i

√
3 = 2α − 1, it follows that i

√
3 ∈ Q(α),

and Q(i
√
3) ⊆ Q(α). With this, it follows that Q(α) = Q(i

√
3). Furthermore, Q(α, β) =

Q(i
√
3, i) = Q(

√
3, i). As in Example 4.6.4 (c), we see that Gal(Q(

√
3, i)/Q) contains 4 ele-

ments, the identity, σ, τ and στ, where σ(i) = i, σ(
√
3) = −

√
3, τ(i) = −i, τ(

√
3) =

√
3 and

στ(i) = −i, στ(
√
3) = −

√
3, and that Gal(Q(

√
3, i)/Q) ∼= Z/2Z × Z/2Z. On the elements α

and β, those four elements act as follows:

σ(α) = e−(iπ/3), σ(β) = β, τ(α) = e−(iπ/3), σ(β) = −β, στ(α) = α, στ(β) = −β.

As for the first example, we remark that the elements {1, i,
√
3, i
√
3} form a basis of Q(

√
3, i)

over Q. Let z ∈ Q(
√
3, i) with z = a+ bi+ c

√
3 + d

√
3i. Then, as stated above, the minimal

polynomial of z is of the following form, if all factors are different

mz,Q = (x− z)(x− σ(z))(x− τ(z))(x− στ(z))
= (x− z)(x− (a+ bi− c

√
3− d

√
3i))(x− (a− bi+ c

√
3− d

√
3i))(x− (a− bi− c

√
3 + d

√
3i)).

We note that the element α is of the form α = 1
2 +

1
2(i
√
3) in the basis {1, i,

√
3, i
√
3}. Then,

the minimal polynomials are of the form

mα,Q = (x− (0.5 + 0.5i
√
3))(x− (0.5− 0.5i

√
3)) = (x− α)(x− e(−iπ/3))

mα+β,Q = (x− (0.5 + i+ 0.5i
√
3))(x− (0.5 + i− 0.5

√
3i))(x− (0.5− i− 0.5

√
3i))(x− (0.5− i+ 0.5

√
3i))

mα·β,Q = (x− (0.5i− 0.5
√
3))(x− (0.5i+ 0.5

√
3))(x− (−0.5i− 0.5

√
3))(x− (−0.5i+ 0.5

√
3))

mα−1,Q = me(−iπ/3),Q = m0.5−0.5i
√
3,Q = (x− (0.5− 0.5i

√
3))(x− (0.5 + 0.5i

√
3))

4. Let α = e(iπ/6) and β = i. We first calculate G = Gal(Q(α, β)/Q). We remark that β =
α3, and hence Q(α, β) = Q(α). Furthermore, α is a root of the polynomial x6 + 1, which
decomposes as x6 + 1 = (x2 + 1)(x4 − x2 + 1). The polynomial x2 + 1 has two complex
roots ±i. The polynomial x4−x2+1 has four complex roots α, α5, α7, α11. Furthermore, this
polynomial is irreducible over Q.

Hence the minimal polynomial of α is mα,Q = x4−x2+1. Since by adjoining α to Q, all roots
of mα,Q are adjoined as well, we remark that Q(α) is the splitting field of the polynomial
x4 − x2 + 1 over Q. By Proposition 4.6.3 (4), we get that |G| = [Q(α) : Q] = degmα,Q = 4.
The elements in G are the identity, τ, σ, η, where the root α gets sent to a root of x4− x2 +1
by every element of G. We let τ(α) = α5, σ(α) = α7, η(α) = α11.



The minimal polynomials are calculated as stated above by observing the action of the ele-
ments id, τ, σ, η. It follows that

mα,Q = (x− α)(x− τ(α))(x− σ(α))(x− η(α)) = (x− α)(x− α5)(x− α7)(x− α11) = x4 − x2 + 1

mα+β,Q = mα+α3,Q = (x− (α+ α3))(x− τ(α+ α3))(x− σ(α+ α3))(x− η(α+ α3))

= (x− (α+ α3))(x− (α5 + α3))(x− (α7 + α9))(x− (α11 + α9)) = x4 + 3x2 + 9

mα·β,Q = mα4,Q = m−0.5+0.5i
√
3,Q = (x− α4)(x− τ(α4))(x− σ(α4))(x− η(α4))

= (x− α4)(x− α8)�����
(x− α4)�����

(x− α8) = x2 + x+ 1

mα−1,Q = mα11,Q = (x− α11)(x− τ(α11))(x− σ(α11))(x− η(α11))

= (x− α11)(x− α7)(x− α7)(x− α) = x4 − x2 + 1


