Exercice 1(a)(i) Let $\alpha \in L \backslash K$. As $\alpha^{2} \in K$, it follows that $\alpha$ is a root of the polynomial $x^{2}+\alpha^{2} \in$ $K[x]$ and thus $[K(\alpha): K] \leq 2$. On the other hand, we have that $[K(\alpha): K] \geq 2$, as $\alpha \notin K$, and we conclude that $[K(\alpha): K]=2$ and $K(\alpha)=L$.
(ii) The polynomial $x^{2}+\alpha^{2} \in K[x]$, where $\alpha \in L \backslash K$, admits $\alpha$ as a double root, hence it is irreducible in $K[x]$. Now, as this is a unitary irreducible polynomial of degree 2 and as $\alpha \notin K$, it follows that $m_{\alpha, K}(x)=x^{2}+\alpha^{2}$ and so we conclude that $\alpha \in L \backslash K$ is inseparable.
(b)(i) Let $\alpha \in L \backslash K$ be such that $\alpha^{2} \notin K$. First, we have that $[K(\alpha): K] \geq 2$ and, as $K(\alpha) \subseteq L$, it follows that $[K(\alpha): K] \leq[L: K]=2$, and so $[K(\alpha): K]=2$, hence $K(\alpha)=L$.
Secondly, as $\alpha^{2} \in K(\alpha)$ and $\alpha^{2} \notin K$, there exist $a, b \in K, a \neq 0$, such that $\alpha^{2}=a \alpha+b$. Then:

$$
\left(\frac{\alpha}{a}\right)^{2}=\left(\frac{\alpha}{a}\right)+\frac{b}{a^{2}} .
$$

Set $\beta=\frac{\alpha}{a} \in K(\alpha)$ and $c=\frac{b}{a^{2}} \in K$. We have that $K(\alpha)=K\left(\frac{\alpha}{a}\right)=K(\beta)$ and so $L=K(\beta)$. Moreover, $\beta$ is a root of the unitary polynomial $x^{2}+x+c \in K[x]$ and, as $[K(\beta): K]=2$, we conclude that $m_{\beta, K}(x)=x^{2}+x+c$.
(ii) Note that a polynomial of the form $x^{2}+x+c$ is always separable as the derivative is $1 \neq 0$. So, $\beta$ is automatically separable. Then, by Proposition 4.6 .3 (d) we have that $|\operatorname{Gal}(K(\beta) / K)| \geq$ 2. Let $\tau \in \operatorname{Gal}(K(\beta) / K), \tau \neq \operatorname{Id}_{K(\beta)}$. Then $\tau(\beta)$ is a root of $m_{\beta, K}(x)$, see Proposition 4.6.3 (a), and $\tau(\beta) \neq \beta$, as $\tau \neq \operatorname{Id}_{K(\beta)}$. Now $\beta+1 \in K(\beta)$ is a root of $m_{\beta, K}(x)$, as $(\beta+1)^{2}+(\beta+1)+c=\beta^{2}+\beta+c=0$, and we conclude that $\tau: K(\beta) \rightarrow K(\beta)$ given by $\tau(\beta)=\beta+1$ is an automorphism of $K(\beta)$.
(iii) Assume there exists $\gamma \in L \backslash K$ such that $\gamma^{2} \in K$. Now, as $L=K(\beta)$, we have that there exist $a, b \in K$ such that $\gamma=a \beta+b$. Keeping in mind that $\beta^{2}=\beta+c$, it follows that:

$$
\gamma^{2}=a^{2} \beta+a^{2} c+b^{2} \in K .
$$

It follows that $a=0$ and $\gamma=b \in K$, a contradiction. Thus, for all $\gamma \in L \backslash K$ we have that $\gamma^{2} \notin K$ and we argue as in item (b)(i) to show that $m_{\gamma, K}(x)=x^{2}+x+c_{\gamma}$, where $c_{\gamma} \in K$.

Exercice 2. (a) Let $\alpha \in K^{p}$ and assume that there exist $\beta, \gamma \in K$, such that $\alpha=\beta^{p}$ and $\alpha=\gamma^{p}$. Let $x^{p}-\alpha \in K^{p}[x]$. We have that $x^{p}-\alpha=x^{p}-\beta^{p}=(x-\beta)^{p}$ and thus $\beta$ is a root of $x^{p}-\alpha$ with multiplicity $p$. As $\operatorname{deg}\left(x^{p}-\alpha\right)=p$, it follows that $\beta$ is the unique distinct root of $x^{p}-\alpha$. On the other hand, $\gamma$ is a also a root of $x^{p}-\alpha$ and thus $\gamma=\beta$.
(b) As $\phi \in \operatorname{Aut}\left(K^{p}\right)$, for all $\alpha \in K$ there exists a unique $\beta_{\alpha} \in K$ such that $\phi\left(\alpha^{p}\right)=\beta_{\alpha}^{p}$. Let $\psi: K \rightarrow K$ be given by $\psi(\alpha)=\beta_{\alpha}$ for all $\alpha \in K$. We will show that $\psi \in \operatorname{Aut}(K)$ and that $\psi$ is an extension of $\phi$, i.e. $\psi\left(\alpha^{p}\right)=\phi\left(\alpha^{p}\right)$ for all $\alpha \in K$.
First, let $\alpha, \gamma \in K$. We know that there exist unique $\beta_{\alpha} \in K$, respectively $\beta_{\gamma} \in K$, such that $\phi\left(\alpha^{p}\right)=\beta_{\alpha}^{p}$, respectively $\phi\left(\gamma^{p}\right)=\beta_{\gamma}^{p}$. Then:

$$
\phi\left((\alpha+\gamma)^{p}\right)=\phi\left(\alpha^{p}+\gamma^{p}\right)=\phi\left(\alpha^{p}\right)+\phi\left(\gamma^{p}\right)=\beta_{\alpha}^{p}+\beta_{\gamma}^{p}=\left(\beta_{\alpha}+\beta_{\gamma}\right)^{p}
$$

and thus $\psi(\alpha+\gamma)=\beta_{\alpha}+\beta_{\gamma}=\psi(\alpha)+\psi(\gamma)$ for all $\alpha, \gamma \in K$. Similarly,

$$
\phi\left((\alpha \cdot \gamma)^{p}\right)=\phi\left(\alpha^{p} \cdot \gamma^{p}\right)=\phi\left(\alpha^{p}\right) \cdot \phi\left(\gamma^{p}\right)=\beta_{\alpha}^{p} \cdot \beta_{\gamma}^{p}=\left(\beta_{\alpha} \cdot \beta_{\gamma}\right)^{p}
$$

and thus $\psi(\alpha \cdot \gamma)=\beta_{\alpha} \cdot \beta_{\gamma}=\psi(\alpha) \cdot \psi(\gamma)$ for all $\alpha, \gamma \in K$. Lastly, we have that $\phi(1)=1$ and so $\psi(1)=1$.
We have shown that $\psi$ is a homomorphism of fields and, being a homomorphism of fields, we have that $\psi$ is injective. To show surjectivity, let $\beta \in K$. Then $\beta^{p} \in K^{p}$ and, as $\phi \in \operatorname{Aut}\left(K^{p}\right)$, there exists $\alpha \in K^{p}$ such that $\phi(\alpha)=\beta^{p}$. Now, by point (a), we have that there exists a unique $\gamma \in K$ such that $\gamma^{p}=\alpha$ and therefore $\phi\left(\gamma^{p}\right)=\beta^{p}$. Hence, we have that $\psi(\gamma)=\beta$ and thus $\psi$ is surjective.
We now show that $\psi$ extends $\phi$. For this let $\alpha \in K$ and let $\beta_{\alpha}$ be the unique element of $K$ such that $\phi\left(\alpha^{p}\right)=\beta_{\alpha}^{p}$. Then $\psi(\alpha)=\beta_{\alpha}$ and we have:

$$
\phi\left(\alpha^{p}\right)=\beta_{\alpha}^{p}=\psi(\alpha)^{p}=\psi\left(\alpha^{p}\right) .
$$

Lastly, we show the unicity of $\psi$. For this let $\psi^{\prime} \in \operatorname{Aut}(K)$ be an extension of $\phi$. Note that as both $\psi$ and $\psi^{\prime}$ are extensions of $\phi$, we have:

$$
\psi^{\prime}\left(\alpha^{p}\right)=\psi\left(\alpha^{p}\right)\left(=\phi\left(\alpha^{p}\right)\right)
$$

for all $\alpha \in K$. Therefore $\psi^{\prime}(\alpha)^{p}=\psi(\alpha)^{p}$, giving $\left(\psi^{\prime}(\alpha)-\psi(\alpha)\right)^{p}=0$ and thus $\psi^{\prime}(\alpha)=\psi(\alpha)$ for all $\alpha \in K$.

Exercice 3. (a) As $\alpha \notin K^{p}$ it follows that for all $\beta \in K$ we have $\beta^{p} \neq \alpha$ and thus $x^{p}-\alpha \in K[x]$ does not admit roots in $K$. Let $F$ be a decomposition field of $x^{p}-\alpha$ over $K$ and let $\beta \in F$ be a root of this polynomial. We have that:

$$
x^{p}-\alpha=x^{p}-\beta^{p}=(x-\beta)^{p} \text { in } F[x] .
$$

Let $m_{\beta, K}(x) \in K[x]$ denote the minimal polynomial of $\beta$ over $K$. As $\beta$ is a root of $x^{p}-\alpha$, it follows that $m_{\beta, K}(x) \mid x^{p}-\alpha=(x-\beta)^{p}$. Therefore there exists some $i, 1 \leq i \leq p$, such that $m_{\beta, K}(x)=(x-\beta)^{i}$. Now, as $m_{\beta, K}(x) \in K[x]$ we have that:

$$
(x-\beta)^{i}=\sum_{j=0}^{i}(-1)^{j}\binom{i}{j} x^{i-j} \beta^{j}=x^{i}-i \beta x^{i-1}+\cdots+(-1)^{i} \beta^{i} \in K[x] .
$$

It follows that $-i \beta=0$ and so $i=p$. Therefore $m_{\beta, K}(x)=(x-\beta)^{p}=x^{p}-\alpha$ and we conclude that $x^{p}-\alpha \in K[x]$ is irreducible.
(b) To show that $L$ is a field, we will show that the polynomial $y^{2}-x(x-1)(x+1) \in\left(\mathbb{F}_{p}(x)\right)[y]$ is irreducible. As $y^{2}-x(x-1)(x+1)$ is a unitary polynomial, it is primitive and so, by Gauss III, it is irreducible in $\left(\mathbb{F}_{p}(x)\right)[y]$ if and only if it is irreducible in $\left(\mathbb{F}_{p}[x]\right)[y]$. Now, $x \in \mathbb{F}_{p}[x]$ is irreducible and we use Eisenstein with $p=x$ to deduce that $y^{2}-x(x-1)(x+1)$ is irreducible in $\left(\mathbb{F}_{p}[x]\right)[y]$.
(c) By Proposition 4.5.7, as char $(L)=p$, we have that $L$ is perfect if and only if $L^{p}=L$. We will show that $x \notin L^{p}$.
Assume by contradiction that $x \in L^{p}$. Then, there exists $f \in L$ such that $x=f^{p}$. It follows that $f \in L$ is a root of the polynomial $t^{p}-x \in\left(\mathbb{F}_{p}(x)\right)[t]$. As $x \in \mathbb{F}_{p}(x)$ is not a $p^{t h}$ power, see Exercice 3, it follows that the polynomial $t^{p}-x$ is irreducible in $\left(\mathbb{F}_{p}(x)\right)[t]$, see item (a). This shows that $m_{f, \mathbb{F}_{p}(x)}(t) \sim t^{p}-x \in\left(\mathbb{F}_{p}(x)\right)[t]$.
Consider the chain of extensions:

$$
\mathbb{F}_{p}(x) \subseteq\left(\mathbb{F}_{p}(x)\right)(f) \subseteq L
$$

and we have $\left[\left(\mathbb{F}_{p}(x)\right)(f): \mathbb{F}_{p}(x)\right] \mid\left[L: \mathbb{F}_{p}(x)\right]$. But $\left[L: \mathbb{F}_{p}(x)\right]=2$ and $\left[\left(\mathbb{F}_{p}(x)\right)(f): \mathbb{F}_{p}(x)\right]=p$, where $p \neq 2$. We have arrived at a contradiction.
(d) We have that $L=\left(\mathbb{F}_{2}(x)\right)[y] /\left(y^{2}+x(x+1)^{2}\right)$. Note that the polynomial $y^{2}+x(x+1)^{2} \in$ $\left(\mathbb{F}_{2}(x)\right)[y]$ admits $\sqrt{x}(x+1)$ as a double root and so it is irreducible in $\left(\mathbb{F}_{2}(x)\right)[y]$. Now, by Proposition 4.2.25, it follows that $L=\left(\mathbb{F}_{2}(x)\right)(\sqrt{x}(x+1))=\left(\mathbb{F}_{2}(x)\right)(\sqrt{x})=\mathbb{F}_{2}(\sqrt{x})$. For the last equality, note that $\mathbb{F}_{2}(\sqrt{x}) \subseteq\left(\mathbb{F}_{2}(x)\right)(\sqrt{x})$ and, as $\mathbb{F}_{2}(x) \subseteq \mathbb{F}_{2}(\sqrt{x})$, we have $\left(\mathbb{F}_{2}(x)\right)(\sqrt{x}) \subseteq\left(\mathbb{F}_{2}(\sqrt{x})\right)(\sqrt{x})=\mathbb{F}_{2}(\sqrt{x})$.

As $\operatorname{char}(L)=2$, it follows that $L$ is perfect if and only if $L^{2}=L$, see Proposition 4.5.7. But

$$
\begin{aligned}
L^{2} & =\left\{f(\sqrt{x})^{2} \mid f(\sqrt{x}) \in L\right\}=\left\{\left.\left(\frac{f_{1}(\sqrt{x})}{f_{2}(\sqrt{x})}\right)^{2} \right\rvert\, f_{1}(\sqrt{x}), f_{2}(\sqrt{x}) \in \mathbb{F}_{2}[\sqrt{x}], f_{2}(\sqrt{x}) \neq 0\right\} \\
& =\left\{\left.\frac{f_{1}(x)}{f_{2}(x)} \right\rvert\, f_{1}(x), f_{2}(x) \in \mathbb{F}_{2}[x], f_{2}(x) \neq 0\right\}=\mathbb{F}_{2}(x)
\end{aligned}
$$

and clearly $\sqrt{x} \notin L^{2}$.
Exercice 4. 1. Let $\mathbb{Q} \subseteq K$. Let $\varphi \in \operatorname{Aut}(K)$ an automorphism $\varphi: K \rightarrow K$. As automorphisms of fields are in particular homomorphisms of rings, we use that $\varphi(1)=1$, and get that $\forall n \in \mathbb{Z}$,

$$
\varphi(n)=\varphi(n \cdot 1)=n \cdot \varphi(1)=n
$$

If we let $m, n \in \mathbb{Z}$, then

$$
m=\varphi(m)=\varphi\left(\frac{m}{n} \cdot n\right)=\varphi\left(\frac{m}{n}\right) \cdot \varphi(n)=\varphi\left(\frac{m}{n}\right) \cdot n
$$

from which it follows that $\varphi\left(\frac{m}{n}\right)=\frac{m}{n}$. This proves that $\varphi$ acts as the identity on $\mathbb{Q}$.
2. We use the same techniques as in Example 4.6.4, and denote $G=\operatorname{Gal}(K / \mathbb{Q})=\operatorname{Aut}_{\mathbb{Q}}(K)$.

- Let $K=\mathbb{Q}(i)$. The irreducible polynomial $x^{2}+1 \in \mathbb{Q}[x]$ has two distinct roots in $\mathbb{Q}(i)$, and they are $i$ and $-i$. From Prop 4.6.3(1), it follows that every element in $G$ sends $i$ to $i$ or to $-i$. By Prop 4.6.3(2), there is at most one element in $G$ for each possibility. By Prop 4.6.3(4), it holds that $|\operatorname{Gal}(K / \mathbb{Q})|=[\mathbb{Q}(i): \mathbb{Q}]=2$, hence $\operatorname{Gal}(K / \mathbb{Q})=\left\{\operatorname{id}_{\mathbb{Q}(i)}, \sigma\right\} \cong$ $\mathbb{Z} / 2 \mathbb{Z}$, where (the identity sends $i$ to $i$, and) $\sigma$ sends $i$ to $-i$. As $\sigma$ is $\mathbb{Q}$-linear, we have that $\sigma(a+i b)=a-i b$, the conjugation.
- Let $K=\mathbb{Q}(\sqrt{7})$. Using the same steps as above, considering the irreducible polynomial $x^{2}-7 \in \mathbb{Q}[x]$, we get that $\operatorname{Gal}(K / \mathbb{Q})=\left\{\operatorname{id}_{\mathbb{Q}(\sqrt{7})}, \sigma\right\} \cong \mathbb{Z} / 2 \mathbb{Z}$, where (the identity sends $\sqrt{7}$ to $\sqrt{7}$, and) $\sigma$ sends $\sqrt{7}$ to $-\sqrt{7}$. As $\sigma$ is $\mathbb{Q}$-linear, we have that $\sigma(a+\sqrt{7} b)=a-\sqrt{7} b$.
- Let $K=\mathbb{Q}(\sqrt[3]{2})$. The irreducible polynomial $x^{3}-2 \in \mathbb{Q}[x]$ has only one root in $\mathbb{Q}(\sqrt[3]{2})$. As by Prop 4.6.3(1), every root of this polynomial gets sent to a root of the same polynomial by an element in $G$, and for each such possibility there is at most one element in $G$ by Prop 4.6.3(2), we conclude that $G=\left\{\operatorname{id}_{\mathbb{Q}(\sqrt[3]{2})}\right\}$ is trivial.
- Let $K=\mathbb{Q}\left(\omega^{2}\right)$, where $\omega=e^{2 i \pi / 3}$. The irreducible polynomial $x^{2}+x+1 \in \mathbb{Q}[x]$ has two roots in $\mathbb{Q}(\omega)$, which are $\omega$ and $\omega^{2}$. As for the first and second example, it follows that $G$ is cyclic of order two, consisting of the identity and $\sigma$, which sends $\omega$ to $\omega^{2}$.

Exercice 5. 1. The Frobenius morphism acts on the basis $\{1, \alpha\}$ as follows:

$$
F(1)=1, \quad F(\alpha)=\alpha^{2}=1+\alpha
$$

and hence, the matrix in the base $\{1, \alpha\}$ is

$$
M=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

We obtain the eigenvalues by finding the roots of the characteristic polynomial, $p(\lambda)$

$$
p(\lambda)=\operatorname{det}(M-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1 \\
0 & 1-\lambda
\end{array}\right)=(1-\lambda)^{2}=(1+\lambda)^{2}
$$

since we are working in characteristic 2 . Its root is 1 , with multiplicity 2 . The eigenspace for this eigenvalue is $E:=\left\{v \in \mathbb{F}_{2}^{2} \mid(M+I) v=0\right\}$, and consists of and all scalar multiples of the vector $\binom{1}{0}$. As its dimension is $1<2$, this matrix is not diagonalizable over $\mathbb{F}_{2}$.
2. The Frobenius morphism acts on the basis $\left\{1, \beta, \beta^{2}\right\}$ as follows:

$$
F(1)=1, \quad F(\beta)=\beta^{2}, \quad F\left(\beta^{2}\right)=\beta^{4}=\beta \beta^{3}=\beta(\beta+1)=\beta^{2}+\beta
$$

and hence, the matrix in the base $\left\{1, \beta, \beta^{2}\right\}$ is

$$
M=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

We obtain the eigenvalues by finding the roots of the characteristic polynomial, $p(\lambda)$
$p(\lambda)=\operatorname{det}(M-\lambda I)=\operatorname{det}\left(\begin{array}{ccc}1-\lambda & 0 & 0 \\ 0 & -\lambda & 1 \\ 0 & 1 & 1-\lambda\end{array}\right)=(1-\lambda)\left(\lambda^{2}-\lambda-1\right)=(1+\lambda)\left(\lambda^{2}+\lambda+1\right)$,
since we are working over characteristic 2 . The roots of this polynomials are $1, \alpha$, and $\alpha^{2}$, with $\alpha$ from the first part of the exercise. The only root contained in $\mathbb{F}_{2}$ is 1 . Its eigenspace is $E_{1}=\left\{v \in \mathbb{F}_{2}^{3} \mid(M+I) v=0\right\}$, which consists of all scalar multiples of the vector $(1,0,0)$. Since the dimension of this eigenspace is $1<3$, the matrix is not diagonalizable over $\mathbb{F}_{2}$. All roots are contained in $\mathbb{F}_{2}(\alpha)=\mathbb{F}_{4}$. The eigenspace of $\alpha$ is $E_{\alpha}=\left\{v \in \mathbb{F}_{2}^{3} \mid(M+\alpha I) v=0\right\}$, and consists of scalar multiples of the vector $(0,1, \alpha)$. The eigenspace of $\alpha^{2}$ is $E_{\alpha^{2}}=\{v \in$ $\left.\mathbb{F}_{2}^{3} \mid\left(M+\alpha^{2} I\right) v=0\right\}$, and consists of scalar multiples of the vector $\left(0,1, \alpha^{2}\right)$. As there are three distinct eigenvalues in $\mathbb{F}_{4}$, the matrix is diagonalizable over $\mathbb{F}_{4}$.

## Exercice 6.

In the following solutions, we use the same technique to find the minimal polynomials as in Example 4.6.11. With Proposition 4.6.10, it holds that for an element $z \in \mathbb{Q}(\alpha, \beta)$, the minimal polynomial is $m_{z, \mathbb{Q}}=\prod_{z^{\prime}}\left(x-z^{\prime}\right)$, where $z^{\prime}$ is a Galois conjugate of $z$.

1. As in Example 4.6 .4 (3), we see that $G \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. The elements in $G$ are the identity, $\sigma$, with $\sigma(\sqrt{3})=\sqrt{3}$ and $\sigma(\sqrt{7})=-\sqrt{7}, \tau$ with $\tau(\sqrt{3})=-\sqrt{3}$ and $\tau(\sqrt{7})=\sqrt{7}$, and $\tau \sigma$, with $\tau \sigma(\sqrt{3})=-\sqrt{3}$ and $\tau \sigma(\sqrt{7})=-\sqrt{7}$.
The elements $\{1, \sqrt{3}, \sqrt{7}, \sqrt{3} \sqrt{7}\}$ form a basis of $\mathbb{Q}(\sqrt{3}, \sqrt{7})$ over $\mathbb{Q}$. Now let $z \in \mathbb{Q}(\alpha, \beta)$, with $z=a+b \sqrt{3}+c \sqrt{7}+d \sqrt{3} \sqrt{7}$. The conjugates of $z$ are

$$
z, \quad a+b \sqrt{3}-c \sqrt{7}-d \sqrt{3} \sqrt{7}, \quad a-b \sqrt{3}+c \sqrt{7}-d \sqrt{3} \sqrt{7}, \quad a-b \sqrt{3}-c \sqrt{7}+d \sqrt{3} \sqrt{7}
$$

As noted above, the minimal polynomial is
$m_{z, \mathbb{Q}}=(x-z)(x-(a+b \sqrt{3}-c \sqrt{7}-d \sqrt{3} \sqrt{7}))(x-(a-b \sqrt{3}+c \sqrt{7}-d \sqrt{3} \sqrt{7}))(x-(a-b \sqrt{3}-c \sqrt{7}+d \sqrt{3} \sqrt{7}))$,
if all factors are different. Hence the minimal polynomials of the elements $\sqrt{3}, \sqrt{3}+\sqrt{7}, \sqrt{3}$. $\sqrt{7}, \sqrt{3}^{-1}$ are

$$
\begin{aligned}
& m_{\sqrt{3}, \mathbb{Q}}=x^{2}-3 \\
& m_{\sqrt{3}+\sqrt{7}, \mathbb{Q}}=(x-\sqrt{3}-\sqrt{7})(x-\sqrt{3}+\sqrt{7})(x+\sqrt{3}-\sqrt{7})(x+\sqrt{3}+\sqrt{7}) \\
& m_{\sqrt{3} \cdot \sqrt{7}, \mathbb{Q}}=(x-\sqrt{3} \sqrt{7})(x+\sqrt{3} \sqrt{7}) \\
& m_{\sqrt{3}^{-1}, \mathbb{Q}}=x^{2}-\frac{1}{3} .
\end{aligned}
$$

2. We note that since $\beta=-1 \in \mathbb{Q}$, it holds that $\mathbb{Q}(\alpha, \beta)=\mathbb{Q}(\alpha)$. $\alpha$ is a root of the polynomial $x^{3}+1$. The other two roots are -1 , and $e^{-2 i \pi / 3}=\bar{\alpha}$. Since one of the roots is contained in $\mathbb{Q}$, over which every element of the Galois group acts as the identity we get by Prop 4.6 .3 (1) that every element of the Galois group $G$ either sends $\alpha$ to $\alpha$, or to $\bar{\alpha}$. By (b), there exists at most one element for each possibility. Hence $|G| \leq 2$. There are exactly two automorphisms, one being the identity, and the other acting on $\alpha$ by sending $\alpha$ to $\bar{\alpha}$. Therefore, $G \cong \mathbb{Z} / 2 \mathbb{Z}$.
Again, we calculate the minimal polynomial of an element $z=(a+b \alpha) \in \mathbb{Q}(\alpha)$ as above. Its minimal polynomial is $m_{z, \mathbb{Q}}=(x-a-b \alpha)(x-a-b \bar{\alpha})$, if the factors are different. We get

$$
\begin{aligned}
& m_{\alpha, \mathbb{Q}}=(x-\alpha)(x-\bar{\alpha})=x^{2}-x+1 \\
& m_{\alpha+\beta, \mathbb{Q}}=x^{2}+x+1 \\
& m_{\alpha \cdot \beta, \mathbb{Q}}=x^{2}+x+1 \\
& m_{\alpha^{-1}, \mathbb{Q}}=x^{2}-x+1
\end{aligned}
$$

3. Let $\alpha=e^{(\pi i / 3)}$ and $\beta=i$. Since $\alpha=\cos (\pi / 3)+i \sin (\pi / 3)=\frac{1}{2}+\frac{1}{2} i \sqrt{3}$, it follows that $\alpha \in \mathbb{Q}(i \sqrt{3})$, and $\mathbb{Q}(\alpha) \subseteq \mathbb{Q}(i \sqrt{3})$. With $i \sqrt{3}=2 \alpha-1$, it follows that $i \sqrt{3} \in \mathbb{Q}(\alpha)$, and $\mathbb{Q}(i \sqrt{3}) \subseteq \mathbb{Q}(\alpha)$. With this, it follows that $\mathbb{Q}(\alpha)=\mathbb{Q}(i \sqrt{3})$. Furthermore, $\mathbb{Q}(\alpha, \beta)=$ $\mathbb{Q}(i \sqrt{3}, i)=\mathbb{Q}(\sqrt{3}, i)$. As in Example 4.6 .4 (c), we see that $\operatorname{Gal}(\mathbb{Q}(\sqrt{3}, i) / \mathbb{Q})$ contains 4 elements, the identity, $\sigma, \tau$ and $\sigma \tau$, where $\sigma(i)=i, \sigma(\sqrt{3})=-\sqrt{3}, \tau(i)=-i, \tau(\sqrt{3})=\sqrt{3}$ and $\sigma \tau(i)=-i, \sigma \tau(\sqrt{3})=-\sqrt{3}$, and that $\operatorname{Gal}(\mathbb{Q}(\sqrt{3}, i) / \mathbb{Q}) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. On the elements $\alpha$ and $\beta$, those four elements act as follows:

$$
\sigma(\alpha)=e^{-(i \pi / 3)}, \sigma(\beta)=\beta, \quad \tau(\alpha)=e^{-(i \pi / 3)}, \sigma(\beta)=-\beta, \quad \sigma \tau(\alpha)=\alpha, \sigma \tau(\beta)=-\beta
$$

As for the first example, we remark that the elements $\{1, i, \sqrt{3}, i \sqrt{3}\}$ form a basis of $\mathbb{Q}(\sqrt{3}, i)$ over $\mathbb{Q}$. Let $z \in \mathbb{Q}(\sqrt{3}, i)$ with $z=a+b i+c \sqrt{3}+d \sqrt{3} i$. Then, as stated above, the minimal polynomial of $z$ is of the following form, if all factors are different

$$
\begin{aligned}
m_{z, \mathbb{Q}} & =(x-z)(x-\sigma(z))(x-\tau(z))(x-\sigma \tau(z)) \\
& =(x-z)(x-(a+b i-c \sqrt{3}-d \sqrt{3} i))(x-(a-b i+c \sqrt{3}-d \sqrt{3} i))(x-(a-b i-c \sqrt{3}+d \sqrt{3} i)) .
\end{aligned}
$$

We note that the element $\alpha$ is of the form $\alpha=\frac{1}{2}+\frac{1}{2}(i \sqrt{3})$ in the basis $\{1, i, \sqrt{3}, i \sqrt{3}\}$. Then, the minimal polynomials are of the form
$m_{\alpha, \mathbb{Q}}=(x-(0.5+0.5 i \sqrt{3}))(x-(0.5-0.5 i \sqrt{3}))=(x-\alpha)\left(x-e^{(-i \pi / 3)}\right)$
$m_{\alpha+\beta, \mathbb{Q}}=(x-(0.5+i+0.5 i \sqrt{3}))(x-(0.5+i-0.5 \sqrt{3} i))(x-(0.5-i-0.5 \sqrt{3} i))(x-(0.5-i+0.5 \sqrt{3} i))$
$m_{\alpha \cdot \beta, \mathbb{Q}}=(x-(0.5 i-0.5 \sqrt{3}))(x-(0.5 i+0.5 \sqrt{3}))(x-(-0.5 i-0.5 \sqrt{3}))(x-(-0.5 i+0.5 \sqrt{3}))$
$m_{\alpha^{-1}, \mathbb{Q}}=m_{e^{(-i \pi / 3)}, \mathbb{Q}}=m_{0.5-0.5 i \sqrt{3}, \mathbb{Q}}=(x-(0.5-0.5 i \sqrt{3}))(x-(0.5+0.5 i \sqrt{3}))$
4. Let $\alpha=e^{(i \pi / 6)}$ and $\beta=i$. We first calculate $G=\operatorname{Gal}(\mathbb{Q}(\alpha, \beta) / \mathbb{Q})$. We remark that $\beta=$ $\alpha^{3}$, and hence $\mathbb{Q}(\alpha, \beta)=\mathbb{Q}(\alpha)$. Furthermore, $\alpha$ is a root of the polynomial $x^{6}+1$, which decomposes as $x^{6}+1=\left(x^{2}+1\right)\left(x^{4}-x^{2}+1\right)$. The polynomial $x^{2}+1$ has two complex roots $\pm i$. The polynomial $x^{4}-x^{2}+1$ has four complex roots $\alpha, \alpha^{5}, \alpha^{7}, \alpha^{11}$. Furthermore, this polynomial is irreducible over $\mathbb{Q}$.
Hence the minimal polynomial of $\alpha$ is $m_{\alpha, \mathbb{Q}}=x^{4}-x^{2}+1$. Since by adjoining $\alpha$ to $\mathbb{Q}$, all roots of $m_{\alpha, \mathbb{Q}}$ are adjoined as well, we remark that $\mathbb{Q}(\alpha)$ is the splitting field of the polynomial $x^{4}-x^{2}+1$ over $\mathbb{Q}$. By Proposition 4.6.3 (4), we get that $|G|=[\mathbb{Q}(\alpha): \mathbb{Q}]=\operatorname{deg} m_{\alpha, \mathbb{Q}}=4$. The elements in $G$ are the identity, $\tau, \sigma, \eta$, where the root $\alpha$ gets sent to a root of $x^{4}-x^{2}+1$ by every element of $G$. We let $\tau(\alpha)=\alpha^{5}, \sigma(\alpha)=\alpha^{7}, \eta(\alpha)=\alpha^{11}$.

The minimal polynomials are calculated as stated above by observing the action of the elements $i d, \tau, \sigma, \eta$. It follows that

$$
\begin{aligned}
& m_{\alpha, \mathbb{Q}}=(x-\alpha)(x-\tau(\alpha))(x-\sigma(\alpha))(x-\eta(\alpha))=(x-\alpha)\left(x-\alpha^{5}\right)\left(x-\alpha^{7}\right)\left(x-\alpha^{11}\right)=x^{4}-x^{2}+1 \\
& m_{\alpha+\beta, \mathbb{Q}}=m_{\alpha+\alpha^{3}, \mathbb{Q}}=\left(x-\left(\alpha+\alpha^{3}\right)\right)\left(x-\tau\left(\alpha+\alpha^{3}\right)\right)\left(x-\sigma\left(\alpha+\alpha^{3}\right)\right)\left(x-\eta\left(\alpha+\alpha^{3}\right)\right) \\
& \quad=\left(x-\left(\alpha+\alpha^{3}\right)\right)\left(x-\left(\alpha^{5}+\alpha^{3}\right)\right)\left(x-\left(\alpha^{7}+\alpha^{9}\right)\right)\left(x-\left(\alpha^{11}+\alpha^{9}\right)\right)=x^{4}+3 x^{2}+9 \\
& m_{\alpha \cdot \beta, \mathbb{Q}}=m_{\alpha^{4}, \mathbb{Q}}=m_{-0.5+0.5 i \sqrt{3}, \mathbb{Q}}=\left(x-\alpha^{4}\right)\left(x-\tau\left(\alpha^{4}\right)\right)\left(x-\sigma\left(\alpha^{4}\right)\right)\left(x-\eta\left(\alpha^{4}\right)\right) \\
& \quad=\left(x-\alpha^{4}\right)\left(x-\alpha^{8}\right)\left(x-\alpha^{4}\right)\left(x-\alpha^{8}\right)=x^{2}+x+1 \\
& m_{\alpha^{-1}, \mathbb{Q}}=m_{\alpha^{11}, \mathbb{Q}}=\left(x-\alpha^{11}\right)\left(x-\tau\left(\alpha^{11}\right)\right)\left(x-\sigma\left(\alpha^{11}\right)\right)\left(x-\eta\left(\alpha^{11}\right)\right) \\
& \quad=\left(x-\alpha^{11}\right)\left(x-\alpha^{7}\right)\left(x-\alpha^{7}\right)(x-\alpha)=x^{4}-x^{2}+1
\end{aligned}
$$

