Exercice 7. 1. As $\operatorname{deg} f=3$ one just has to verify that f does not have a root over \mathbb{Q}. So, we need to show that if a and b are non-zero relatively prime integers, then

$$
(a / b)^{3}+(a / b)+1 \neq 0
$$

, or equivalently

$$
a^{3}+a b^{2}+b^{3} \neq 0 .
$$

Suppose the contrary. Then b divides a^{3} and a divides b^{3}. Using the relative prime assumption we obtain both a and b are plus-minus 1 , but one cannot add together three numbers, each plus or minus 1 to get 0 .
2. Let α, β and γ be the three roots of f in its splitting field. Assume that they are all real. Then we have

$$
f=(x-\alpha)(x-\beta)(x-\gamma)
$$

and hence

$$
\alpha+\beta+\gamma=0
$$

and

$$
\alpha \beta+\alpha \gamma+\beta \gamma=a
$$

From the first equation we have $\gamma=-\alpha-\beta$. Plugging this into the left side of the second equation yields

$$
\alpha \beta+\alpha(-\alpha-\beta)+\beta(-\alpha-\beta)=-\alpha^{2}-\beta^{2}-\alpha \beta=-\frac{1}{2}(\alpha+\beta)^{2}-\frac{\alpha^{2}}{2}-\frac{\beta^{2}}{2} \leq 0
$$

However, we assumed that $a>0$. This is a contradiction.
3. As $\operatorname{deg} f=3$, and complex roots of a real polynomial come in complex conjugate pairs, f has to have a real root. Let this real root be α. Then, $\mathbb{Q} \subseteq \mathbb{Q}(\alpha)$ is a degree 3 extension and additionally $\mathbb{Q}(\alpha) \subseteq \mathbb{R}$. Hence, the other two roots of f, say β and γ, cannot be contained in $\mathbb{Q}(\alpha)$. So, every element $g \in \operatorname{Gal}(\mathbb{Q}(\alpha) / \mathbb{Q})$ can send α only to α. However, as α generated $\mathbb{Q}(\alpha)$ this means that $g=\mathrm{id}$.
4. Let α, β and γ be as in the previous point. Then both β and γ are roots of $h=\frac{f}{x-\alpha} \in \mathbb{Q}(\alpha)[x]$. As this polynomial has degree 2 , and β and γ are not in $\mathbb{Q}[x], h=m_{\beta, \mathbb{Q}(\alpha)}=m_{\gamma, \mathbb{Q}(\alpha)}$. So, $\mathbb{Q}(\alpha, \beta, \gamma)$ has degree 2 over $\mathbb{Q}(\alpha)$. So, by the multiplicativity of the degrees of field extensions, $L=\mathbb{Q}(\alpha, \beta, \gamma)$ has degree 6 over \mathbb{Q}. Let G be the Galois group of L over \mathbb{Q}. Then, G acts faithfully on α, β and γ, which yields an embedding $G \hookrightarrow S_{3}$. As both have 6 elements, this is in fact an isomorphism.

