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from brain-computing to neuromorphic computing

Objectives for today:

- three-factor learning rules can be implemented by the brain 

- eligibility traces link correlations with delayed reward

- the dopamine signal has signature of the TD error

- local learning rules: 2-factor and three-factor

(- local learning rules in hardware/shifted to next week) 



Reading for this week:

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018, also online)

Background reading:
Chapter: 15

(1) Fremaux, Sprekeler, Gerstner (2013) Reinforcement learning 

using a continuous-time actor-critic framework with spiking neurons

PLOS Computational Biol. doi:10.1371/journal.pcbi.1003024
(2) Gerstner et al. (2018) Eligibility traces and plasticiy on behavioral time scales: 

experimental support for neoHebbian three-factor learning rules, Frontiers in neural circuits 
https://doi.org/10.3389/fncir.2018.00053

(3) Wolfram Schultz et al., (1997) A neural substrate of prediction and reward, SCIENCE,

https://www.science.org/doi/full/10.1126/science.275.5306.1593

(4) Bert Offrein et al., 2020, Prospects for photonic implementations of 

neuromorphic devices and systems, IEEE Xplore, 

https://ieeexplore.ieee.org/abstract/document/9371915

https://doi.org/10.3389/fncir.2018.00053
https://www.science.org/doi/full/10.1126/science.275.5306.1593
https://ieeexplore.ieee.org/abstract/document/9371915/
https://ieeexplore.ieee.org/abstract/document/9371915


Reinforcement Learning (RL)

 Learning by reward

Field has two roots:

 Optimziation/Markov

Decision Model

 Biology

Review: Biological Motivation of RL

Questions for today? 

- What elements of RL are ‘bio-plausible’?

- What elements can go to 

neuromorphic hardware?



Previous slide. 

one of the major drives of RL has been insights from biology and cognitive 

science: animals and humans are able to learn from rewards.

The question then is: 

1. can we make the relation to biology more precise?

2. Can we exploit biological insights for unconvential computer hardware?

To answer these questions let us focus on the ‘Learning Rule’.



Review: Advantage Actor-Critic =  ‘REINFORCE’ with TD signal 

advance push 

left

actions

value

TD-error

[𝑟𝑡 + 𝛾𝑉 𝑠′ − 𝑉 𝑠 ]
d = h

𝑉 𝑠

- Estimate V(s)
- learn via TD error

The update of parameters depends on the TD error!

The algo for the update is called a ‘learning rule’. 



Previous slide. 

Let us focus on the ‘Learning Rule’ in the actor-critic setup.

There are weights  w leading to the actor and  other parameters q leading to the 

critic.

Learning rule means that we analyze how these parameters change.



Review: Advantage Actor-Critic  with Eligibility traces   

Adapted from

Sutton and Barto

r
r + g

The algo for the update 

is the  ‘learning rule’. 



Previous slide.  Review from DeepRL1

Parameters in the advantage actor critic change proportional to

- The TD error delta

- The derivative of the log policy for the actor

- The derivative of the value function for the critic

In this version of the algo we also have eligibility traces. Set l=0 to get a version 

without eligibility traces.

In the example on the next page eligibility traces are important.



Review: Maze Navigation  with  Advantage Actor-Critic

Fremaux et al. (2013)

Continuous state space:

Represented by Gaussian basis functions

Continuous action space:

ring of 360 action neurons
Value map:

Several identical neurons



This network is not very deep, but it is powerful since states are represented by 

Gaussian basis functions. The parameters that need to be learnt are the weights to the 

actor and the connections to the critic.

Bottom: Gaussian basis functions are also called place cells.

Right:   Critic could be a single neuron, but it is implemented in this application by pool of 

several independent identical neurons (that essentially learn the same value).

Left:       action choices are represented by a ring of 360 neurons. In order to  generalize 

well in action space neighboring neurons activate each other while neurons encoding 

opposite directions inhibit each other. This is a way to implement an inductive bias into 

the architecture: is direction 88 is good, then direction 89 is typically nearly as good.



Review: Advantage Actor-Critic with eligibility traces

R-max:

Policy gradient without

Subtraction of bias (no 

critic). The goal was never 

found within 50s.

early trial

Late trial

value

map,

critic, Advantage Actor Critic

After 25 trials, the goal 

was found within 20s. 



Maze navigation learning task. 

A: The maze consists of a square enclosure, with a circular goal area 

(green) in the center. A U-shaped obstacle (red) makes the task harder by 

forcing turns on trajectories from three out of the four possible starting 

locations (crosses). 

B: Color-coded trajectories of an example TD-LTP agent during the first 75 

simulated trials. Early trials (blue) are spent exploring the maze and the 

obstacles, while later trials (green to red) exploit stereotypical behavior. 

C: Value map (color map) and policy (vector field) represented by the 

synaptic weights of the agent of panel B after 2000s simulated seconds. 

D: Goal reaching latency of agents using different learning rules. Latencies 

of N~100 simulated agents per learning rule. The solid lines shows the 

median shaded area represents the 25th to 75th percentiles. The R-max 

agent were simulated without a critic and enters times-out after 50 seconds.

All agents use eligibility traces of time scale 1 second.
Fremaux et al. (2013)

Maze Navigation: Advantage Actor-Critic



Questions for today:

- does the brain implement reinforcement learning algorithms?

- Can the brain implement an actor-critic structure?

- What are ‘local learning rules’?

- Why are ‘local learning rules’ potentially important?

- What is  a ‘Hebbian’ learning rule?

- What is a ‘three-factor’ learning rule?

- Can we use these ideas for Neuromorphic learning?



Previous slide. Your comments



brain algorithms

non-von-Neumann

computing &hardware

Learning Rules 



Previous slide. 

Program for this week.

In this introduction, we have reviewed some aspects of RL in an actor-critic 

structure, in particular the online ‘learning rule’, i.e., the algorithm for the 

parameter update after each step of the agent. In the following we focus on the 

learning rule and go back and forth between algorithms and the brain.

Having identified the basic aspects of the learning rule in RL, we now turn to the 

biology.
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1. Coarse brain anatomy



Previous slide.

Before we can make a link to Reinforcement Learning we need to know a bit 

more about the brain.



1. Coarse Brain Anatomy and Reinforcement Learning

Reinforcement learning needs:

- states / sensory representation

- action selection

- reward signals

 where are states encoded in the brain?

 where is action selection encoded in the brain?

 how is reward encoded in the brain?



Previous slide.

In reinforcement learning, the essential variables that define the update step of 

the learning rule are the  states (defined by sensory representation), a policy for 

action selection, the actions themselves, and the rewards given by the 

environment.

If we want to link reinforcement learning to the brain, we will have to search for 

corresponding substrates and functions in the brain. 

Therefore we now take a rather coarse and simplified look at the anatomy of the 

brain.

The Wikipedia articles give more information for those who are interested.



1. Coarse Brain Anatomy: Cortex

frontal

cortex
occipital

cortex

parietal

cortex

temporal

cortex fig: Wikipedia

vision

motor

audition

Sensory representation in visual/somatosensory/auditory cortex  



Previous slide.

Left: Anatomy. The Cortex is the part of the brain directly below the skull. It is 

a folded sheet of densely packed neurons. The biggest folds separate the 

four main part of cortex (frontal, Parietal, occipital, and temporal cortex)

Right: Functional assignments. Different parts of the brain are involved in 

different tasks. For example there several areas involved in processing visual 

stimuli (called primary and secondary cortex). Other areas are involved in 

audition (auditory cortex) or the presentation of the body surface 

(somatosensory cortex). Yet other areas are prepared in the preparation of 

motor commands for e.g., arm movement.



1. Coarse Brain Anatomy
- many different cortical areas

- but also several brain nuclei sitting below the cortex

- Some of these nuclei send dopamine signals

- Dopamine is related to reward, surprise, and pleasure 

- Dopamine sent from: VTA and substantia nigra

fig: Wikipedia commons

VTA

substantia

nigra

nucleus 

accumbens



Previous slide.

Left: Anatomy. View on the folds of the cortex, and main cortical areas in 

different color. 

Right: Below the cortex sit different nuclei. Some of these nuclei use 

dopamine as their signaling molecule. Important nuclei for dopamine are the 

Ventral Tegmental Area (VTA) and the Substantia Nigra pars compacte

(SNc). These dopamine neurons send their signals to large areas of the 

cortex as well as to the striatum (and nucleus accumbens).

Since dopamine is involved in reward, these dopamine neurons will play a 

role in this lecture that links reinforcement learning and the brain.

In the next slides we will focus on striatum and hippocampus.



1. Coarse Brain Anatomy: Striatum
- Striatum sits below cortex

- Part of the ‘basal ganglia’

- Dorsal striatum involved in 

action selection, decisions

striatum
thalamus

Striatum consists of

- Caudate (dorsal striatum)

- Putamen (dorsal striatum)

Nucleus Accumbens is

part of ventral striatum fig: Wikipedia

https://en.wikipedia.org/wiki/Striatum



Previous slide.

Left: Sketch of the Anatomical location of striatum and thalamus. 

Right: the striatum lies also below the cortex. Since the striatum is involved in 

action selection it will play an important role in this lecture.

From Wikipedia:
The striatum is a nucleus (a cluster of neurons) in the subcortical basal ganglia of the 

forebrain. The striatum is a critical component of the motor and reward systems; receives 

glutamatergic and dopaminergic inputs from different sources; and serves as the primary 

input to the rest of the basal ganglia.

Functionally, the striatum coordinates multiple aspects of cognition, including both motor 

and action planning, decision-making, motivation, reinforcement, and reward

perception.The striatum is made up of the caudate nucleus and the lentiform nucleus. The 

lentiform nucleus is made up of the larger putamen, and the smaller globus pallidus.

In primates, the striatum is divided into a ventral striatum, and a dorsal striatum, 

subdivisions that are based upon function and connections. The ventral striatum consists 

of the nucleus accumbens and the olfactory tubercle. The dorsal striatum consists of the 

caudate nucleus and the putamen. A white matter, nerve tract (the internal capsule) in the 

dorsal striatum separates the caudate nucleus and the putamen.[4] Anatomically, the term 

striatum describes its striped (striated) appearance of grey-and-white matter

https://en.wikipedia.org/wiki/Nucleus_(neuroanatomy)
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Cerebral_cortex
https://en.wikipedia.org/wiki/Basal_ganglia
https://en.wikipedia.org/wiki/Forebrain
https://en.wikipedia.org/wiki/Motor_system
https://en.wikipedia.org/wiki/Reward_system
https://en.wikipedia.org/wiki/Glutamate_(neurotransmitter)
https://en.wikipedia.org/wiki/Dopaminergic
https://en.wikipedia.org/wiki/Cognition
https://en.wikipedia.org/wiki/Planning
https://en.wikipedia.org/wiki/Decision-making
https://en.wikipedia.org/wiki/Motivation
https://en.wikipedia.org/wiki/Reinforcement
https://en.wikipedia.org/wiki/Reward_system
https://en.wikipedia.org/wiki/Caudate_nucleus
https://en.wikipedia.org/wiki/Lentiform_nucleus
https://en.wikipedia.org/wiki/Putamen
https://en.wikipedia.org/wiki/Globus_pallidus
https://en.wikipedia.org/wiki/Primate
https://en.wikipedia.org/wiki/Anatomical_terms_of_location#Dorsal_and_ventral
https://en.wikipedia.org/wiki/Nucleus_accumbens
https://en.wikipedia.org/wiki/Olfactory_tubercle
https://en.wikipedia.org/wiki/Anatomical_terms_of_location#Dorsal_and_ventral
https://en.wikipedia.org/wiki/Caudate_nucleus
https://en.wikipedia.org/wiki/Putamen
https://en.wikipedia.org/wiki/White_matter
https://en.wikipedia.org/wiki/Nerve_tract
https://en.wikipedia.org/wiki/Internal_capsule
https://en.wikipedia.org/wiki/Caudate_nucleus
https://en.wikipedia.org/wiki/Putamen
https://en.wikipedia.org/wiki/Striatum#cite_note-FERRE2010-4


1. Coarse Brain Anatomy: hippocampus

fig: Wikipedia

Henry Gray (1918) Anatomy of the Human Body

Hippocampus

- Sits below/part of temporal cortex

- Involved in memory

- Involved in spatial memory

Spatial memory:

knowing where you are,

knowing how to navigate in an environment

https://en.wikipedia.org/wiki/Henry_Gray


Previous slide.

From Wikipedia:

The hippocampus (named after its resemblance to the seahorse, from the Greek

ἱππόκαμπος, "seahorse" from ἵππος hippos, "horse" and κάμπος kampos, "sea monster") 

is a major component of the brains of humans and other vertebrates. Humans and other 

mammals have two hippocampuses, one in each side of the brain. The hippocampus 

belongs to the limbic system and plays important roles in the consolidation of information 

from short-term memory to long-term memory, and in spatial memory that enables 

navigation. The hippocampus is located under the cerebral cortex (allocortical)[1][2][3] and in 

primates in the medial temporal lobe.

https://en.wikipedia.org/wiki/Seahorse
https://en.wikipedia.org/wiki/Ancient_Greek
https://en.wikipedia.org/wiki/Brain
https://en.wikipedia.org/wiki/Human
https://en.wikipedia.org/wiki/Vertebrates
https://en.wikipedia.org/wiki/Cerebral_hemisphere
https://en.wikipedia.org/wiki/Limbic_system
https://en.wikipedia.org/wiki/Short-term_memory
https://en.wikipedia.org/wiki/Long-term_memory
https://en.wikipedia.org/wiki/Spatial_memory
https://en.wikipedia.org/wiki/Cerebral_cortex
https://en.wikipedia.org/wiki/Allocortex
https://en.wikipedia.org/wiki/Hippocampus#cite_note-Martin2003-1
https://en.wikipedia.org/wiki/Hippocampus#cite_note-Amaral2007-1a-2
https://en.wikipedia.org/wiki/Hippocampus#cite_note-Amaral2007-1b-3
https://en.wikipedia.org/wiki/Medial_temporal_lobe


1. Coarse Brain Anatomy and Reinforcement Learning

Reinforcement learning needs:

- states / sensory representation  cortex?, hippocampus?

- action selection  striatum?, motor cortex?

- reward signals   dopamine?



Previous slide.

In reinforcement learning, the essential variables are the  states (defined by 

sensory representation), a policy for action selection, the actions themselves, and 

the rewards given by the environment.

If we want to link reinforcement learning to the brain, we will have to search for 

corresponding substrates and functions in the brain. 

The above rough ideas need to be defined during the rest of this lecture.



1. Quiz: Coarse Functional Brain anatomy

[ ] the brain = the cortex (synonyms)

[ ] the cortex consists of several areas

[ ] some areas are more involved in vision, others more

in the representation of the body surface

[ ] below the cortex there are groups (clusters) of neurons

[ ] Hippocampus sends out dopamine signals

[ ] VTA and nucleus accumbens send out dopamine signals

[ ] dopamine is linked to reward, pleasure, surprise

[ ] striatum is involved in action selection

[ ]

[x]

[x]

[x]

[ ]

[x]

[x]

[x]



Previous slide. Your comments
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2. Synaptic Plasticity



Previous slide. 

Reinforcement Learning is, obviously, a form of ‘learning’. Learning is related to 

synaptic plasticity. Therefore this is our second topic.



2. Behavioral Learning

Learning actions:

 riding a bicycle

 play tennis

 play the violin

Remembering episodes

 first day at EPFL

 plan how to get home

 reward-free

‘models of the world’

‘models of action choice’



Previous slide. 

When we learn to ride a bike we learn with Reinforcement-like feedback, e.g., we 

don’t want to fall because falling hurts.

When we learn play the tennis or the violin we also get feedback via the observed 

outcome – which can be good or bad.

When we walk around a city for the first time we develop a model of the 

environment – even in the absence of any specific rewards (except, may be, that 

it is good to know how to find the way home).

All these are examples of learning. The last one might be unsupervised learning, 

but the others are clearly reinforcement learning.



Synapse

Neurons

Synaptic Plasticity =Change in Connection Strength

2. Behavioral Learning – and synaptic plasticity



Previous slide. 

When we observe learning on the level of behavior (we get better at tennis), then 

this implies that something has changed in our brain:

The contact points between neurons (called synapses) have changed. Synaptic 

changes manifest themselves as a change in connections strength.

Synaptic plasticity describes the phenomena and rules of synaptic changes. 



2. Synaptic plasticity – structural changes

Yagishita et al.

Science, 2014



Previous slide. 

The synaptic connection consists of two parts. The end of an axonal branch 

coming from the sending neuron; and the counterpart, a protrusion on the 

dendrite of the receiving neuron, called spine.

We refer to the sending neuron as presynaptic and to the receiving one as 

postsynaptic.

A change in the connection strength is observable with imaging methods as an 

increase in the size of the spine. The bigger spine remains big for a long time 

(here observed for nearly one hour).



Bosch et al. 2012,

Curr. Opinion Neurobiol.

2. synaptic plasticity – molecular changes

Redondo and Morris 2011,

Nature Rev. Neurosci.



Previous slide.  (not shown in class)

The actual molecular machinery inside the spine is very complicated – and of no 

further interest of us in the following.



Synapse

2. synaptic plasticity – connections change

More space for fingers allocated in cortex

- musicians vs. non-musicians

Amunts et al. Human Brain Map. 1997

Gaser and Schlaug, J. Neuosci. 2003

More space allocated in hippocampus

- London taxi driver vs bus driver

Macquire et al. Hippocampus 2006



Previous slide. 

We said at the beginning of the lecture that different areas of the brain are 

involved in different tasks. For example, the somatosensory cortex represents the 

body surface. Nowadays one can measure that the size of the cortical area 

devoted to fingers is larger for musicians than for non-musicians. Since musicians 

are not born with a larger area, this result implies that synaptic plasticity can 

influence the function of the neurons in the brain.

Similarly, hippocampus is involved in spatial navigation. Not surprisingly, London 

taxi drivers have a bigger hippocampus than London bus drivers.



Synapse

2. Synaptic plasticity: summary

Syn. Plasticity should enable Learning

- adapt to the statistics of task

and environments

(useful filters, allocate space etc)

- memorize facts and episodes

- learn models of the world

- learn motor tasks

- Connections can be strong or weak

- Strong connections have thick spines

- Synaptic plasticity 

= change of connection



Previous slide. 

Thus connections can be strong or weak – and synaptic plasticity describes the 

changes of one synapse from weak to strong or back.

The synaptic changes are thought to be the basis of learning – whatever the 

learning task at hand.

The question now is: Are the any rules that would predict whether and when  a 

synapse gets stronger?



pre               

j

post
i

ijw

When an axon of cell j repeatedly or persistently 

takes part in firing cell i, then j’s efficiency as one

of the cells firing i is increased  
Hebb, 1949

k

- local rule

- simultaneously active (correlations)

2.   Hebb rule / Hebbian Learning



Previous slide. 

The Hebb rule is the classic rule of synaptic plasticity.

It is often summarized by saying: if two neurons are active together, the 

connection between those two neurons gets stronger.

Note that the original formulation of Hebb also has a ‘causal’ notion: ‘takes part in 

firing’ – which is more than just firing together.

Local rule means: changes only depend on information that is available at the 

synapse. The changes for the weight from j to i can depend on the activity of 

neuron j and the state (or activity) of neuron i, and the value of the weight itself, 

but for example not explicitly on the activity of another neuron k. Note that if k 

connects to i, the activity of i summarizes the influence of k. In other words, i may 

depend IMPLICITLY on k, but the weight changes do not depend EXPLICITLY on 

k.



2.  Hebbian Learning (LTP)

Hebbian coactivation:

pre-post-post-post

Hebbian coactivation:

but no post-spikes

Scenario of three-factor

rule: Hebb+modulator

Image: Gerstner et al. (2018, review paper in Frontiers)

Neuromodulator can come with a delay of 1s - 5s



Previous slide. 

The joint activation of pre- and postsynaptic neuron induces a strengthening of 

the synapses. A strong stimulus is several repetitions of a pulse of the presynaptic 

neuron, followed by three or four spikes of the postsynaptic neuron.

Hundreds of experiments are consistent with Hebbian learning.



Hebbian Learning in experiments (schematic)

post
i

ijw
EPSP

pre               

j
no spike of i

EPSP

pre               

j

post
i

ijw no spike of i

pre               

j

post
i

ijw
Both neurons

simultaneously active

Increased amplitude 0 ijw

u

2.  Synaptic plasticity: Long-Term Potentiation (LTP)



Previous slide. 

In a schematic experiment,

1) You first test the size of the synapse by sending a pulse from the presynaptic 

neurons across the synapses. The amplitude of the excitatory postsynaptic 

potential (EPSP) is a convenient measure of the synaptic strength. It has been 

shown that it is correlated with the size of the spine.

2) Then you do the Hebbian protocol: you make both neurons fire together

3) Finally you test again the size of the synapse. If the amplitude is bigger you 

conclude that the synaptic weight has increased. 



pre               

j

post i

ijw

+50ms

Changes 

- induced over 3 sec

- persist over 1 – 10 hours

20Hz

Long-term plasticity/changes persist

30 min

(or longer?)

2. Why the name ‘ Long-term plasticity ‘ (LTP)?



Previous slide. 

Experimentalists talk about Long-Term Potentiation (LTP), because once the 

change is induced it persists for a long time. Interestingly, it is sufficient to make 

the two neurons fire together for just a few seconds. 

Thus inducation of plasticity is rapid, but the changes persist for an hour or more.



Standard LTP 

PAIRING experiment

Test stimulus

At 0.1 Hz

LTP induction: 

bursts at 100Hz
neuron depolarized

neuron at -70mV

2.  Classical paradigm of LTP induction – pairing

Fig. from Nature Neuroscience 5, 295 - 296 (2002) 
D. S.F. Ling,  … & Todd C. Sacktor

See also: Bliss and Lomo (1973), Artola, Brocher, Singer (1990), Bliss and Collingridge (1993)



Previous slide. Not shown in class.

In one classic paradigm of LTP induction, the presynaptic fibers are strongly 

stimulated (with bursts of 100 pulses per second, repeated several times)

while the postsynaptic neuron is stimulated with an electrode to put above its 

normal ‘resting potential’.  

The size of the synapses is measured by the excitatory postsynaptic current 

(EPSC) which is itself proportional to the EPSP. After the stimulation (which lasts 

less than a minute) the synapse remains strong for a long time.

The initial transient is of no importance for our discussion.



2.  Spike-timing dependent plasticity (STDP)

pre               

j

post
i

ijw

pre

jt

post

it

Pre

before post

Markram et al, 1995,1997

Zhang et al, 1998

review:

Bi and Poo, 2001

60 repetitions
pre

jt

post

it

30 min0

EPSP

amplitude

100%40ms-40ms



Previous slide. 

In the STDP paradigm of LTP induction, the presynaptic neuron is stimulated so 

that it emits a single spike, and the postsynaptic neuron is also stimulated so that 

emits a single spike – either a few milliseconds before or after the presynaptic 

spike. This stimulation protocol (for example pre-before-post) is then repeated 

several times.

The increase of the synaptic weight (induced by repeated pre-before-post)  

persists for a long time.

How much it increases (or decreases) depends on the exact timing of 

conicidences of pre- and post-spikes on the time scale of 10ms

Since the size of the increase depends on the relative timing of the two spikes, 

this induction protocol is called Spike-Timing-Dependent Plasticity (STDP).



2.  Summary: Synaptic plasticity

Synaptic plasticity 

- makes connections stronger or weaker

- can be experimentally induced

- needs ‘joint activation’ of the two connected neurons

- is induced rapidly, but can last for a long time

- Spike-timing dependent plasticity is one of many protocols

Hebb rule: 

- ‘neurons that fire together, wire together’
S. Loewl and W. Singer, Science 1992

‘Local rule’: 

- only the activity of sending and receiving neurons matters



Previous slide. 

There are several experimental paradigms to induce synaptic changes.

Most of these paradigms are consistent with the Hebb rule:

Neurons that fire together, wire together, a slogan that was introduced by Loewl

and Singer in 1992.

However, in all these Hebbian learning rules and their corresponding 

experimental paradigms, the role of reward is unclear and not considered.

Hebbian rules are examples of ‘LOCAL’ learning rules.

- For the change of a connection from  neuron j to neuron i, only the activity of 

these two neurons i and j matters, but not the activity of some other neuron k 

further away.

- Local means that only information that is locally available at the site of the 

synapse can be used to drive a weight change. What is available is the value of 

the weight itself, as well as the state of the postsynaptic neuron and the 

incoming spikes sent by the presynaptic neuron.



Hebbian Learning

pre
post

ij

 f
jij ttw 

3. Synaptic Plasticity: depends on activity of pre and post

∆𝑤𝑖𝑗 = 𝑐 𝑥𝑗 [𝑦𝑖 − 𝑏]

𝑥𝑗

𝑦𝑖

∆𝑤𝑖𝑗 = 𝐹 𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡, 𝑤𝑖𝑗

- ‘local’ learning rule

- Changes depend on two factors:

presynaptic and postsynaptic

- Sensitive to conincidences

‘pre’ and ‘post’

𝑤𝑖𝑗



Previous slide. 

In standard Hebbian learning, the change of the synaptic weight depends on 

presynaptic activity 𝑥𝑗 (the presynaptic factor, pre) and the state of the 

postsynaptic neuron (for example 𝑥𝑖 − 𝑏, an example of a postsynaptic factor, b is 

an arbitrary constant). 

1. The rule is local: it depends only on information that is available at the synapse.

2. It is built from two factors:  the multiplication of a presynaptic and a 

postsynaptic factor. 

3. Note that it does not contain the notion of reward or success.

Now we want to see whether such rules can be mapped to the math we did in this 

class!



brain algorithms

Learning Rules 

“Can the brain implement policy gradient?”



Previous slide. 

After this introduction into the learning rules of the brain, let us now ask the 

following question:

Is the learning rule of policy gradient with softmax output consistent with what we 

know about learning rules in the brain



Policy gradient rule  – can we interpret this as local rule?

North:

𝑎1=1

South:

𝑎3=1
East:

𝑎2=1

𝑥𝑘𝑥1

𝑎1 𝑎4

𝑤11
𝑤35

s1  s2

West:

𝑎4=1
Discrete actions with

1 hot coding

If at time t, the action

𝑎𝑖
𝑡 = 1 is chosen then

𝑎𝑗
𝑡 = 0 for all other 

output neurons 𝑗 ≠ 𝑖

Action choice:

Softmax



(previous slide)

1. The policy is softmax: 

this implies that output neurons interact interact such that the policy                   

is normalized 

2. The coding is 1-hot:

This implies that if at time t, the action 𝑎𝑖
𝑡 = 1 is chosen then neuron i sends 

immediately an output signal to all other neurons to inhibit their activity so that

𝑎𝑗
𝑡 = 0 for all other output neurons 𝑗 ≠ 𝑖.

𝜋 𝑎𝑖
𝑡 = 1|  𝑥

 

𝑖

𝜋 𝑎𝑖
𝑡 = 1|  𝑥 = 1



Exercise:  Continuous input representation

Note: 

one hidden layer; 

only output weights

are learned

p(s,a)

Take 15 minutes
Lecture continues at … 12h15

c. Go back to the advantage actor critic (slide 7), without eligibility trace and add ‘reward’.  What is        

the resulting learning rule for parameter update?                            

d. Add an eligibility trace to your result in c). How would you implement this rule in hardware?

𝜋 𝑎𝑖
𝑡 = 1|  𝑥

𝑑
𝑑𝑤35
ln[𝜋 𝑎𝑖

𝑡 = 1|  𝑥 ] = [𝑎3
𝑡 − 𝜋 𝑎3 = 1|  𝑥 ]𝑦5



(previous slide)

Your notes.



Discussion of Exercise:  Comparison with Biology

Stimulusparameter = weight wij

Change depends on pre and post

Three factors: success  post pre

postsynaptic factor is

‘activity – expected activity’

pre

post
ij

success

𝑆 𝑎𝑖
𝑡 ,  𝑥 [ 𝑎𝑖

𝑡 − 𝑎𝑖(  𝑥) ]𝑥𝑗𝑤𝑖𝑗 =h



Previous slide.

Reinforcement Learning includes a set of very powerful algorithm – as we 

have seen in previous lectures. Here S denotes the success, which is reward  

(in REINFORCE) or reward minus baseline (in REINFORCE with baseline),

or TD error (in the advantage actor-critic) 

For today the big question is: 

Is the structure of the brain suited to implement reinforcement learning 

algorithms?

If so which one?  Q-learning or SARSA? How about Policy gradient?

Is the brain architecture compatible with an actor-critic structure?

Could the brain implement backprop?

These are the questions we will address  in the following.

And to do so, we have to first get a big of background information on brain 

anatomy.



Three-factor rule

Stimulus
Change depends 

- Local factor pre

- Local factor post

- Global broadcast factor success

- Success could be reward or TD error

pre

post
ij

success

Three factors: success  post pre

postsynaptic factor is

‘activity – expected activity’

𝑆 𝑎𝑖
𝑡 ,  𝑥 [ 𝑎𝑖

𝑡 − 𝑎𝑖(  𝑥) ]𝑥𝑗𝑤𝑖𝑗 =h



Previous slide.

The result of Reinforcement Learning with an actor-critic leads to a three-

factor rule:

- A presynaptic factor, activity of the sending neuron, such as spike arrival at 

the synapse.

- A postsynaptic factor: its activity (output spikes, a=1 or inactive a=0) minus 

the ‘mean drive’ for this state 𝑦𝑖(  𝑥) = 𝜋(𝑎𝑖|  𝑥 )
- In addition to the above two local factor (similar to a Hebb rule) there is 

one global broadcasting factor. The success.

- The success could be the reward itself (REINFORCE algorithm), or reward 

minus baseline (REINFORCE with state-dependent baseline), or the TD 

signal (advantage actor critic).
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Previous slide. 

Since Hebbian learning rules are limited, we have to extend the framework and 

include a ‘third factor’ that could represent reward.



Hebbian Learning

= unsupervised learning

pre
post

ij

 f
jij ttw 

3. Classification of synaptic changes: unsupervised learning

∆𝑤𝑖𝑗 = 𝐹 𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡, 𝑤𝑖𝑗



Previous slide. 

In standard Hebbian learning, the change of the synaptic weight depends only on 

presynaptic activity (pre) and the state of the postsynaptic neuron (post). The rule 

is local, and does not contain the notion of reward or success.

The value of the weight wij is measured by sending a test-pulse across the 

synapse.



Is Hebbian Learning sufficient? No! 

Eligibility trace:

Synapse keeps memory

of pre-post coincidences

over a few seconds

Image: Fremaux and Gerstner, Front. Neur. Circ., 2015

Dopamine:

Reward/success

action plan

place

Schultz et al. 1997; Waelti et al., 2001;  

 Reinforcement learning:success = reward – (expected reward)

TD-learning, SARSA, Policy gradient     (book: Sutton and Barto, 2018)



Previous slide. 

Hebbian learning as it stands is not sufficient to describe learning in a setting were 

rewards play a role. If joint activity of pre- and post causes stronger synapses, the rat is 

likely to repeat the same unrewarded action a second time.

Hypothetical functional role of neuromodulated synaptic plasticity. Reward-

modulated learning

(A)Schematic reward-based learning experiment.Ananimal learns to perform a desired

sequence of actions(e.g.,move straight,then turn left) in a T-maze through trial-and-

error with rewards (cheese) 

(B) The current position (“place”) of the animal in the environment is represented by an 

assembly of active cells in the hippocampus.These cells feed neurons (e.g.,in the 

dorsal striatum) which code for high-level actions at the choice point,e.g., “turn left” or 

“turn right.” These neuronsin turn project to motorcortex neurons,responsible for the 

detailed implementation of actions. A success signal  modulates (green arrows) the 

induction of plasticity

(C) Neuromodulator timing. While spikes occur on the time scale of milliseconds, the 

success signal may come a few seconds laters. 



Reinforcement Learning

= reward + Hebb

SUCCESS

),,( SUCCESSpostpreFwij 

local      global

3. Classification of synaptic changes: Reinforcement Learning

broadly diffused signal:

neuromodulator



Previous slide. 

For the moment we say the reinforcement learning depends on three factors: the 

Hebbian pre- and postsynaptic factor plus a success signal related to reward.

We will get more precise later.



unsupervised vs reinforcement

Theoretical concept

- passive changes

- exploit statistical correlations

LTP/LTD/Hebb

pre
post
ij

Reinforcement Learning

pre

ij

success

Theoretical concept

- conditioned changes

- maximise reward

Functionality

-useful for development
( develop good filters)

Functionality

- useful for learning 

a new behavior

3.  Classification of synaptic changes



Previous slide. 

This does not mean the standard Hebbian learning is wrong: in fact it is very 

useful for the development of generic synaptic connections, e.g., to make neurons  

develop good filtering properties that pick up relevant statistical signals in the 

stream of input.

The three-factor rules are relevant for learning novel behaviors via feedback 

through reward.



3. Three-factor rule of Hebbian Learning

= Hebb-rule gated by a neuromodulator

( , , )ijw F pre post MOD 

local      global

Neuromodulators: Interestingness, surprise;

attention; novelty



Previous slide. 

The three-factor rules have a Hebbian component: pre- and postsynaptic activity 

together, but in addition the third factor which is related to neuromodulators.

There are several neuromodulators in the brain



- 4 or 5  neuromodulators

- near-global action

(reward – exp. reward)

(surprise)

n
o

ra
d

re
n

a
lin

e
Dopamine/reward/TD:

Schultz et al., 1997,

Schultz, 2002

Neuromodulator projections

Image:

Fremaux and Gerstner, Frontiers (2016) 

Image: Biological Psychology, Sinauer

Dopamine (DA)

Noradrenaline (NE)



Previous slide. 

The  most famous neuromodulator is dopamine (DA) which is related to reward, 

as we will see.

But there are other neuromodulators such as noradrenaline (also called 

norepinephrine, NE) which is related to surprise.

Left: the mapping between neuromodulators and functions is not one-to-one. 

Indeed, dopamine also has a ‘surprise’ component.

Right: most neuromodulators send axons to large areas of the brain, in particular 

to several cortical areas. The axons branch out in thousands of branches. 

Thus the information transmitted by a neuromodulator arrives nearly everywhere.

In this sense, it is a ‘global’ signal, available in nearly all brain areas.



3. Formalism of  Three-factor rules with eligibility trace

𝑧𝑖𝑗 =h  𝑓(𝑦𝑖 𝑔(𝑥𝑗 

𝑀 𝑆  𝑦,  𝑥 𝑧𝑖𝑗

Stimulus

pre

post
ij

Success signal

𝑀(𝑆  𝑦,  𝑥 )
𝑥𝑗 = activity of presynaptic neuron

𝑦𝑖 = activity of presynaptic neuron

𝑤𝑖𝑗 =h

Step 1: co-activation sets eligibility trace

Step 2: eligibility trace decays over time

𝑧𝑖𝑗 ← l 𝑧𝑖𝑗
Step 3: eligibility trace translated into weight change



Previous slide. 

Three-factor rules are implementable with eligibility traces.

The joint activation of pre- and postsynaptic neuron sets a ‘flag’. This step is 

similar to the Hebb-rule, but the change of the synapse is not yet implemented.

The eligibility trace decays over time

However, if a neuromodulatory signal M arrives before the eligibility trace has 

decayed to zero, an actual change of the weight is implemented.

The change is proportional to 

- the momentary value of the eligibility trace

- the value of the success signal

The success signal can be broadcasted by a neuromodulator the signals

- Reward minus reward-baseline OR

- TD-error



3. Hebbian LTP versus Three-factor rules

Hebbian coactivation:

pre-post-post-post

Hebbian coactivation:

but no post-spikes

Scenario of three-factor

rule: Hebb+modulator

Image: Gerstner et al. (2018, review paper in Frontiers)

Neuromodulator can come with a delay of 1s - 5s



Previous slide. 

The joint activation of pre- and postsynaptic neuron sets a ‘flag’. This step is 

similar to the Hebb-rule, but the change of the synapse is not yet implemented.

Note that joint activation can imply spikes of pre- (green) and postsynaptic  

(orange) neuron (top); 

Or spikes of a presynaptic neuron combined with a weak voltage increase in the 

postsynaptic neuron (middle).

Bottom: three-factor rule only  if a neuromodulatory signal M arrives before the 

eligibility trace has decayed to zero, an actual change of the weight is 

implemented. The neuromodulater arrives through the branches 

The ideas of three-factor rules can be traced back over several decades.

Early papers were 

First experimental papers Schultz 1997

Crow 1968, Barto, 1983/1985, Schultz 1997, 



3. Three-factor rules: synaptic flags and delayed reward (mod)

synaptic flag

plays role of

eligibility trace

Fig: Gerstner et al. 2018



Previous slide. 

Specificity of three-factor learning rules. 

(i) Presynaptic input spikes (green) arrive at two different neurons, but only one 

of these also shows postsynaptic activity (orange spikes). 

(ii) A synaptic flag is set only at the synapse with a Hebbian co-activation of

pre- and postsynaptic factors; the synapse become then eligible to interact with 

the third factor (blue). Spontaneous spikes of other neurons do not interfere. 

(iii) The interaction of the synaptic flag (eligibility trace) with the third factor leads 

to a strengthening of the synapse (green).

Fig caption: Gerstner et al. 2018



3. Recent experiments for Three-factor rules

Neuromodulators for reward, interestingness, surprise;

attention; novelty

Step 1: co-activation sets eligibility trace

Step 2: eligibility trace decays over time

Step 3: delayed neuro-Modulator: 

eligibility trace translated into weight change



Previous slide. 

three-factor learning rules are a theoretical concept.

But are there any experiments? Only quite recently, a few experimental results 

were published that directly address this question.



Yagishita et al.  2014

3. Three-factor rules in striatum: eligibility trace and delayed Da

-Dopamine can come with a delay of 1s

-Long-Term stability over at least 50 min.

Reminder:

Striatum involved

in action selection



In striatum medial spiny cells, stimulation of

presynaptic glutamatergic fibers (green) followed 

by three postsynaptic action potentials (STDP

with pre-post-post-post at +10ms) repeated 10 

times at 10Hz yields LTP if dopamine (DA) fibers 

are stimulated during the presentation (d < 0) or 

shortly afterward (d = 0s or d = 1s) but not if

dopamine is given with a delay d = 4s; redrawn 

after Fig. 1 of (Yagishita et al., 2014), with

delay d defined as time since end of STDP 

protocol.

Lower left: the image from the beginning of this 

lecture comes from this experiment of Yagishita.

Yagishita et al.  2014

3. Three-factor rules in striatum: eligibility trace and delayed Da

-Dopamine can come with a delay of 1s

-Long-Term stability over at least 50 min.



3. Three-factor rules in cortex: eligibility trace and delayed NE

(He et al., 2015).



3. Not shown in class: second example

In cortical pyramidal cells, stimulation of 

two independent presynaptic pathways 

(green and red) from layer 4 to layer 2/3 by

a single pulse is paired with a burst of four 

postsynaptic spikes (orange).

If the pre-before-post stimulation was 

combined with a pulse of norepinephrine 

(NE) receptor agonist isoproterenol

with a delay of 0 or 5s, the protocol gave 

LTP (blue trace). 

If the post-before-pre stimulation

was combined with a pulse of serotonin (5-

HT) of a delay of 0 or 2.5s, the protocol 

gave LTD (red trace).

(He et al., 2015).



3. Three-factor rules: summary

Three factors are needed for synaptic changes:

- Presynaptic factor   = spikes of presynaptic neuron

or the effect of spike arrival at the synapse

- Postsynaptic factor =  spikes of postsynaptic neuron

or increased voltage or a function of both

- Third factor              = Neuromodulator such as dopamine

Lecture continues 

at 14h15



Previous slide. 

three-factor learning rules are a theoretical concept.

But recent experiments show that the brain really can implement three-factor 

rules. Importantly, the third factor (neuromodulator) can come with a delay of one 

or two seconds after the Hebbian induction protocol that sets the eligibility trace.



Quiz.  Synaptic Plasticity and Learning Rules
Standard Long-term potentiation

[ ] has an acronym LTP

[ ] takes more than 10 minutes to induce

[ ] lasts more than 30 minutes

[ ] depends on presynaptic activity

AND on state of postsynaptic neuron

Learning rules in the brain

[ ] Hebbian learning depends on presynaptic activity 

AND on state of postsynaptic neuron

[ ] Reinforcement learning depends on neuromodulators

such as dopamine indicating reward

[ ] Three-factor rule: presynaptic signal, postsynaptic 

signal, and neuromodulator signal (e.g., DA) MUST  

arrive at the same time.

[x]

[ ]

[x]

[x]

[x]

[x]

[ ]



Previous slide. 

Your comments.
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Previous slide. 

I now want to show that reinforcement learning with policy gradient gives rise to 

three-factor learning rules. 



brain algorithms

Learning Rules 

Advantage

Actor-Critic with

eligibility traces

3-factor

learning

rules



Previous slide. 

We will now compare the learning rule of the advantage actor critic with eligibility 

traces to the three-factor rules of the brain. 

We bring together the actor-critic with eligibility traces and the results of exercise 

1 today.



4. Eligibility traces from Policy Gradient  (Exercise today)

1)  Update eligibility trace 

increase of all traces

𝑧𝑘 ← 𝑧𝑘 l decay of all traces

𝑧𝑘 ← 𝑧𝑘 +
𝑑

𝑑𝑤𝑘
ln[𝜋(𝑎𝑡|𝑠𝑡, 𝑤𝑘)]

2) update  parameters

𝑤𝑘=h  𝑟𝑡 𝑧𝑘

Run episode. 

At each time step, observe state 𝑠𝑡, action 𝑎𝑡, reward 𝑟𝑡



Previous slide. repetition of the exercises from week 10 and Exercise of Today 

Leads to the algo on slide 7

Adapted from

Sutton and Barto

r
r + g



4. Example: Linear activation model with softmax policy

x

𝜋 𝑎𝑗 = 1  𝑥, 𝜃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥[ 

𝑘

𝑤𝑗𝑘 𝑦𝑘]

𝑦𝑘 = 𝑓(𝑥 − 𝑥𝑘)

𝑥𝑘𝑥1

f =basis function

parameters  

reward

𝑎1 𝑎3

left:

𝑎1=1

right:

𝑎3=1

𝑤11

stay:

𝑎2=1



Previous slide. 

Suppose the agent moves on a linear track.

There are three possible actions: left, right, or stay.

The policy is given by the softmax function. The total drive of the action neurons 

is a linear function of the activity y of the  hidden neurons  which in turn depends 

on the input x. The activity of hidden neuron k is f(x-x_k). The basis function f 

could for example be a Gaussian function with center at x_k.



4. Example: Linear activation model with softmax policy

 𝑥

𝑎1 𝑎3

left:

𝑎1=1

right:

𝑎3=1

𝑥𝑘𝑥1

𝑤𝑙𝑘= h  𝑟𝑡 𝑧𝑙𝑘

2) update  weights

1)  Update eligibility trace 

stay:

𝑎2=1
𝑎𝑖 ∈ {0,1}0) Choose action

reward

𝑧𝑖𝑘 ← 𝑧𝑖𝑘 l

𝑧𝑖𝑘 ← 𝑧𝑖𝑘 +
𝑑

𝑑𝑤𝑘
ln[𝜋(𝑎𝑖

𝑡 = 1|  𝑥)]

Already done in Exercise 1

 Three-factor rule with 

eligibility traces



Previous slide. 

This is the result of the in-class exercise (Exercise 1 of this week).

Importantly, the update of the eligibility trace is a local learning rule that depends 

on a presynaptic factor and a postsynaptic factor.

The reward is the third factor and has no indices (since it acts as a global factor, 

broadcasted to all neurons and synapses).



4. Summary:  3-factor rules derived from Policy Gradient

- Policy gradient with one hidden layer and linear 

softmax readout yields a 3-factor rule

- Eligibility trace is set by joint activity of presynaptic

and postsynaptic neuron 

- Update happens proportional to the eligibility trace and to  

either reward r  (REINFORCE) or TD error (Adv. Actor-Critic)

- The presynaptic neuron represents the state

- The postsynaptic neuron the action

- True online rule

 could be implemented in biology

 can also be implemented in parallel asynchr. hardware



Previous slide. 

Summary: A policy gradient algorithm in a network where the output layer has a  

linear drive with softmax output  leads to a three-factor learning rule for the 

connections between neurons in the hidden layer and the output. 

These three factor learning rules are important because they are completely 

asynchronous, local, and online and could therefore be implemented in biology or 

parallel hardware.

The global modulator could present either the reward r directly (in the style of the 

REINFORCE algorithm); or it could present the TD error (which yields an 

interpretation as advantage actor-critic.

Which one of the two possibilities would fit the dopamine signal?

This is the next question



brain algorithms

Learning Rules 

The learning rule of the (normal) actor-critic

with eligibility traces (REINFORCE WITH BASELINE)

is consistent with a brain-like three-factor rule.

Updates proportional to the reward r (minus baseline). 

𝑤𝑙𝑘= h  𝑟𝑡 𝑧𝑙𝑘



Review: Advantage Actor-Critic  with Eligibility traces   

Adapted from

Sutton and Barto

r
r + g TD signal



brain algorithms

Learning Rules 

The learning rule of the advantage actor-critic

with eligibility traces

is consistent with a brain-like three-factor rule

Condition: the brain can broad-cast a TD signal!

𝑤𝑙𝑘= h  𝛿𝑡 𝑧𝑙𝑘

TD signal



Previous slide. 

The main difference between standard REINFORCE (potentially with baseline 

subtraction) and the Advantage Actor Critic is that

in the advantage actor-critic the global modulator re-presents the TD error. 

We now show that the TD signal is consistent with the dopamine signal!
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Previous slide. 

So far the third factor remained rather abstract. We mentioned that a 

neuromodulator such as dopamine could be involved. Let us make this idea more 

precise and show experimental data.



5. Neuromodulators as Third factor

Three factors are needed for synaptic changes:

- Presynaptic factor   = spikes of presynaptic neuron

- Postsynaptic factor =  spikes of postsynaptic neuron

or increased voltage

- Third factor              = Neuromodulator such as dopamine

Presynaptic and postsynaptic factor ‘select’ the synapse.

 a small subset of synapses becomes ‘eligible’ for change.

The ‘Third factor’ is a nearly global signal

 broadcast signal, potentially received by all synapses.

Synapses need all three factors for change



Previous slide. 

Before we start let us review the basics of a three-factor learning rule. We said 

that the third factor could be a neuromodulator such as dopamine. 



Review: Reward information 

Neuromodulator dopamine: - is nearly globally broadcasted

- signals reward minus

expected reward

Dopamine

Schultz et al., 1997,

Waelti et al., 2001

Schultz, 2002

‘success signal’



Previous slide. Dopamine neurons send dopamine signals to many neurons and 

synapses in parallel in a broadcast like fashion.  



5. Dopamine as Third factor

Conditioning: 

red light 1sreward

CS:

Conditioning

Stimulus

Sutton book, reprinted from W. Schultz



5. Dopamine as Third factor
This is now the famous experiment of W. Schultz.

In reality the CS was not a red light, but that does not matter



5. Summary: Dopamine as Third factor

- Dopamine signals ‘reward minus expected reward’

- Dopamine signals an ‘event that predicts a reward’

- Dopamine signals approximately the TD-error

DA(t) = [r(t)-( V(s)-g V(s’))]

TD-delta



Previous slide. 

The paper of W. Schultz has related the dopamine signal to some basic aspects 

of Temporal difference Learning. The Dopamine signal is similar to the TD error. 



5. Application: Advantage Actor-Critic =  update with TD signal 

advance push 

left

actions

value

Dopamine = TD-error

[𝑟𝑡 + 𝛾𝑉 𝑠′ − 𝑉 𝑠 ]d = h

𝑉 𝑠

- Estimate V(s)
- learn via TD error



Previous slide. 

Review of actor-critic architecture 



5. Combine Eligibility Traces with TD in Advantage Actor-Critic

Idea: 

- keep memory of previous ‘candidate updates’

- memory decays over time

- Update an eligibility trace for each parameter

increase of all traces

𝑧𝑘 ← 𝑧𝑘 l decay of all traces

- update all parameters:

𝑤𝑘=h  [r-( V(s)-g V(s’))] 𝑧𝑘

 policy gradient with eligibility trace and TD error

TD-delta

𝑧𝑘 ← 𝑧𝑘 +
𝑑

𝑑𝑤𝑘
ln[𝜋(𝑎|𝑠, 𝑤𝑘)]



Previous slide. 

Review of algorithm with actor-critic architecture and policy gradient with eligibility 

traces and TD. 



5. Summary:  Eligibility Traces with TD in Actor-Critic

Three-factor rules:

Presynaptic and postsynaptic factor ‘select’ the synapse.

 a small subset of synapses becomes ‘eligible’ for change.

The ‘Third factor’ is a nearly global broadcast signal

 potentially received by all synapses.

Synapses need all three factors for change

The ‘Third factor’ can be the  Dopamine-like TD signal

Need actor-critic architecture to calculate 𝛾𝑉 𝑠′ − 𝑉 𝑠
Dopamine signals [𝑟𝑡 + 𝛾𝑉 𝑠′ − 𝑉 𝑠 ]



Previous slide. 

The three factor rule, dopamine, TD signals, value functions now all fit together.
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Previous slide. 

We said that the three factor rule, dopamine, TD signals, value functions now all 

fit together. Let’s apply this to the problem of navigation in a maze.

For biological plausibility we have to consider:

- Representation of states

- Representation of actions

- Representation of TD signal and learning rule



Review: TASK = conditioning in the Morris Water Maze

Foster, Morris, Dayan 2000

Rats learn to find

the hidden platform

(Because they like to 

get out of the cold water)

Time to find platform

10                trials  

Morris Water Maze



Previous slide. 

Behvioral experiment in the Morris Water Maze.

The water is milky so that the platform is visible.

After a few trials the rat swims directly to the platform



6. Representation of momentary state: hippocampus

fig: Wikipedia

Henry Gray (1918) Anatomy of the Human Body

Hippocampus

- Sits below/part of temporal cortex

- Involved in memory

- Involved in spatial memory

Spatial memory:

knowing where you are,

knowing how to navigate in an environment

https://en.wikipedia.org/wiki/Henry_Gray


Previous slide. 

the problem of navigation needs the spatical representation of the hippocampus.



rat brain

CA1

CA3

DG

pyramidal cells

soma

axon

dendrites

synapses
electrodePlace fields

6. Place cells  in rat hippocampus 



Previous slide. 

the hippocampus of rodents (rats or mice) looks somewhat different to that of 

humans. Importantly, cells in hippocampus of rodents respond only in a small 

region of the environment. For this reason they are called place cells. The small 

region is called the place field of the cell.



Main property: encoding the animal’s location

place 

field

6. Hippocampal place cells  



Previous slide. 

Left: experimentally measured place field of a single cell in hippocampus.

Right: computer animation of place field



6. Representation of actions: Ring of spiking actor neurons

Note: no need to formally define a softmax function

Fremaux et al. (2013)

- Local excitation

- Long-range inhibition

- Not a formal softmax

- Could be a model

of action selection

in striatum



6. Ring of actor neurons

Fremaux et al. (2013)

Actor neurons (previous slide). 

A: A ring of actor neurons with lateral connectivity (bottom, green: excitatory, 

red: inhibitory) embodies the agent’s policy (top). 

B: Lateral connectivity. Each neuron codes for a distinct motion direction. 

Neurons form excitatory synapses to similarly tuned neurons and

inhibitory synapses to other neurons. 

C: Activity of actor neurons during an example trial. The activity of the 

neurons (vertical axis) is shown as a color map against time (horizontal 

axis). The lateral connectivity ensures that there is a single bump of activity 

at every moment in time. The black line shows the direction of motion (right 

axis; arrows in panel B) chosen as a result of the neural activity. 

D: Maze trajectory corresponding to the trial

shown in C. The numbered position markers match the times marked in C.

.



6. Representation of Learning rule:  Spikes + Eligibility trace

Fremaux et al. (2013)

success

post

i
pre

j





6. Learning rule:  Three-factor STDP for reward-based learning              

Xie and Seung 2003, Izhikevich, 2007;  Florian, 

2007;  Legenstein et al., 2008,

Fremaux et al. 2010, 2013

Hebb rule/eligibility trace

Success signal

success

ijijij eSTDPe
dt

d
=

)(tSew
dt

d
ijij =

Success signal: 

TD error

post

i

pre

j
STDP

HEBBij

𝑑𝑤𝑖𝑗
𝑑𝑡
= 𝐹(𝑤𝑖𝑗; PRE𝑗 , POST𝑖 , 3𝑟𝑑)

10 ms

1s



6. Learning rule  with TD in Actor-Critic for spiking neurons

Fremaux et al. (2013)

Learning rule with three factors (previous slide) based on spikes

1. In biology, neurons communicate by spikes (short electrical pulses).

2. Synaptic changes depend on the relative timing of the spikes of the 

sending (pre) and the receiving (post) neuron: Spike-Timing-Dependent 

Plasticity (STDP). Strong changes occur only if pre- and postsynaptic spikes 

coincide within +/- 20 ms.

3. STDP is used to set the eligibility trace. The eligibility trace decays on a 

much slower time scale of 1s.

4. Un success signal is necessary to transform the eligibility trace into an 

actual weight change.

Therefore weights increase if a success signal occurs within roughly one 

second after a coincident activity of pre- and postsynaptic neuron.  



6. Two variants of spike-based three-factor  Learning rules

Fremaux et al. (2013)

10ms

10ms

1s

1s

Condition for 

setting eligibility 

trace: 10 ms

Decay of eligibility 

trace : 1s



6. Learning rule  with TD in Actor-Critic for spiking neurons

Fremaux et al. (2013)

A: Learning rule with three factors (previous slide). We consider two different 

variants

Top: TD-LTP is the learning rule resulting from policy gradient. It works by

passing the presynaptic spike train Xj (factor 1) and the postsynaptic spike 

train Yi (factor 2) through a coincidence window . Spikes are counted as

coincident if the postsynaptic spike occurs within after a few ms of a 

presynaptic spike. The result of the pre-post coincidence measure is low-

pass-filtered by passing it through a kernel (which yields the eligibility trace, 

decaying of 1s), and then multiplied by the TD error d(t) (factor 3) to yield the 

learning rule which controls the change of the synaptic weight w_ ij .

Bottom: TD-STDP is closer to biology and consists of  a TD-modulated 

variant of STDP. The main difference with TD-LTP is the presence of a post-

before-pre component in the coincidence window. As before, coincidences

with 10ms set the eligibility trace



6. Maze Navigation  with TD in Actor-Critic with spiking neurons

R-max:

Policy gradient without

the critic. The goal was 

never found within 50s.

early trial

Late trial

value

map
TD-STDP:

After 25 trials, the goal 

was found within 20s. 



Maze navigation learning task. Both TD rules (TD-LTP and TD-STDP) work equally 

well. Hence, details of how the eligibility trace is set do not matter.

A: The maze consists of a square enclosure, with a circular goal area (green) in the 

center. A U-shaped obstacle (red) makes the task harder by forcing turns on 

trajectories from three out of the four possible starting locations (crosses). 

B: Color-coded trajectories of an example TD-LTP agent during the first 75 simulated 

trials. Early trials (blue) are spent exploring the maze and the obstacles, while later 

trials (green to red) exploit stereotypical behavior. 

C: Value map (color map) and policy (vector field) represented by the synaptic 

weights of the agent of panel B after 2000s simulated seconds. 

D: Goal reaching latency of agents using different learning rules. Latencies of N=100 

simulated agents per learning rule. The solid lines shows the median shaded area 

represents the 25th to 75th percentiles. The R-max learning rule is standard policy 

gradient agent without a critic and enters times-out after 50 seconds. Hence it is 

important that the 3rd factor is TD and not just ‘raw’ reward.

Fremaux et al. (2013)

6. Maze Navigation  with TD in Actor-Critic with spiking neurons



6. Acrobot task  with TD in Actor-Critic with spiking neurons

Fremaux et al. (2013)



Previous slide. 

Application of the same model (spiking three-factor rule) to the Acrobot task.



6. TD in Actor-Critic with spiking neurons
- Learns in a few trials (assuming good representation)

- Works in continuous time. 

- No artificial ‘time steps’

- Works with spiking neurons

- Works in continuous space and for continuous actions

- Uses a biologically plausible 3-factor learning rule

- Critic implements value function

- TD signal calculated by critic and broadcasted to network

- Actor neurons interact via synaptic connections

- No need for algorithmic ‘softmax’

- 3-factor rules with TD as global signal work much better 

than standard policy gradient (REINFORCE)

Fremaux et al. (2013)



Previous slide. 

Summary of findings



6. Summary Learning in the  Brain vs RL algo

Advantage Actor-Critic Reinforcement learning needs:

- states / sensory representation

- action selection

- value function/critic

- broad cast of TD error

- TD error calculation

brain algorithms



6. Summary

Several aspects of TD learning in an actor-critic framework

can be mapped to the brain:

Sensory representation: Cortex and Hippocampus

Actor : Dorsal Striatum

Critic : Ventral Striatum (nucleus accumbens)

TD-signal: Dopamine

Learning in a few trials (not millions!) possible, if the sensory 

presentation is well adapted to the task



Learning outcome: RL learning rules and the brain

- three-factor learning rules can be implemented by the brain
 synaptic changes need presynaptic factor,

postsynaptic factor and a neuromodulator (3rd factor)

 actor-critic and other policy gradient methods

give rise to very similar three-factor rules

- eligibility traces as ‘candidate parameter updates’

 set by joint activation of pre- and postsynaptic factor

 decay over time

 transformed in weight update if dopamine signal comes 

- the dopamine signal has signature of the TD error

 responds to reward minus expected reward

 responds to unexpected events that predict reward

6. Summary


