
Artificial Neural Networks (Gerstner). Solutions for week 12

Model-Based Deep Reinforcement Learning

Exercise 1. Exploration in MCTS

In this exercise we will have a closer look at the exploration term in Monte Carlo Tree Search. Assume that in
state s0 there are two actions a1 and a2. Their true values would be µ(s0, a1) = 0.8 and µ(s0, a2) = 2/3, but
this is unknown to the learner. So far, in the expansion of the tree in MCTS, each action was taken 5 times. By
an unlucky coincidence, action a1 always led to a loss, whereas action a2 always led to a win, i.e. the current
Q-values are Q(s0, a1) = 0 and Q(s0, a2) = 1.

a. Assume that the exploration term is of the form
√

2
N(s,a) , i.e. it decreases with visitation counts but it

does not increase with the total number of MCTS iterations. Show that in this case the action selection
of MCTS a∗ = arg maxaQ(s, a) +

√
2

N(s,a) never considers action a1 anymore and thus fails to discover

that action a1 would actually be better.

b. Let us now use the UCB1 exploration term
√

2 log(N(s))
N(s,a) and assume that every third time a2 is taken, a

loss results and otherwise a win. After how many iterations will MCTS explore again action a1?

Solution:

a. After each action has been taken 5 times, we have N(s0) = 10 and N(s0, a1) = N(s0, a2) = 5. Therefore,

Q(s0, a1) +
√

2
N(s0,a1)

= 0 +
√

2
5 ≈ 0.63 and Q(s0, a2) +

√
2

N(s0,a2)
= 1 +

√
2
5 ≈ 1.63. Therefore, action

a2 would be taken in the next step. In subsequent steps Q(s0, a1) +
√

2
N(s0,a1)

stays at the value
√

2
5 ,

whereas Q(s0, a2) +
√

2
N(s0,a2)

approaches 2/3 from above in the limit of N(s0, a2)→∞ (unless Q(s0, a2)

drops below 2/3−
√

2
N(s0,a2)

after experiencing many losses in a row, by coincidence). Because 2/3 >
√

2
5 ,

action a1 is never taken again.

b. We look for the firstN(s0, a2) such thatQ(s0, a2)+
√

2 log(N(s0))
N(s0,a2)

< Q(s0, a1)+
√

2 log(N(s0))
N(s0,a1)

=
√

2 log(N(s0))
5 .

We know that N(s0) = N(s0, a1) + 5 (+5 for the five times action a2 was taken) and Q(s0, a2) ≈
(5 + 2/3(N(s0, a1)− 5))/N(s0, a1). Solving for N(s0, a1) we find at N(s0, a1) = 32 that Q(s0, a2) ≈ 0.72,√

2 log(N(s0))
N(s0,a1)

≈ 0.47 and
√

2 log(N(s0))
5 ≈ 1.20.

Exercise 2. AlphaZero.

In this exercise you will manually compute some steps in one iteration of AlphaZero’s Monte Carlo Tree Search.
Assume that from the previous Monte Carlo Tree Search you have already a tree that starts at state s0 with
N(s0, a1) = 8,W (s0, a1) = 4, P (s0, a1) = 0.2, N(s0, a2) = 24,W (s0, a2) = 16, P (s0, a2) = 0.8. We fix C(s) = 1.

a. Determine the action (a1 or a2) that AlphaZero would take in the selection step of MCTS in state s0.

b. Is it a greedy or an exploratory action that was taken in a?

c. Update N , P , W and Q (if it changes in the backpropagation step of MCTS) under the assumption that
the expansion step led to v = 0.7.

d. Compute the probability that AlphaZero would take the actual action a1 now.

Solution:

a. We need to compute the term f(a) = Q(s0, a)+P (s0, a)

√
N(s0)

1+N(s0,a)
for both actions. Using the values given

in the exercise, we have f(a1) = 4
8 + 0.2

√
8+24
1+8 ≈ 0.6257 and f(a2) = 16

24 + 0.8
√
8+24
1+24 ≈ 0.8477. Therefore,

action a2 is selected.

b. It is a greedy one, since it is also equal to arg maxaQ(s0, a).



c. The variables N , W , and Q corresponding to action a1 remain the same. Then we have, N(s0, a2) =
24 + 1 = 25, W (s0, a2) = 16 + 0.7 = 16.7, and Q(s0, a2) = 16.7/25 ≈ 0.668. The prior action probability
P remains the same, since it is only computed when s0 was expanded for the first time.

d. The probability of the actual action is 8
8+25 = 0.24 for a1 and 25

8+25 = 0.76 for a2.

Exercise 3. MuZero

o1, . . . , o16 o17, . . . , o32 o33, . . . , o48

Above you see some example images of an environment, where states o1, . . . , o16 always have the black rectangle
at the top right, while each pixel in the bottom row can be randomly 0 or 1. States o17, . . . , o32 have a
similar pattern with a black rectangle at the top left and random pixels in the bottom row. States o33, . . . , o48
have a similar pattern with a bar in the second row from the bottom and random pixels in the bottom row.
Assume the actual state transitions are P a1oi→oj = 1/16 for i ∈ {1, . . . , 16}, j ∈ {17, . . . , 32}, P a1oi→oj = 1/16 for
i ∈ {17, . . . , 32}, j ∈ {33, . . . , 48}, P a1oi→oj = 1/16 for i ∈ {33, . . . , 48}, j ∈ {1, . . . , 16} and P a2oi→oj = P a1oj→oi .
The rewards are Ra1oi→oj = 1 for i ∈ {1, . . . , 16}, j ∈ {17, . . . , 32}, all other rewards are zero. Episodes start in a
random state and end after 10 actions have been taken.

a. How many bits does the latent representation st need to have at least for a model-based RL method that
relies on a auto-encoder approach, where ot has to be reconstructable from st?

b. How many bits does the latent representation st need to have at least for a model-based RL method like
MuZero, where the latent state only needs to be sufficient for predicting the immediate reward, the value
and the policy?

c. Can MuZero still find the optimal policy, if P a2oi→oj = 1/32 for i ∈ {17, . . . , 32}, j ∈ {1, . . . , 16, 33, . . . 48}?

Solution:

a. There are 48 different states to be discriminated. Therefore at least log2(48) ≈ 5.6 bits are required.

b. Immediate reward, value and optimal policy for each observation depend only on the group that obser-
vation is part of, i.e. all observations o1, . . . , o16 have the same reward, value and optimal policy and the
same holds for the group of observations o17, . . . , o32 and o33, . . . , o48. Therefore it is sufficient to have 3
latent states, or log2(3) ≈ 1.6 bits. Let us now see, if we can further reduce the number of latent states.
Without loss of generality, we assume the function hθ maps the observations to abstract states s1, s2, s3,
i.e. h(oi) = sb(i−1)/16c. The dynamics in this abstract state space would be deterministic, e.g. P a1s1→s2 = 1.
The optimal policy would be to take action a1 in s1, a2 in s2 and a1 in s3. To predict the optimal action,
s1 and s3 could therefore be merged into one latent state, but s2 would have to remain a separate state.
For episodes of length 10, the values of the optimal policy would be V (s1) = V (s2) = V (s3) = 5, for any
starting state. To predict the optimal value, s1, s2, s3 could all be merged into a single latent state. The
immediate reward under the optimal policy is Ra1s1→s2 = 1, all other rewards being zero. To predict the
immediate reward s2 and s3 could be merged, but s1 would have to remain a separate state. We conclude
that s1, s2, s3 have to remain separate latent states to successfully predict immediate rewards, values and
policies.

c. With the latent states we found in the previous exercise we would have P a2s2→s1 = 0.5 and P a2s2→s3 = 0.5,
but the transition function gθ of MuZero is deterministic and incapable of learning stochastic dynamics.
Despite the stochasticity, however, the optimal policy and the immediate rewards stay the same as in the
previous exercise; only the values change. Therefore MuZero may still be able to find the optimal policy,
despite not getting the dynamics right and making errors in the predictions during rollouts.


