Exercice 1. (a) Let $\gamma=\sqrt{2}+\sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$. We have that $\gamma-\sqrt{2}=\sqrt{3}$ and so $(\gamma-\sqrt{2})^{2}=3$. This gives $\gamma^{2}-1=2 \gamma \sqrt{2}$, therefore $\left(\gamma^{2}-1\right)^{2}=8 \gamma^{2}$ and so $\gamma^{4}-10 \gamma^{2}+1=0$. It follows that the polynomial $t^{4}-10 t^{2}+1 \in \mathbb{Q}[t]$ admits γ as a root. We will now show that this polynomial is irreducible.
Assume that $\frac{p}{r} \in \mathbb{Q}$, where $p, r \in \mathbb{Z}, \operatorname{gcd}(p, r)=1$ and $r \neq 0$, is a root of $t^{4}-10 t^{2}+1$. Then $p|1, r| 1$ and so $\frac{p}{r}= \pm 1$. One checks that neither 1 nor -1 is a root of $t^{4}-10 t^{2}+1$. We now assume that there exist $a, b, c, d \in \mathbb{Q}$ such that

$$
t^{4}-10 t^{2}+1=\left(t^{2}+a t+b\right)\left(t^{2}+c t+d\right) .
$$

Then $\left\{\begin{array}{l}a+c=0 \\ b+a c+d=-10 \\ a d+b c=0 \\ b d=1\end{array}\right.$ and we deduce that $c(b-d)=0$.
(a) If $c=0$, then $\left\{\begin{array}{l}b+d=-10 \\ b d=1\end{array}\right.$ which gives $b^{2}+10 b+1=0$. This implies that $b \in \mathbb{Q}$ is a root of the polynomial $t^{2}+10 t+1 \in \mathbb{Q}[t]$. If we write $b=\frac{p}{r}$, where $p, r \in \mathbb{Z}$ with $\operatorname{gcd}(p, r)=1$ and $r \neq 0$, then $p|1, r| 1$ and so $b= \pm 1$. But neither 1 nor -1 is a root of $t^{2}+10 t+1$.
(b) If $b=d$, then $b^{2}=1$ and so $b= \pm 1$. Moreover, as $b+a c+d=-10$ we also get that $c^{2}=10+2 b$ and so $c^{2} \in\{8,12\}$, contradicting the fact that $c \in \mathbb{Q}$.
We conclude that $t^{4}-10 t^{2}+1 \in \mathbb{Q}[t]$ is irreducible and therefore, as it admits $\sqrt{2}+\sqrt{3}$ as a root, we have that $m_{\sqrt{2}+\sqrt{3}, \mathbb{Q}}(t)=t^{4}-10 t^{2}+1$ and $[\mathbb{Q}(\sqrt{2}+\sqrt{3}): \mathbb{Q}]=4$. Lastly, as $[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]=4$, see Exercise 5.2 of Series 9 , we conclude that $\sqrt{2}+\sqrt{3}$ is a primitive element of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
(b) As $[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]=4$, it follows that $\operatorname{dim}_{\mathbb{Q}}(\mathbb{Q}(\sqrt{2}, \sqrt{3}))=4$ and so, to show that the set $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ is a \mathbb{Q}-basis of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$, it suffices to show that it is linearly independent. For this, let $a, b, c, d \in \mathbb{Q}$ be such that

$$
a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}=0 .
$$

Then $a+d \sqrt{6}=-(b \sqrt{2}+c \sqrt{3})$ and so $(a+d \sqrt{6})^{2}=(b \sqrt{2}+c \sqrt{3})^{2}$ which gives

$$
a^{2}+6 d^{2}-2 b^{2}-3 c^{2}+2(a d-b c) \sqrt{6}=0 .
$$

As $\sqrt{6} \notin \mathbb{Q}$ it follows that $\left\{\begin{array}{l}a^{2}+6 d^{2}-2 b^{2}-3 c^{2}=0 \\ a d=b c\end{array}\right.$.
Analogously, since $a+b \sqrt{2}=-(c \sqrt{3}+d \sqrt{6})$ and $a+c \sqrt{3}=-(b \sqrt{2}+d \sqrt{6})$, respectively, one shows that $\left\{\begin{array}{l}a^{2}+2 b^{2}-3 c^{2}-6 d^{2}=0 \\ a b=3 c d\end{array}\right.$ and $\left\{\begin{array}{l}a^{2}+3 c^{2}-2 b^{2}-6 d^{2}=0 \\ a c=2 b d\end{array}\right.$, respectively. Now:

$$
\left\{\begin{array}{l}
a^{2}+6 d^{2}-2 b^{2}-3 c^{2}=0 \\
a^{2}+2 b^{2}-3 c^{2}-6 d^{2}=0 \\
a^{2}+3 c^{2}-2 b^{2}-6 d^{2}=0
\end{array} \quad \Longrightarrow a^{2}=\frac{1}{3}\left(2 b^{2}+3 c^{2}+6 d^{2}\right)\right.
$$

which gives

$$
\left\{\begin{array}{l}
a^{2}=\frac{1}{3}\left(2 b^{2}+3 c^{2}+6 d^{2}\right) \\
a^{2}+2 b^{2}-3 c^{2}-6 d^{2}=0
\end{array} \quad \Longrightarrow b^{2}=\frac{1}{4}\left(3 c^{2}+6 d^{2}\right) \text { and so } a^{2}=\frac{1}{2}\left(3 c^{2}+6 d^{2}\right)\right.
$$

Then

$$
\left\{\begin{array}{l}
a^{2}=\frac{1}{2}\left(3 c^{2}+6 d^{2}\right) \\
b^{2}=\frac{1}{4}\left(3 c^{2}+6 d^{2}\right) \\
a^{2}+3 c^{2}-2 b^{2}-6 d^{2}=0
\end{array} \quad \Longrightarrow c^{2}=2 d^{2} .\right.
$$

If $d \neq 0$, then $\sqrt{2}=\frac{c}{d} \in \mathbb{Q}$, which is a contradiction. It follows that $d=0$ and, consequently, $c=b=a=0$. We conclude that $a=b=c=d=0$ and therefore $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ is linearly independent.
(c) Assume that $\gamma=a \sqrt{3}+b \sqrt{6}$ is primitive in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. If $a=0$ or $b=0$, then $\gamma=b \sqrt{6}$, respectively $\gamma=a \sqrt{3}$, and, since $\mathbb{Q}(\sqrt{6}) \subsetneq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ and $\mathbb{Q}(\sqrt{3}) \subsetneq \mathbb{Q}(\sqrt{2}, \sqrt{3})$, respectively, it follows that γ is not primitive in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$, a contradiction.
Assume that $a, b \neq 0$. Now, $a \sqrt{3}+b \sqrt{6}$ is primitive in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ if and only if $\sqrt{3}+c \sqrt{6}$, where $c=\frac{b}{a} \neq 0$, is primitive in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. As $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{3}+c \sqrt{6}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ we have $[\mathbb{Q}(\sqrt{3}+c \sqrt{6}): \mathbb{Q}] \mid 4$ and so $[\mathbb{Q}(\sqrt{3}+c \sqrt{6}): \mathbb{Q}] \in\{1,2,4\}$. Clearly, $[\mathbb{Q}(\sqrt{3}+c \sqrt{6}): \mathbb{Q}] \neq 1$ as $\sqrt{3}+c \sqrt{6} \notin \mathbb{Q}$. Assume that $[\mathbb{Q}(\sqrt{3}+c \sqrt{6}): \mathbb{Q}]=2$. Then, there exists a polynomial $t^{2}+\alpha t+\beta \in \mathbb{Q}[t]$ which admits $\sqrt{3}+c \sqrt{6}$ as a root. Thus:

$$
(\sqrt{3}+c \sqrt{6})^{2}+\alpha(\sqrt{3}+c \sqrt{6})+\beta=0
$$

and so:

$$
6 c \sqrt{2}+\alpha \sqrt{3}+c \alpha \sqrt{6}+3+6 c^{2}+\beta=0 .
$$

By item (b), it follows that $c=0$, contradicting the fact that $b \neq 0$. We conclude that $[\mathbb{Q}(\sqrt{3}+c \sqrt{6}): \mathbb{Q}]=4$ and therefore $\mathbb{Q}(\sqrt{3}+c \sqrt{6})=\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
(d) Now, $a \sqrt{2}+b \sqrt{3}+c \sqrt{6}$, where $a, b, c \in \mathbb{Q}^{*}$, is primitive in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ if and only if $\sqrt{2}+$ $d \sqrt{3}+e \sqrt{6}$, where $d=\frac{b}{a} \neq 0$ and $e=\frac{c}{a} \neq 0$, is primitive in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. We argue as in item (c) to show that $[\mathbb{Q}(\sqrt{2}+d \sqrt{3}+e \sqrt{6}): \mathbb{Q}] \in\{1,2,4\}$ and that $[\mathbb{Q}(\sqrt{2}+d \sqrt{3}+e \sqrt{6}): \mathbb{Q}] \neq 1$.

Assume $[\mathbb{Q}(\sqrt{2}+d \sqrt{3}+e \sqrt{6}): \mathbb{Q}]=2$. Then there exists a polynomial $t^{2}+\alpha t+\beta \in \mathbb{Q}[t]$ that admits $\sqrt{2}+d \sqrt{3}+e \sqrt{6}$ as a root. We have that:

$$
(\sqrt{2}+d \sqrt{3}+e \sqrt{6})^{2}+\alpha(\sqrt{2}+d \sqrt{3}+e \sqrt{6})+\beta=0
$$

and so $\left\{\begin{array}{l}4 e+\alpha d=0 \\ 6 d e+\alpha=0\end{array}\right.$. Then $\alpha=-6 d e$ and we have $4 e-6 d^{2} e=e\left(4-6 d^{2}\right)=0$. As $e \neq 0$ it follows that $6=\left(\frac{2}{d}\right)^{2}$ and so $\sqrt{6} \in \mathbb{Q}$, a contradiction.
We conclude that $[\mathbb{Q}(\sqrt{2}+d \sqrt{3}+e \sqrt{6}): \mathbb{Q}]=4$ and therefore $\mathbb{Q}(\sqrt{2}+d \sqrt{3}+e \sqrt{6})=$ $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.

Exercice 2. 1. Let β be a root of f. It holds that $\beta^{p}-\beta+\alpha=0$. Let $\gamma \in \mathbb{F}_{p} \subseteq K$. Then, using Fermat's little theorem, which states that $\gamma^{p}=\gamma$ modulo p, it holds that over a field of characteristic p, we have

$$
(\beta+\gamma)^{p}-(\beta+\gamma)+\alpha=\beta^{p}+\gamma^{p}-\beta-\gamma+\alpha=\beta^{p}+\gamma-\beta-\gamma+\alpha=\beta^{p}-\beta+\alpha=0 .
$$

Hence all $\beta+\gamma$, where $\gamma \in \mathbb{F}_{p}$ are roots of f. We get p distinct roots, and as $\mathbb{F}_{p} \subseteq K$, by adjoining β to K, all roots are contained in $K(\beta)$ and hence $L=K(\beta)$.

Moreover, we have that $m_{\beta, K}=f$. Let $m_{\beta, K}=\prod_{\gamma \in I}\left(x-(\beta+\gamma)\right.$ in $L[x]$ with $I \subset \mathbb{F}_{p}[x]$. Then the coefficients in front of $x^{|I|-1}$ are exactly $-\sum_{\gamma \in I(\beta+\gamma)}=|I| \beta+\sum_{\gamma \in I} \gamma$. If we suppose that $|I|<p$, one contradicts the fact that $\beta \notin K$. Therefore $m_{\beta, K}=f$.
We use Proposition 4.6 .3 and get the following: by (a), G acts on the roots of f. By (b), since $L=K(\beta)$, there is at most one element in G that sends the root β to the root $\beta+\gamma$, for $\gamma \in \mathbb{F}_{p}$. Therefore, $|G| \leq p$. There are indeed p elements in G, which are of the form σ_{γ}, with $\sigma_{\gamma}(\beta)=\beta+\gamma$ for all $k \in \mathbb{F}_{p}$. We get p automorphisms, and hence $G \cong \mathbb{Z} / p \mathbb{Z}$.
2. The fact that f is irreducible over K follows from Prop 4.6.3 (d), which states that $|G|=$ [$L: K$], where $L=K(\beta)$ is the splitting field of f. By the previous point, $|G|=p$, and hence $[K(\beta): K]=\operatorname{deg} m_{\beta, K}=p$. Since β is a root of f, and since its minimal polynomial is of degree p, it follows that $f \sim m_{\beta, K}$, and hence, f is irreducible over K.
3. Let $\frac{g}{h} \in \mathbb{F}_{p}(t)$ a root of $x^{p}-x+t$. Then, $g, h \in \mathbb{F}_{p}[t], h \neq 0$ and it holds that

$$
\left(\frac{g}{h}\right)^{p}-\left(\frac{g}{h}\right)+t=0 \Leftrightarrow g^{p}-g h^{p-1}+t h^{p}=0 .
$$

Denote the degree of g by d_{g}, and the degree of h by d_{h}. Then, the degree of the following polynomials are

$$
\operatorname{deg}\left(g^{p}\right)=p d_{g}, \quad \operatorname{deg}\left(g h^{p-1}\right)=d_{g}+(p-1) d_{h}, \quad \operatorname{deg}\left(t h^{p}\right)=1+p d_{h}
$$

In order for the sum $g^{p}-g h^{p-1}+t h^{p}$ to be zero, the degrees of each of the summands needs to be canceled out.
If $d_{h} \geq d_{g}$, then the degree of $t h^{p}$, being $1+p d_{h}$, is strictly bigger than $p d_{g}$ and $d_{g}+(p-1) d_{h}$ and hence $t h^{p}$ can't be canceled out, and the sum of polynomials can only be zero if $h=0$, but this is a contradiction to the choice of g, h.
On the other hand, if $d_{g}>d_{h}$, then nothing can cancel out g^{p}, which one sees by a degree comparison, and hence the sum $g^{p}-g h^{p-1}+t h^{p}$ can only be zero if $g=0$ and $h=0$, which is a contradiction.
4. Let u be a root of $f: u^{p}-u+t=0 \Leftarrow u^{p}-u=-t$, and hence $\mathbb{F}(t) \subseteq \mathbb{F}_{p}(u)$. With u being transcendental over \mathbb{F}_{p}, it follows that the splitting field is $\mathbb{F}_{p}(u)$. We remark that by the second part of the exercise, all roots are of the form $u+\gamma$, where $\gamma \in \mathbb{F}_{p}$, and hence all roots are contained in $\mathbb{F}_{p}(u)$.

Exercice 3. 1. First we note that we may apply the third Gauss lemma, from which it follows that f is irreducible in $\mathbb{Q}[x]$ if and only if it is irreducible in $\mathbb{Z}[x]$. We then argue as in Example 3.9.4 (b) that showing irreducibility of f in $\mathbb{Z}[x]$ can be done by showing irreducibility of $e v_{y+1}(f)$ in $\mathbb{Z}[y]$ since the evaluation $e v_{y+1}: \mathbb{Z}[x] \rightarrow \mathbb{Z}[y]$ is an isomorphism. But

$$
e v_{y+1}(f)=(y+1)^{6}+(y+1)^{3}+1=y^{6}+6 y^{5}+15 y^{4}+21 y^{3}+18 y^{2}+9 y+3
$$

which is irreducible in $\mathbb{Z}[y]$ by applying Eisensteins criterion with $p=3$.
2. Let α be a root of f. Then, with $\alpha^{6}+\alpha^{3}+1=0$ it follows that $\alpha^{6}=-\alpha^{3}-1$, and hence $\alpha^{9}=\alpha^{3} \cdot \alpha^{6}=\alpha^{3}\left(-\alpha^{3}-1\right)=-\alpha^{6}-\alpha^{3}=-\left(-\alpha^{3}-1\right)-\alpha^{3}=\alpha^{3}+1-\alpha^{3}=1$, and so α is a root of $x^{9}-1$ as well.

It holds that

$$
x^{9}-1=\left(x^{6}+x^{3}+1\right)\left(x^{3}-1\right) .
$$

Using Prop. 4.4.10 (c), it follows from $\operatorname{gcd}\left(x^{9}-1, \frac{\partial}{\partial x}\left(x^{9}-1\right)\right)=\operatorname{gcd}\left(x^{9}-1,9 x^{8}\right)=1$ that the polynomial $x^{9}-1$ does not have any double roots. Its 9 roots are the 9 -th roots of unity. Hence α is a 9 -th root of unity as well. The 9 -th roots of unity that are not primitive are
those roots that are simultaneously 3 -rd roots of unity as well. But α can not be one of those roots, since if α was a root simultaneously of f and of $x^{3}-1$, then α would be a double root of $f \cdot\left(x^{3}-1\right)=x^{9}-1$, which is not possible. We conclude that α is a primitive 9 -th root of unity.
3. Let α be as above a root of f. Then, $\alpha \in\left\{e^{2 \pi i k / 9} \mid k=1,2,4,5,7,8\right\}$, and we may assume without loss of generality that $\alpha=e^{2 \pi i / 9}$. Then, the other roots of f are $\alpha^{2}, \alpha^{4}, \alpha^{5}, \alpha^{7}, \alpha^{8}$. By adjoining α to \mathbb{Q}, we therefore adjoin all roots of f, from which it follows that $L=\mathbb{Q}(\alpha)$.
Now by Prop 4.6.3 (a), every element in $\operatorname{Gal}(L / \mathbb{Q})$ acts on the roots of f in L. These 6 roots are described above. By (b), as $L=\mathbb{Q}(\alpha)$, there is at most one element in the Galois group which sends α to one of other primitive roots α^{k}, where $k=1,2,4,5,7,8$. Hence there are at most 6 elements in the Galois group. But, using irreducibility of f, and part (c), there are exactly 6 , with the automorphisms defined by $\sigma_{k}(\alpha)=\alpha^{k}$. The identification with $(\mathbb{Z} / 9 \mathbb{Z})^{\times}$ is the obvious one, identifying $\sigma_{k} \in \operatorname{Gal}(L / \mathbb{Q})$ with $k \in(\mathbb{Z} / 9 \mathbb{Z})^{\times}$. Lastly, this extension is Galois by Thm. 4.6.15, using \mathbb{Q} is perfect, and hence the extension is separable.
4. We have the following fields extensions, $\mathbb{Q} \subseteq \mathbb{Q}(\alpha+\bar{\alpha}) \subseteq \mathbb{Q}(\alpha)$, where $\bar{\alpha}$ denotes the complex conjugate of α. We remark that $\bar{\alpha}=\alpha^{8} \in \mathbb{Q}(\alpha)$.
Since the extension $\mathbb{Q}(\alpha)$ over \mathbb{Q} is Galois, we have that $[\mathbb{Q}(\alpha): \mathbb{Q}]=|\operatorname{Gal}(\mathbb{Q}(\alpha) / \mathbb{Q})|=6$. We note that the polynomial $g(x)=x^{3}-3 x+1 \in \mathbb{Q}[x]$ vanishes at $\alpha+\bar{\alpha}$. The other roots of this polynomial are $\alpha^{2}+\alpha^{7}$, and $\alpha^{4}+\alpha^{5}$. Since no root is contained in the field \mathbb{Q}, the polynomial g is irreducible over \mathbb{Q}, and it is the minimal polynomial of $\alpha+\bar{\alpha}$ over \mathbb{Q}. Therefore, $[\mathbb{Q}(\alpha+\bar{\alpha}): \mathbb{Q}]=3$, and furthermore, the field $\mathbb{Q}(\alpha+\bar{\alpha})$ is the splitting field of the polynomial g over \mathbb{Q}. (Since the other two roots can be expressed in terms of $\alpha+\bar{\alpha}$, and hence adjoining the roots $\alpha+\bar{\alpha}$ ensures that all roots are contained in the field extension.) Again using Thm 4.6.15, and using that \mathbb{Q} is perfect, and hence the extension is separable, we conclude that the extension $\mathbb{Q}(\alpha+\bar{\alpha})$ over \mathbb{Q} is Galois of degree 3 .

Exercice 4 (Automorphism of $\mathbb{C}(x)$). 1. We note that all \mathbb{C} - automorphisms of $\mathbb{C}(x)$ are determined by the image of x. We have that:

$$
F^{2}(x)=i \frac{x+1}{x-1} \text { and } F^{3}(x)=x,
$$

therefore $F^{3}=\operatorname{Id}_{\mathbb{C}(x)}$. Similarly, we have:

$$
G^{2}(x)=\frac{x(-i-1)+1-i}{x(i+1)+1-i} \text { and } G^{3}(x)=x
$$

therefore $G^{3}=\operatorname{Id}_{\mathbb{C}(x)}$. Lastly, as

$$
F G(x)=-\frac{1}{x} \text { and } G F(x)=-x
$$

it follows that $(F G)^{2}=(G F)^{2}=\operatorname{Id}_{\mathbb{C}(x)}$.
2. By item 1. we have $[(F G) \circ(G F)](x)=[(G F) \circ(F G)](x)=\frac{1}{x}$ and we see that $F G$ and $G F$ are commuting elements of order 2 . It follows that the subgroup generated by them, $<F G, G F>$, is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ and, moreover, it is normal in \mathcal{A}, since

$$
F(F G) F^{-1}=F F G F^{2}=F(F G F G) G^{2} F=F\left(\operatorname{Id}_{\mathbb{C}(x)}\right) G^{2} F=(F G)(G F)
$$

and

$$
G(F G) G^{-1}=G F
$$

3. First, by items 1. and 2., we have that $3||\mathcal{A}|$ and 4$||\mathcal{A}|$, therefore $|\mathcal{A}| \geq 12$. Since $F G F G=G F G F=\mathrm{Id}_{\mathbb{C}(x)}$, it follows that

$$
F G F=G^{2} \text { and } G F G=F^{2}
$$

and, keeping in mind the other relations established in items 1. and 2., one shows that $\operatorname{Id}_{\mathbb{C}(x)}$, $F, F^{2}, G, G^{2}, F G, G F, F^{2} G, F G^{2}, G^{2} F, G F^{2}, F G^{2} F$ are distinct elements of \mathcal{A}.
Secondly, as $\mathcal{A}=<F, G>$, then if $H \in \mathcal{A}$, we have $H=F^{i_{1}} G^{j_{1}} \cdots F^{i_{n}} G^{j_{m}}$, where $n, m \geq 0$ and $i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{m} \in \mathbb{Z}$. Since $F^{3}=G^{3}=\operatorname{Id}_{\mathbb{C}(x)}$, we have $i_{1}, j_{m} \in\{0,1,2\}$ and $i_{2}, \ldots, i_{n}, j_{1}, \ldots, j_{m-1} \in\{1,2\}$. Lastly, as $F G$ and $G F$ commute, $(F G)^{2}=(G F)^{2}=$ $\operatorname{Id}_{\mathbb{C}(x)}, F G F=G^{2}$ and $G F G=F^{2}$, we deduce that $n+m \leq 3$ and conclude that $\mathcal{A}=$ $\left\{\operatorname{Id}_{\mathbb{C}(x)} F, G, F^{2}, G^{2}, F G, G F, F^{2} G, F G^{2}, G^{2} F, G F^{2}, F G^{2} F\right\}$.
4. To show that this group is isomorphic to A_{4}, we establish the following isomorphism:

$$
\sigma: \mathcal{A} \rightarrow A_{4} \text { with } \sigma(F)=(123) \text { and } \sigma(G)=(234)
$$

Knowing a presentation of A_{4} by generators and relations, the calculations in items $1 ., 2$. and 3. establish the isomorphism.

Another way to establish this isomorphism is to note that \mathcal{A} is a non-commutative group with 12 elements which admits a normal subgroup isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Inspecting the classification of finite groups of order 12 , we determine that $\mathcal{A} \cong A_{4}$.

Exercice 5 (Galois correspondence). 1. Let $L=\mathbb{Q}(\sqrt{7})$. We have that $[L: \mathbb{Q}]=2$, as $\sqrt{7} \notin \mathbb{Q}$ is a root of the irreducible polynomial $x^{2}-7 \in \mathbb{Q}[x]$. Now, \mathbb{Q} is a perfect field and L is the splitting field of $x^{2}-7 \in \mathbb{Q}[x]$ over \mathbb{Q}, hence the extension $\mathbb{Q} \subseteq L$ is Galois. By Proposition 4.6.3(d), it follows that $|\operatorname{Gal}(L / \mathbb{Q})|=2$ and so $\operatorname{Gal}(L / \mathbb{Q}) \cong \mathbb{Z} / 2 \mathbb{Z}$. The only subgroups of $\operatorname{Gal}(L / \mathbb{Q})$ are $\operatorname{Gal}(L / \mathbb{Q})$ and $\left\{\operatorname{Id}_{L}\right\}$, therefore the only sub-extensions of L are $\mathbb{Q}=L^{\operatorname{Gal}(L / \mathbb{Q})}$ and $L=L^{\left\{\mathrm{Id}_{L}\right\}}$.
2. Let $L=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. We have seen in Series 9 , Exercise 5.2 that $[L: \mathbb{Q}]=4$. Now, \mathbb{Q} is a perfect field and L is the decomposition field of $\left(x^{2}-2\right)\left(x^{2}-3\right) \in \mathbb{Q}[x]$ over \mathbb{Q}, hence the extension $\mathbb{Q} \subseteq L$ is Galois. By Proposition 4.6.3(d), it follows that $|\operatorname{Gal}(L / \mathbb{Q})|=4$. Now, let $\sigma, \tau \in \operatorname{Gal}(L / \mathbb{Q})$ be such that $\sigma(\sqrt{2})=-\sqrt{2}$ and $\sigma(\sqrt{3})=\sqrt{3}$, respectively $\tau(\sqrt{2})=\sqrt{2}$ and $\tau(\sqrt{3})=-\sqrt{3}$. We see that $\sigma^{2}=\tau^{2}=\operatorname{Id}_{L}$ and that $\sigma \tau=\tau \sigma$. Therefore $\operatorname{Gal}(L / \mathbb{Q})=<$ $\sigma, \tau>\cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Now, $\operatorname{Gal}(L / \mathbb{Q})$ admits 3 non-trivial proper subgroups: $<\sigma>$, $<\tau>$ and $<\sigma \tau>$, each isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$. Let H be one of these subgroups. By applying Theorem 4.6.18, we determine that $L^{H} \subseteq L$ is Galois and $\left[L: L^{H}\right]=|H|=2$. Therefore, $\left[L^{H}: \mathbb{Q}\right]=2$. One checks that $\mathbb{Q}(\sqrt{3}) \subseteq L^{<\sigma>}$, as $\sigma(\sqrt{3})=\sqrt{3}$, and, similarly, that $\mathbb{Q}(\sqrt{2}) \subseteq L^{<\tau>}$ and $\mathbb{Q}(\sqrt{6}) \subseteq L^{<\sigma \tau>}$, respectively. We conclude that

$$
L^{<\sigma>}=\mathbb{Q}(\sqrt{3}), L^{<\tau>}=\mathbb{Q}(\sqrt{2}) \text { and } L^{<\sigma \tau>}=\mathbb{Q}(\sqrt{6}) .
$$

3. Let $L=\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ and consider the extension chain:

$$
\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq L
$$

We have that $[L: \mathbb{Q}]=[L: \mathbb{Q}(\sqrt{2}, \sqrt{3})][\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]=8$, as $\sqrt{5} \notin \mathbb{Q}(\sqrt{2}, \sqrt{3})$ is a root of the polynomial $x^{2}-5 \in \mathbb{Q}(\sqrt{2}, \sqrt{3})[x]$. Now, \mathbb{Q} is a perfect field and L is the splitting field of $\left(x^{2}-2\right)\left(x^{2}-3\right)\left(x^{2}-5\right) \in \mathbb{Q}[x]$ over \mathbb{Q}, hence the extension $\mathbb{Q} \subseteq L$ is Galois. By Proposition 4.6.3(d), it follows that $|\operatorname{Gal}(L / \mathbb{Q})|=8$. Let $\sigma_{1}, \sigma_{2}, \sigma_{3} \in \operatorname{Gal}(L / \mathbb{Q})$ be such that:

$$
\sigma_{1}(\sqrt{2})=-\sqrt{2}, \sigma_{1}(\sqrt{3})=\sqrt{3} \text { and } \sigma_{1}(\sqrt{5})=\sqrt{5}
$$

$$
\begin{aligned}
& \sigma_{2}(\sqrt{2})=\sqrt{2}, \sigma_{2}(\sqrt{3})=-\sqrt{3} \text { and } \sigma_{2}(\sqrt{5})=\sqrt{5} \\
& \sigma_{3}(\sqrt{2})=\sqrt{2}, \sigma_{3}(\sqrt{3})=\sqrt{3} \text { and } \sigma_{3}(\sqrt{5})=-\sqrt{5}
\end{aligned}
$$

One shows that $\sigma_{i}^{2}=\operatorname{Id}_{L}$ for all $i=1,2,3$ and that $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for all $i \neq j$, therefore determining that $\operatorname{Gal}(L / \mathbb{Q})=<\sigma_{1}, \sigma_{2}, \sigma_{3}>\cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. We first consider the subgroups of order 2 of $\operatorname{Gal}(L / \mathbb{Q})$. There are 7 of them and each of these is cyclic and generated by an element of $\operatorname{Gal}(L / \mathbb{Q})$. Let H be one of these subgroups. We apply Theorem 4.6.18 to determine that $L^{H} \subseteq L$ is Galois with $\left[L: L^{H}\right]=|H|=2$. Therefore we have $\left[L^{H}: \mathbb{Q}\right]=4$.
Let $H=<\sigma_{1}>$. One checks that $\mathbb{Q}(\sqrt{3}, \sqrt{5}) \subseteq L^{H}$, as $\sigma_{1}(\sqrt{3})=\sqrt{3}$ and $\sigma_{1}(\sqrt{5})=\sqrt{5}$. Therefore, $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{3}, \sqrt{5}) \subseteq L^{H}$, where $[\mathbb{Q}(\sqrt{3}, \sqrt{5}): \mathbb{Q}]=4$ and $\left[L^{H}: \mathbb{Q}\right]=4$. We conclude that $L^{H}=\mathbb{Q}(\sqrt{3}, \sqrt{5})$. Similarly, one shows that:

$$
\begin{gathered}
L^{<\sigma_{2}>}=\mathbb{Q}(\sqrt{2}, \sqrt{5}), L^{<\sigma_{3}>}=\mathbb{Q}(\sqrt{2}, \sqrt{3}), L^{<\sigma_{1} \sigma_{2}>}=\mathbb{Q}(\sqrt{6}, \sqrt{5}) \\
L^{<\sigma_{1} \sigma_{3}>}=\mathbb{Q}(\sqrt{3}, \sqrt{10}), L^{<\sigma_{2} \sigma_{3}>}=\mathbb{Q}(\sqrt{2}, \sqrt{15}), L^{<\sigma_{1} \sigma_{2} \sigma_{3}>}=\mathbb{Q}(\sqrt{6}, \sqrt{10}, \sqrt{15})=\mathbb{Q}(\sqrt{6}, \sqrt{10})
\end{gathered}
$$

We now consider the subgroups of order 4 of $\operatorname{Gal}(L / \mathbb{Q})$. Again, there are 7 of them and each of these is generated by two distinct elements of order 2 of $\operatorname{Gal}(L / \mathbb{Q})$ and is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Let H be one of these subgroups. We apply Theorem 4.6 .18 to determine that $L^{H} \subseteq L$ is Galois with $\left[L: L^{H}\right]=|H|=4$. Therefore we have $\left[L^{H}: \mathbb{Q}\right]=2$. One shows that:

$$
\begin{gathered}
L^{<\sigma_{1}, \sigma_{2}>}=\mathbb{Q}(\sqrt{5}), L^{<\sigma_{1}, \sigma_{3}>}=\mathbb{Q}(\sqrt{3}), L^{<\sigma_{1}, \sigma_{2} \sigma_{3}>}=\mathbb{Q}(\sqrt{15}), L^{<\sigma_{2}, \sigma_{3}>}=\mathbb{Q}(\sqrt{2}) \\
L^{<\sigma_{2}, \sigma_{1} \sigma_{3}>}=\mathbb{Q}(\sqrt{10}), L^{<\sigma_{3}, \sigma_{1} \sigma_{2}>}=\mathbb{Q}(\sqrt{6}), L^{<\sigma_{1} \sigma_{2}, \sigma_{1} \sigma_{3}>}=\mathbb{Q}(\sqrt{30})
\end{gathered}
$$

4. First, we note that the extension $\mathbb{Q} \subseteq E$ is Galois, as \mathbb{Q} is a perfect field and E is the splitting field of the polynomial $t^{4}-2 t^{2}-1 \in \mathbb{Q}[t]$ over \mathbb{Q}. By Proposition 4.6.3(d), it follows that $|\operatorname{Gal}(E / \mathbb{Q})|=[E: \mathbb{Q}]$. We see that $t^{4}-2 t^{2}-1=\left(t^{2}-1-\sqrt{2}\right)\left(t^{2}-1+\sqrt{2}\right)=(t-\sqrt{1+\sqrt{2}})(t+$ $\sqrt{1+\sqrt{2}})(t-\sqrt{1-\sqrt{2}})(t+\sqrt{1-\sqrt{2}})$. Therefore $E=\mathbb{Q}(\sqrt{1+\sqrt{2}}, \sqrt{1-\sqrt{2}})$. Now, we have that $i=\sqrt{1+\sqrt{2}} \cdot \sqrt{1-\sqrt{2}} \in E$ and thus $\mathbb{Q}(\sqrt{1+\sqrt{2}}, i) \subseteq E$. Conversely, we have $\sqrt{1-\sqrt{2}}=i \cdot(\sqrt{1+\sqrt{2}})^{-1} \in \mathbb{Q}(\sqrt{1+\sqrt{2}}, i)$ and we deduce that $E=\mathbb{Q}(\sqrt{1+\sqrt{2}}, i)$. We now consider the extension chain:

$$
\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{1+\sqrt{2}}) \subseteq E
$$

Since $\sqrt{1+\sqrt{2}}$ is a root of $t^{4}-2 t^{2}-1 \in \mathbb{Q}[t]$, it follows that $[\mathbb{Q}(\sqrt{1+\sqrt{2}}): \mathbb{Q}] \leq 4$. We have already seen that the polynomial $t^{4}-2 t^{2}-1$ does not admit roots in \mathbb{Q}. We now assume that there exist $a, b, c, d \in \mathbb{Q}$ such that:

$$
t^{4}-2 t^{2}-1=\left(t^{2}+a t+b\right)\left(t^{2}+c t+d\right)
$$

Then $\left\{\begin{array}{l}a+c=0 \\ b+a c+d=-2 \\ a d+b c=0 \\ b d=-1\end{array}\right.$
and so $c=-a, d=-\frac{1}{b}$ and $-a\left(\frac{1}{b}+b\right)=0$.

- If $a=0$, then $c=0$ and $b+d=-2$. Keeping in mind that $d=-\frac{1}{b}$, it follows that $(b+1)^{2}=2$, hence $\sqrt{2} \in \mathbb{Q}$, which is a contradiction.
- If $\frac{1}{b}+b=0$, then $b^{2}+1=0$ and so $i \in \mathbb{Q}$, which is a contradiction.

We have thus shown that $t^{4}-2 t^{2}-1 \in \mathbb{Q}[t]$ is irreducible and therefore $[\mathbb{Q}(\sqrt{1+\sqrt{2}})$: $\mathbb{Q}]=4$. We remark that $\mathbb{Q}(\sqrt{1+\sqrt{2}}) \subseteq \mathbb{R}$ and so $[E: \mathbb{Q}(\sqrt{1+\sqrt{2}})]=2$, as $i \notin \mathbb{Q}(\sqrt{1+\sqrt{2}})$ is a root of $t^{2}+1 \in \mathbb{Q}(\sqrt{1+\sqrt{2}})[t]$. In conclusion, $[E: \mathbb{Q}]=8$, hence $|\operatorname{Gal}(E / \mathbb{Q})|=8$.
Let $\sigma, \tau \in \operatorname{Gal}(E / \mathbb{Q})$ be such that $\sigma(\sqrt{1+\sqrt{2}})=\sqrt{1-\sqrt{2}}$ and $\sigma(i)=-i$, respectively $\tau(\sqrt{1+\sqrt{2}})=\sqrt{1+\sqrt{2}}$ and $\tau(i)=-i$. One checks that:

$$
\begin{gathered}
\sigma^{2}(\sqrt{1+\sqrt{2}})=-\sqrt{1+\sqrt{2}}, \sigma^{2}(i)=i \\
\sigma^{3}(\sqrt{1+\sqrt{2}})=-\sqrt{1-\sqrt{2}}, \sigma^{3}(i)=-i \\
\sigma^{4}(\sqrt{1+\sqrt{2}})=\sqrt{1+\sqrt{2}}, \sigma^{4}(i)=i
\end{gathered}
$$

and thus deduces that $\sigma^{4}=\tau^{2}=\operatorname{Id}_{E}$. Now $\langle\sigma\rangle$ is a subgroup of order 4 in $\operatorname{Gal}(E / \mathbb{Q})$ and $\tau \notin\langle\sigma\rangle$. We deduce that $\operatorname{Gal}(E / \mathbb{Q})=<\sigma, \tau\rangle$ and, moreover, as $\sigma \tau \neq \tau \sigma, \operatorname{Gal}(E / \mathbb{Q})$ is non-commutative. Lastly, $\operatorname{Gal}(E / \mathbb{Q})$ admits two elements of order 2: σ^{2} and τ, and we conclude that $\operatorname{Gal}(E / \mathbb{Q}) \cong D_{8}$.

We now determine the subgroups of $\operatorname{Gal}(E / \mathbb{Q})$. There are 5 elements of order 2 in $\operatorname{Gal}(E / \mathbb{Q})$: $\tau, \sigma^{2}, \tau \sigma^{2}, \tau \sigma$ and $\sigma \tau$, each generating a cyclic group of order 2 . Let H be one of these subgroups. By applying Theorem 4.6.18, we determine that $E^{H} \subseteq E$ is Galois and [E : $\left.E^{H}\right]=|H|=2$. Therefore, $\left[E^{H}: \mathbb{Q}\right]=4$. One checks that:

$$
\begin{gathered}
\tau \sigma^{2}(\sqrt{1+\sqrt{2}})=\tau(-\sqrt{1+\sqrt{2}})=-\sqrt{1+\sqrt{2}} \text { and } \tau \sigma^{2}(i)=-i \\
\tau \sigma(\sqrt{1+\sqrt{2}})=\tau(\sqrt{1-\sqrt{2}})=\tau\left(i(\sqrt{1+\sqrt{2}})^{-1}\right)=-\sqrt{1-\sqrt{2}} \text { and } \tau \sigma(i)=i \\
\sigma \tau(\sqrt{1+\sqrt{2}})=\sigma(\sqrt{1+\sqrt{2}})=\sqrt{1-\sqrt{2}} \text { and } \sigma \tau(i)=i
\end{gathered}
$$

and therefore

$$
\begin{aligned}
& \tau \sigma^{2}(\sqrt{2})=\tau \sigma^{2}\left((\sqrt{1+\sqrt{2}})^{2}-1\right)=\left(\tau \sigma^{2}((\sqrt{1+\sqrt{2}}))^{2}-1=(-\sqrt{1+\sqrt{2}})^{2}-1=\sqrt{2}\right. \\
& \tau \sigma(\sqrt{1+\sqrt{2}}-\sqrt{1-\sqrt{2}}) \\
& =\tau \sigma(\sqrt{1+\sqrt{2}})-\tau \sigma\left(i(\sqrt{1+\sqrt{2}})^{-1}\right)=-\sqrt{1-\sqrt{2}}-\tau\left(-i(\sqrt{1-\sqrt{2}})^{-1}\right) \\
& \\
& =-\sqrt{1-\sqrt{2}}-\tau(-\sqrt{1+\sqrt{2}})=\sqrt{1+\sqrt{2}}-\sqrt{1-\sqrt{2}} \\
& \sigma \tau(\sqrt{1+\sqrt{2}}+\sqrt{1-\sqrt{2}}) \\
& =\sqrt{1-\sqrt{2}}+\sigma \tau\left(i(\sqrt{1+\sqrt{2}})^{-1}\right)=\sqrt{1-\sqrt{2}}+\sigma\left(-i(\sqrt{1+\sqrt{2}})^{-1}\right) \\
& \\
& =\sqrt{1-\sqrt{2}}+i(\sqrt{1-\sqrt{2}})^{-1}=\sqrt{1-\sqrt{2}}+\sqrt{1+\sqrt{2}}
\end{aligned}
$$

The corresponding sub-extensions are

$$
\begin{gathered}
E^{<\tau>}=\mathbb{Q}(\sqrt{1+\sqrt{2}}), E^{<\sigma^{2}>}=\mathbb{Q}(\sqrt{1-\sqrt{2}}), E^{<\tau \sigma^{2}>}=\mathbb{Q}(\sqrt{2}, i) \\
E^{<\tau \sigma>}=\mathbb{Q}(\sqrt{1+\sqrt{2}}-\sqrt{1-\sqrt{2}}) \text { and } E^{<\sigma \tau>}=\mathbb{Q}(\sqrt{1+\sqrt{2}}+\sqrt{1-\sqrt{2}}) .
\end{gathered}
$$

Lastly, $\operatorname{Gal}(E / \mathbb{Q})$ admits 3 subgroups of order 4 , one of which is cyclic, $\langle\sigma\rangle$, and the other two are isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z},<\tau, \sigma^{2}>$ and $<\tau \sigma, \sigma^{2}>$. Let H be one of
these subgroups. By applying Theorem 4.6.18, we determine that $E^{H} \subseteq E$ is Galois and $\left[E: E^{H}\right]=|H|=4$. Therefore, $\left[E^{H}: \mathbb{Q}\right]=2$. One checks that:

$$
\begin{gathered}
\left.\sigma(i \sqrt{2})=-i \sigma(\sqrt{2})=-i \sigma\left((\sqrt{1+\sqrt{2}})^{2}-1\right)=-i(\sqrt{1-\sqrt{2}})^{2}-1\right)=i \sqrt{2} \\
\left\{\begin{array}{l}
\left.\tau(\sqrt{2})=\tau(\sqrt{1+\sqrt{2}})^{2}-1\right)(=\sqrt{1+\sqrt{2}})^{2}-1=\sqrt{2} \\
\sigma^{2}(\sqrt{2})=\sigma^{2}\left((\sqrt{1+\sqrt{2}})^{2}-1\right)=(-\sqrt{1+\sqrt{2}})^{2}-1=\sqrt{2} \\
\tau \sigma(i)=\tau(-i)=i \text { and } \sigma^{2}(i)=i
\end{array}\right.
\end{gathered}
$$

The corresponding sub-extensions are:

$$
E^{<\sigma>}=\mathbb{Q}(i \sqrt{2}), E^{<\tau, \sigma^{2}>}=\mathbb{Q}(\sqrt{2}) \text { and } E^{<\tau \sigma, \sigma^{2}>}=\mathbb{Q}(i) .
$$

Exercice 6.

We have the following extension tower:

$$
\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{1+\sqrt{2}})
$$

The extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2})$ is Galois, as \mathbb{Q} is a perfect field and $\mathbb{Q}(\sqrt{2})$ is the decomposition field of the polynomial $x^{2}-2 \in \mathbb{Q}[x]$, see Theorem 4.6.15. Similarly, the extension $\mathbb{Q}(\sqrt{2}) \subseteq$ $\mathbb{Q}(\sqrt{1+\sqrt{2}})$ is Galois, as $\mathbb{Q}(\sqrt{2})$ is perfect and $\mathbb{Q}(\sqrt{1+\sqrt{2}})$ is the decomposition field of the polynomial $x^{2}-1-\sqrt{2} \in \mathbb{Q}(\sqrt{2})[x]$.

We now consider the extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{1+\sqrt{2}})$. We know by Exercise 2 . that $\sqrt{1+\sqrt{2}}$ is a root of the irreducible polynomial $x^{4}-2 x^{2}-1 \in \mathbb{Q}[x]$, hence $m_{\sqrt{1+\sqrt{2}}, \mathbb{Q}}(x)=x^{4}-2 x^{2}-1$ and $[\mathbb{Q}(\sqrt{1+\sqrt{2}}): \mathbb{Q}]=4$. Moreover, we have already seen that the other roots of $x^{4}-2 x^{2}-1$ are $-\sqrt{1+\sqrt{2}}$ and $\pm \sqrt{1-\sqrt{2}}$. Now, we remark that $\mathbb{Q}(\sqrt{1+\sqrt{2}}) \subseteq \mathbb{R}$, therefore $\pm \sqrt{1-\sqrt{2}} \notin$ $\mathbb{Q}(\sqrt{1+\sqrt{2}})$. Let $\sigma \in \operatorname{Gal}(\mathbb{Q}(\sqrt{1+\sqrt{2}}) / \mathbb{Q})$. Then $\sigma(\sqrt{1}+\sqrt{2}) \in \mathbb{Q}(\sqrt{1+\sqrt{2}})$ is a root of $m \sqrt{1+\sqrt{2}, \mathbb{Q}}(x)$ and thus $\sigma(\sqrt{1}+\sqrt{2})= \pm \sqrt{1+\sqrt{2}}$, see Proposition 4.6.3 (c). It follows that $|\operatorname{Gal}(\mathbb{Q}(\sqrt{1+\sqrt{2}}) / \mathbb{Q})|=2$ and we conclude, using Corollary 4.6.13, that the extension $\mathbb{Q} \subseteq$ $\mathbb{Q}(\sqrt{1+\sqrt{2}})$ is not Galois.

Exercice 7. 1. As $K \subseteq L$ is Galois, hence separable, and of finite degree, we have that $L=K(\alpha)$ for some $\alpha \in L \backslash K$, see Theorem 4.5.10. Similarly, one argues that $E=L(\beta)$ for some $\beta \in E \backslash L$.
For all $\sigma \in \operatorname{Gal}(L / K)$, let $\sigma^{x}: L[x] \rightarrow L[x]$ be the induced homomorphism, i.e.

$$
\sigma^{x}\left(\sum_{i=1}^{n} a_{i} x^{i}\right)=\sum_{i=1}^{n} \sigma\left(a_{i}\right) x^{i}
$$

Note that, since σ is a K-automorphism of L, it follows that σ^{x} is an isomorphism of $L[x]$.
Consider the polynomial $m_{1}=m_{\beta, L}$ and note that it is irreducible and separable over L. Let $\left\{m_{1}, m_{2}, \ldots, m_{r}\right\}$ be the $\operatorname{Gal}(L / K)$-orbit of m_{1} in $L[x]$, where $m_{i} \nsim m_{j}$ for all $i \neq j$. Now, since m_{1} is irreducible and, since for all $m_{i}, 1 \leq i \leq r$, there exists $\sigma_{i} \in \operatorname{Gal}(L / K)$ such that $\sigma_{i}^{x}\left(m_{1}\right)=m_{i}$, it follows that m_{i} is irreducible for all $1 \leq i \leq r$. Therefore, $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for all $i \neq j$.
We will now show that the polynomials $m_{i}, 1 \leq i \leq r$, are separable. First, note that m_{1} is separable as the extension $L \subseteq E$ is Galois, hence we have that $\operatorname{gcd}\left(m_{1}, \frac{d}{d x} m_{1}\right)=1$, see

Corollary 4.4.10. Since for all $1 \leq i \leq r$ there exists $\sigma_{i} \in \operatorname{Gal}(L / K)$ such that $\sigma_{i}^{x}\left(m_{1}\right)=m_{i}$, we have that $\sigma_{i}^{x}\left(\frac{d}{d x} m_{1}\right)=\frac{d}{d x} m_{i}$ and thus $1=\sigma_{i}^{x}\left(\operatorname{gcd}\left(m_{1}, \frac{d}{d x} m_{1}\right)\right)=\operatorname{gcd}\left(m_{i}, \frac{d}{d x} m_{i}\right)$. It follows that the polynomial $m_{i}(x) \in L[x]$ is separable for all $1 \leq i \leq r$.
Set $g(x)=\prod_{i=1}^{r} m_{i}(x) \in L[x]$. Now, we have shown that the m_{i} 's, $1 \leq i \leq r$, are separable polynomials with $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$, for all $i \neq j$. It follows that the polynomial $g(x)$ is also separable over L. We also remark that for all $\sigma \in \operatorname{Gal}(L / K)$ we have that

$$
\sigma^{x}(g)=\sigma^{x}\left(\prod_{i=1}^{r} \sigma_{i}^{x}\left(m_{1}\right)\right)=\prod_{i=1}^{r}\left(\sigma^{x} \circ \sigma_{i}^{x}\right)\left(m_{1}\right)=\prod_{i=1}^{r} m_{i}
$$

as $\left\{m_{1}, m_{2}, \ldots, m_{r}\right\}$ is the $\operatorname{Gal}(L / K)$-orbit of m_{1} and $\sigma \circ \sigma_{i} \in \operatorname{Gal}(L / K)$ for all $\sigma \in \operatorname{Gal}(L / K)$ and all $1 \leq i \leq r$. Therefore, we have that $g(x) \in L^{\operatorname{Gal}(L / K)}[x]=K[x]$, as $K \subseteq L$ is Galois.
Let F be the decomposition field of $m_{\alpha, K} \cdot g$ over K. Then F is generated by the roots of $m_{\alpha, K}$ and the roots of g. Note that $m_{\alpha, K}$ and g do not admit a common root $\gamma \in F$. If they would then $\gamma \in L$, as L is the decomposition field of $m_{\alpha, K}$, and therefore there would exist $1 \leq i \leq r$ such that $m_{i}(\gamma)=0$, contradicting the fact that the m_{i} 's are irreducible polynomials in $L[x]$. Now, as g and $m_{\alpha, K}$ are separable polynomials that do not admit common roots, it follows that F is generated by separable elements and thus the extension $K \subseteq F$ is Galois. Lastly, we have that $E \subseteq F$, as $E=L(\beta), L=K(\alpha)$ and $\alpha, \beta \in F$, since they are roots of $m_{\alpha, K}$ and g, respectively. We have shown that there exist a tower of extensions $K \subseteq E \subseteq F$ with $K \subseteq F$ Galois.
2. Let $\alpha \in E$. Then, we have $L \subseteq L(\alpha) \subseteq E$, where the extension $L \subseteq L(\alpha)$ is finite and separable. Now, let $m_{\alpha, L}(x)=\sum_{i=1}^{r} a_{i} x^{i} \in L[x]$. Then we have the tower of extensions $K \subseteq K\left(a_{1}, \ldots, a_{r}\right) \subseteq K\left(a_{1}, \ldots, a_{r}, \alpha\right) \subseteq L(\alpha)$ where $K \subseteq K\left(a_{1}, \ldots, a_{r}\right)$ and $K\left(a_{1}, \ldots, a_{r}\right) \subseteq$ $K\left(a_{1}, \ldots, a_{r}, \alpha\right)$ are finite and separable. Moreover, we note that $m_{\alpha, L}(x) \in K\left(a_{1}, \ldots, a_{r}\right)[x]$. Set F to be the splitting field of $\prod_{i=1}^{r} m_{a_{i}, K}(x)$ over K. Then $F: K$ is finite and F is generated, over K, by the roots of $m_{a_{i}, K}$ for all $1 \leq i \leq r$, see Lemma 4.3.3. As a_{i} is separable over K for all $1 \leq i \leq r$, then so are all the other roots of $m_{a_{i}, K}$ and we deduce that the extension $K \subseteq F$ is separable. Hence, it is Galois. Moreover, we note that $K\left(a_{1}, \ldots, a_{r}\right) \subseteq F$.
Set G be the splitting field of $m_{\alpha, L}(x)$ over F. Then $[G: F]$ is finite and G is generated, over F, by the roots of the polynomial $m_{\alpha, L}(x)$, see Lemma 4.3.3. As $\alpha \in K\left(a_{1}, \ldots, a_{r}, \alpha\right)$ is separable over $K\left(a_{1}, \ldots, a_{r}\right)$, we have that α is separable over F, since $m_{\alpha, F} \mid m_{\alpha, K\left(a_{1}, \ldots, a_{r}\right)}$. Therefore, the extension $F \subseteq G$ is Galois and finite. Moreover, we have that $K\left(a_{1}, \ldots, a_{r}, \alpha\right) \subseteq G$. We have built the following extension diagram:

where $K \subseteq H$ is a Galois extension, see item 1. Therefore, H is separable over K, hence, in particular, we have that $K\left(a_{1}, \ldots, a_{r}, \alpha\right)$ is separable over K. We have shown that all $\alpha \in E$ are separable over K and we conclude that E is separable over K.

Exercice 8.

Let K be a countable field and consider the polynomial ring $K[x]$. For all $i \geq 0$ define the subsets $K^{i}[x] \subseteq K[x]$ with $K^{i}[x]=\{f \in K[x] \mid \operatorname{deg}(f)=i\}$. We remark that $K[x]=\bigcup_{i \geq 0} K^{i}[x]$ and that
$K^{i}[x] \cong K^{i}$, hence $\left|K^{i}[x]\right|=i \cdot|K|=|K|$, for all $i \geq 0$. It follows that $|K[x]|=\aleph_{0} \cdot|K|=\aleph_{0}$ and so $K[x]$ is also countable.

We define the map $\phi: \bar{K} \rightarrow K[x]$ by $\phi(\alpha)=m_{\alpha, K}$. Now the subset $\phi(\bar{K})$ of $K[x]$ contains all polynomials of the form $x-\alpha$, where $\alpha \in K$, hence $\phi(\bar{K})$ is also countable. Lastly, for any $m_{\alpha, K} \in \phi(\bar{K})$ we have that the preimage $\phi^{-1}\left(m_{\alpha, K}\right)$ is non-empty and finite, as $\alpha \in \phi^{-1}\left(m_{\alpha, K}\right)$ and $m_{\alpha, K}$ admits a finite number of roots. We conclude that \bar{K} has the same cardinality as $\phi(\bar{K})$, hence it is countable.

Exercice 9.

Let G be a finite group and let $|G|=n$. By Cayley's Theorem, we know that we can embed G as a subgroup of S_{n}.

Now, consider the ring $F=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ and for each $\sigma \in G$ define:

$$
\phi_{\sigma}: F \rightarrow F \text { by } \phi_{\sigma}\left(x_{i}\right)=x_{\sigma(i)} \text { for all1 } \leq i \leq n .
$$

One shows that ϕ_{σ} is a ring homomorphism for all $\sigma \in G$. Moreover, we have that $\phi_{\sigma} \circ \phi_{\sigma^{-1}}=$ $\phi_{\sigma^{-1}} \circ \phi_{\sigma}=\operatorname{Id}_{F}$, hence ϕ_{σ} is invertible for all $\sigma \in G$ with inverse $\phi_{\sigma}^{-1}=\phi_{\sigma^{-1}}$.

Let $E=\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ be the field of fractions of F. Then $\phi_{\sigma}: F \rightarrow E$ is an injective ring homomorhism, as it is the composition of two injective ring homomorphisms. We now apply the universal property of the fraction field, to determine that:

$$
\phi_{\sigma}: E \rightarrow E \text {, where } \phi_{\sigma}\left(x_{i}\right)=x_{\sigma(i)} \text { for all } 1 \leq i \leq n
$$

is a field homomorphism. Now, one checks that, in fact, ϕ_{σ} is a \mathbb{Q}-automorphism of E.
Let $H=\left\{\phi_{\sigma} \mid \sigma \in G\right\}$ be a subset of $\operatorname{Aut}_{\mathbb{Q}}(E)$. Since $\phi_{\sigma_{1}} \circ \phi_{\sigma_{2}}=\phi_{\sigma_{1} \sigma_{2}}$ for all $\sigma_{1}, \sigma_{2} \in G$, it follows that H is a subgroup of $\operatorname{Aut}_{\mathbb{Q}}(E)$. Moreover, we have that $H \cong G$, hence H is a finite group. We now apply Theorem 4.6 .12 to E and H to deduce that $\left[E: E^{H}\right]=|H|=\left|\operatorname{Gal}\left(E / E^{H}\right)\right|$, hence $E^{H} \subseteq E$ is Galois, see Corollary 4.6.13. We conclude that $\operatorname{Gal}\left(E / E^{H}\right)=H \cong G$.

Supplementary exercise

Exercice 10. 1. As $K \subseteq L$ is a purely inseparable extension, it follows that $\alpha \in L \backslash K$ is purely inseparable over K, thus there exists $n \geq 1$ such that $\alpha^{p^{n}} \in K$. We fix such an $\alpha \in L \backslash K$ and we let $\sigma \in \operatorname{Gal}(L / K)$. It suffices to show that $\sigma(\alpha)=\alpha$.
The element $\alpha \in L / K$ is the unique p^{n} th root of $\alpha^{p^{n}}$, see Exercise 2.(a) of Series 11. Therefore, it suffices to show that $(\sigma(\alpha))^{p^{n}}=\alpha^{p^{n}}$. We have:

$$
(\sigma(\alpha))^{p^{n}}=\sigma\left(\alpha^{p^{n}}\right)=\alpha^{p^{n}} .
$$

We conclude that $\operatorname{Gal}(L / K)=\left\{\operatorname{Id}_{L}\right\}$.
2. First, we will show that $L_{\text {insep }, K} \subseteq L^{\operatorname{Gal}(L / K)}$. For this, let $\alpha \in L_{\text {insep }, K}$ and let $\sigma \in$ $\operatorname{Gal}(L / K)$. As $\alpha \in L_{\text {insep }, K}$, there exists $n \in \mathbb{Z}_{\geq 0}$ such that $\alpha^{p^{n}} \in K$. Then:

$$
\sigma(\alpha)^{p^{n}}=\sigma\left(\alpha^{p^{n}}\right)=\alpha^{p^{n}} \in K
$$

and it follows that $\sigma(\alpha) \in L_{\text {insep }, K}$. Hence the restriction $\left.\sigma\right|_{L_{i n s e p, K}}$ is a K-automorphism of $L_{i n s e p, K}$ and thus $\left.\sigma\right|_{L_{\text {insep }, K}}=\operatorname{Id}_{L_{i_{\text {nsep }, K}}}$, see item 1. Therefore $\sigma(\alpha)=\left.\sigma\right|_{L_{\text {insep }, K}}(\alpha)=\alpha$ for all $\alpha \in L_{\text {insep }, K}$ and thus $L_{\text {insep }, K} \subseteq L^{\operatorname{Gal}(L / K)}$.
We now consider the extension tower:

$$
K \subseteq L_{i n s e p, K} \subseteq L^{\operatorname{Gal}(L / K)} \subseteq L
$$

We have that $[L: K]=\left[L: L_{\text {insep }, K}\right]\left[L_{\text {insep }, K}: K\right]$, hence $\left[L: L_{\text {insep }, K}\right]=|\operatorname{Gal}(L / K)|$.On the other hand, we have $\left[L: L^{\operatorname{Gal}(L / K)}\right]=|\operatorname{Gal}(L / K)|$, see Theorem 4.6.12, and we deduce that $\left[L^{\operatorname{Gal}(L / K)}: L_{\text {insep }, K}\right]=1$, hence $L^{\operatorname{Gal}(L / K)}=L_{\text {insep }, K}$. Lastly, the extension $L^{\operatorname{Gal}(L / K)} \subseteq L$ is separable, see Proposition 4.6.10, and we conclude that $L_{\text {insep }, K} \subseteq L$ is separable.

