
EPFL - Printemps 2022 Prof. Z. Patakfalvi
Anneaux et Corps Exercices
Solutions 13

Exercice 1. (a) Let γ =
√
2+
√
3 ∈ Q(

√
2,
√
3). We have that γ−

√
2 =
√
3 and so (γ−

√
2)2 = 3.

This gives γ2 − 1 = 2γ
√
2, therefore (γ2 − 1)2 = 8γ2 and so γ4 − 10γ2 + 1 = 0. It follows

that the polynomial t4 − 10t2 + 1 ∈ Q[t] admits γ as a root. We will now show that this
polynomial is irreducible.

Assume that p
r ∈ Q, where p, r ∈ Z, gcd(p, r) = 1 and r 6= 0, is a root of t4 − 10t2 + 1. Then

p | 1, r | 1 and so p
r = ±1. One checks that neither 1 nor −1 is a root of t4 − 10t2 + 1. We

now assume that there exist a, b, c, d ∈ Q such that

t4 − 10t2 + 1 = (t2 + at+ b)(t2 + ct+ d).

Then


a+ c = 0

b+ ac+ d = −10
ad+ bc = 0

bd = 1

and we deduce that c(b− d) = 0.

(a) If c = 0, then

{
b+ d = −10
bd = 1

which gives b2 + 10b + 1 = 0. This implies that b ∈ Q

is a root of the polynomial t2 + 10t + 1 ∈ Q[t]. If we write b = p
r , where p, r ∈ Z with

gcd(p, r) = 1 and r 6= 0, then p | 1, r | 1 and so b = ±1. But neither 1 nor −1 is a root
of t2 + 10t+ 1.

(b) If b = d, then b2 = 1 and so b = ±1. Moreover, as b + ac + d = −10 we also get that
c2 = 10 + 2b and so c2 ∈ {8, 12}, contradicting the fact that c ∈ Q.

We conclude that t4 − 10t2 + 1 ∈ Q[t] is irreducible and therefore, as it admits
√
2 +
√
3 as

a root, we have that m√2+√3,Q(t) = t4 − 10t2 + 1 and [Q(
√
2 +
√
3) : Q] = 4. Lastly, as

[Q(
√
2,
√
3) : Q] = 4, see Exercise 5.2 of Series 9, we conclude that

√
2 +
√
3 is a primitive

element of Q(
√
2,
√
3).

(b) As [Q(
√
2,
√
3) : Q] = 4, it follows that dimQ(Q(

√
2,
√
3)) = 4 and so, to show that the set

{1,
√
2,
√
3,
√
6} is a Q-basis of Q(

√
2,
√
3), it suffices to show that it is linearly independent.

For this, let a, b, c, d ∈ Q be such that

a+ b
√
2 + c

√
3 + d

√
6 = 0.

Then a+ d
√
6 = −(b

√
2 + c

√
3) and so (a+ d

√
6)2 = (b

√
2 + c

√
3)2 which gives

a2 + 6d2 − 2b2 − 3c2 + 2(ad− bc)
√
6 = 0.

As
√
6 /∈ Q it follows that

{
a2 + 6d2 − 2b2 − 3c2 = 0

ad = bc
.

Analogously, since a + b
√
2 = −(c

√
3 + d

√
6) and a + c

√
3 = −(b

√
2 + d

√
6), respectively,

one shows that

{
a2 + 2b2 − 3c2 − 6d2 = 0

ab = 3cd
and

{
a2 + 3c2 − 2b2 − 6d2 = 0

ac = 2bd
, respectively.

Now: 
a2 + 6d2 − 2b2 − 3c2 = 0

a2 + 2b2 − 3c2 − 6d2 = 0

a2 + 3c2 − 2b2 − 6d2 = 0

=⇒ a2 =
1

3
(2b2 + 3c2 + 6d2)



which gives{
a2 = 1

3(2b
2 + 3c2 + 6d2)

a2 + 2b2 − 3c2 − 6d2 = 0
=⇒ b2 =

1

4
(3c2 + 6d2) and so a2 =

1

2
(3c2 + 6d2).

Then 
a2 = 1

2(3c
2 + 6d2)

b2 = 1
4(3c

2 + 6d2)

a2 + 3c2 − 2b2 − 6d2 = 0

=⇒ c2 = 2d2.

If d 6= 0, then
√
2 = c

d ∈ Q, which is a contradiction. It follows that d = 0 and, consequently,
c = b = a = 0. We conclude that a = b = c = d = 0 and therefore {1,

√
2,
√
3,
√
6} is linearly

independent.

(c) Assume that γ = a
√
3 + b

√
6 is primitive in Q(

√
2,
√
3). If a = 0 or b = 0, then γ = b

√
6,

respectively γ = a
√
3, and, since Q(

√
6) ( Q(

√
2,
√
3) and Q(

√
3) ( Q(

√
2,
√
3) ,respectively,

it follows that γ is not primitive in Q(
√
2,
√
3), a contradiction.

Assume that a, b 6= 0. Now, a
√
3 + b

√
6 is primitive in Q(

√
2,
√
3) if and only if

√
3 + c

√
6,

where c = b
a 6= 0, is primitive in Q(

√
2,
√
3). As Q ⊆ Q(

√
3 + c

√
6) ⊆ Q(

√
2,
√
3) we have

[Q(
√
3 + c

√
6) : Q] | 4 and so [Q(

√
3 + c

√
6) : Q] ∈ {1, 2, 4}. Clearly, [Q(

√
3 + c

√
6) : Q] 6= 1

as
√
3 + c

√
6 /∈ Q. Assume that [Q(

√
3 + c

√
6) : Q] = 2. Then, there exists a polynomial

t2 + αt+ β ∈ Q[t] which admits
√
3 + c

√
6 as a root. Thus:

(
√
3 + c

√
6)2 + α(

√
3 + c

√
6) + β = 0

and so:
6c
√
2 + α

√
3 + cα

√
6 + 3 + 6c2 + β = 0.

By item (b), it follows that c = 0, contradicting the fact that b 6= 0. We conclude that
[Q(
√
3 + c

√
6) : Q] = 4 and therefore Q(

√
3 + c

√
6) = Q(

√
2,
√
3).

(d) Now, a
√
2 + b

√
3 + c

√
6, where a, b, c ∈ Q∗, is primitive in Q(

√
2,
√
3) if and only if

√
2 +

d
√
3 + e

√
6, where d = b

a 6= 0 and e = c
a 6= 0, is primitive in Q(

√
2,
√
3). We argue as in item

(c) to show that [Q(
√
2+ d

√
3+ e

√
6) : Q] ∈ {1, 2, 4} and that [Q(

√
2+ d

√
3+ e

√
6) : Q] 6= 1.

Assume [Q(
√
2 + d

√
3 + e

√
6) : Q] = 2. Then there exists a polynomial t2 + αt + β ∈ Q[t]

that admits
√
2 + d

√
3 + e

√
6 as a root. We have that:

(
√
2 + d

√
3 + e

√
6)2 + α(

√
2 + d

√
3 + e

√
6) + β = 0

and so

{
4e+ αd = 0

6de+ α = 0
. Then α = −6de and we have 4e− 6d2e = e(4− 6d2) = 0. As e 6= 0

it follows that 6 = (2d)
2 and so

√
6 ∈ Q, a contradiction.

We conclude that [Q(
√
2 + d

√
3 + e

√
6) : Q] = 4 and therefore Q(

√
2 + d

√
3 + e

√
6) =

Q(
√
2,
√
3).

Exercice 2. 1. Let β be a root of f. It holds that βp − β + α = 0. Let γ ∈ Fp ⊆ K. Then,
using Fermat’s little theorem, which states that γp = γ modulo p, it holds that over a field
of characteristic p, we have

(β + γ)p − (β + γ) + α = βp + γp − β − γ + α = βp + γ − β − γ + α = βp − β + α = 0.

Hence all β + γ, where γ ∈ Fp are roots of f. We get p distinct roots, and as Fp ⊆ K, by
adjoining β to K, all roots are contained in K(β) and hence L = K(β).



Moreover, we have thatmβ,K = f . Letmβ,K =
∏
γ∈I(x−(β+γ) in L[x] with I ⊂ Fp[x]. Then

the coefficients in front of x|I|−1 are exactly −
∑

γ∈I(β+γ) = |I|β +
∑

γ∈I γ. If we suppose
that |I| < p, one contradicts the fact that β /∈ K. Therefore mβ,K = f .

We use Proposition 4.6.3 and get the following: by (a), G acts on the roots of f. By (b), since
L = K(β), there is at most one element in G that sends the root β to the root β + γ, for
γ ∈ Fp. Therefore, |G| ≤ p. There are indeed p elements in G, which are of the form σγ , with
σγ(β) = β + γ for all k ∈ Fp. We get p automorphisms, and hence G ∼= Z/pZ.

2. The fact that f is irreducible over K follows from Prop 4.6.3 (d), which states that |G| =
[L : K], where L = K(β) is the splitting field of f. By the previous point, |G| = p, and hence
[K(β) : K] = degmβ,K = p. Since β is a root of f, and since its minimal polynomial is of
degree p, it follows that f ∼ mβ,K , and hence, f is irreducible over K.

3. Let g
h ∈ Fp(t) a root of xp − x+ t. Then, g, h ∈ Fp[t], h 6= 0 and it holds that(g

h

)p
−
(g
h

)
+ t = 0⇔ gp − ghp−1 + thp = 0.

Denote the degree of g by dg, and the degree of h by dh. Then, the degree of the following
polynomials are

deg(gp) = pdg, deg(ghp−1) = dg + (p− 1)dh, deg(thp) = 1 + pdh.

In order for the sum gp − ghp−1 + thp to be zero, the degrees of each of the summands needs
to be canceled out.

If dh ≥ dg, then the degree of thp, being 1+pdh, is strictly bigger than pdg and dg+(p−1)dh
and hence thp can’t be canceled out, and the sum of polynomials can only be zero if h = 0,
but this is a contradiction to the choice of g, h.

On the other hand, if dg > dh, then nothing can cancel out gp, which one sees by a degree
comparison, and hence the sum gp − ghp−1 + thp can only be zero if g = 0 and h = 0, which
is a contradiction.

4. Let u be a root of f : up − u + t = 0 ⇐ up − u = −t, and hence F(t) ⊆ Fp(u). With u
being transcendental over Fp, it follows that the splitting field is Fp(u). We remark that by
the second part of the exercise, all roots are of the form u + γ, where γ ∈ Fp, and hence all
roots are contained in Fp(u).

Exercice 3. 1. First we note that we may apply the third Gauss lemma, from which it follows
that f is irreducible in Q[x] if and only if it is irreducible in Z[x].We then argue as in Example
3.9.4 (b) that showing irreducibility of f in Z[x] can be done by showing irreducibility of
evy+1(f) in Z[y] since the evaluation evy+1 : Z[x]→ Z[y] is an isomorphism. But

evy+1(f) = (y + 1)6 + (y + 1)3 + 1 = y6 + 6y5 + 15y4 + 21y3 + 18y2 + 9y + 3,

which is irreducible in Z[y] by applying Eisensteins criterion with p = 3.

2. Let α be a root of f. Then, with α6 + α3 + 1 = 0 it follows that α6 = −α3 − 1, and hence
α9 = α3 ·α6 = α3(−α3− 1) = −α6−α3 = −(−α3− 1)−α3 = α3 +1−α3 = 1, and so α is a
root of x9 − 1 as well.

It holds that
x9 − 1 = (x6 + x3 + 1)(x3 − 1).

Using Prop. 4.4.10 (c), it follows from gcd(x9 − 1, ∂∂x(x
9 − 1)) = gcd(x9 − 1, 9x8) = 1 that

the polynomial x9− 1 does not have any double roots. Its 9 roots are the 9-th roots of unity.
Hence α is a 9-th root of unity as well. The 9-th roots of unity that are not primitive are



those roots that are simultaneously 3-rd roots of unity as well. But α can not be one of those
roots, since if α was a root simultaneously of f and of x3 − 1, then α would be a double root
of f · (x3 − 1) = x9 − 1, which is not possible. We conclude that α is a primitive 9-th root of
unity.

3. Let α be as above a root of f. Then, α ∈ {e2πik/9 | k = 1, 2, 4, 5, 7, 8}, and we may assume
without loss of generality that α = e2πi/9. Then, the other roots of f are α2, α4, α5, α7, α8.
By adjoining α to Q, we therefore adjoin all roots of f, from which it follows that L = Q(α).
Now by Prop 4.6.3 (a), every element in Gal(L/Q) acts on the roots of f in L. These 6 roots
are described above. By (b), as L = Q(α), there is at most one element in the Galois group
which sends α to one of other primitive roots αk, where k = 1, 2, 4, 5, 7, 8. Hence there are at
most 6 elements in the Galois group. But, using irreducibility of f , and part (c), there are
exactly 6, with the automorphisms defined by σk(α) = αk. The identification with (Z/9Z)×
is the obvious one, identifying σk ∈ Gal(L/Q) with k ∈ (Z/9Z)×. Lastly, this extension is
Galois by Thm. 4.6.15, using Q is perfect, and hence the extension is separable.

4. We have the following fields extensions, Q ⊆ Q(α+α) ⊆ Q(α), where α denotes the complex
conjugate of α. We remark that α = α8 ∈ Q(α).
Since the extension Q(α) over Q is Galois, we have that [Q(α) : Q] = |Gal(Q(α)/Q)| = 6.
We note that the polynomial g(x) = x3 − 3x + 1 ∈ Q[x] vanishes at α + α. The other roots
of this polynomial are α2 + α7, and α4 + α5. Since no root is contained in the field Q, the
polynomial g is irreducible over Q, and it is the minimal polynomial of α+α over Q. Therefore,
[Q(α+α) : Q] = 3, and furthermore, the field Q(α+α) is the splitting field of the polynomial
g over Q. (Since the other two roots can be expressed in terms of α+α, and hence adjoining
the roots α+α ensures that all roots are contained in the field extension.) Again using Thm
4.6.15, and using that Q is perfect, and hence the extension is separable, we conclude that
the extension Q(α+ α) over Q is Galois of degree 3.

Exercice 4 (Automorphism of C(x)). 1. We note that all C - automorphisms of C(x) are deter-
mined by the image of x. We have that:

F 2(x) = i
x+ 1

x− 1
and F 3(x) = x,

therefore F 3 = IdC(x). Similarly, we have:

G2(x) =
x(−i− 1) + 1− i
x(i+ 1) + 1− i

and G3(x) = x

therefore G3 = IdC(x). Lastly, as

FG(x) = −1

x
and GF (x) = −x,

it follows that (FG)2 = (GF )2 = IdC(x).

2. By item 1. we have [(FG) ◦ (GF )](x) = [(GF ) ◦ (FG)](x) = 1
x and we see that FG and

GF are commuting elements of order 2. It follows that the subgroup generated by them,
< FG,GF >, is isomorphic to Z/2Z× Z/2Z and, moreover, it is normal in A, since

F (FG)F−1 = FFGF 2 = F (FGFG)G2F = F (IdC(x))G
2F = (FG)(GF )

and
G(FG)G−1 = GF



3. First, by items 1. and 2., we have that 3 | |A| and 4 | |A|, therefore |A| ≥ 12. Since
FGFG = GFGF = IdC(x), it follows that

FGF = G2 and GFG = F 2

and, keeping in mind the other relations established in items 1. and 2., one shows that IdC(x),
F , F 2, G, G2, FG, GF , F 2G, FG2, G2F , GF 2, FG2F are distinct elements of A.
Secondly, as A =< F,G >, then if H ∈ A, we have H = F i1Gj1 · · ·F inGjm , where n,m ≥ 0
and i1, . . . , in, j1, . . . , jm ∈ Z. Since F 3 = G3 = IdC(x), we have i1, jm ∈ {0, 1, 2} and
i2, . . . , in, j1, . . . , jm−1 ∈ {1, 2}. Lastly, as FG and GF commute, (FG)2 = (GF )2 =
IdC(x), FGF = G2 and GFG = F 2, we deduce that n + m ≤ 3 and conclude that A =
{IdC(x) F,G, F 2, G2, FG,GF, F 2G,FG2, G2F,GF 2, FG2F}.

4. To show that this group is isomorphic to A4, we establish the following isomorphism:

σ : A → A4 with σ(F ) = (123) and σ(G) = (234).

Knowing a presentation of A4 by generators and relations, the calculations in items 1.,2. and
3. establish the isomorphism.

Another way to establish this isomorphism is to note that A is a non-commutative group
with 12 elements which admits a normal subgroup isomorphic to Z/2Z × Z/2Z. Inspecting
the classification of finite groups of order 12, we determine that A ∼= A4.

Exercice 5 (Galois correspondence). 1. Let L = Q(
√
7). We have that [L : Q] = 2, as

√
7 /∈ Q

is a root of the irreducible polynomial x2 − 7 ∈ Q[x]. Now, Q is a perfect field and L is the
splitting field of x2 − 7 ∈ Q[x] over Q, hence the extension Q ⊆ L is Galois. By Proposition
4.6.3(d), it follows that |Gal(L/Q)| = 2 and so Gal(L/Q) ∼= Z/2Z. The only subgroups of
Gal(L/Q) are Gal(L/Q) and {IdL}, therefore the only sub-extensions of L are Q = LGal(L/Q)

and L = L{IdL}.

2. Let L = Q(
√
2,
√
3). We have seen in Series 9, Exercise 5.2 that [L : Q] = 4. Now, Q is a

perfect field and L is the decomposition field of (x2 − 2)(x2 − 3) ∈ Q[x] over Q, hence the
extension Q ⊆ L is Galois. By Proposition 4.6.3(d), it follows that |Gal(L/Q)| = 4. Now,
let σ, τ ∈ Gal(L/Q) be such that σ(

√
2) = −

√
2 and σ(

√
3) =

√
3, respectively τ(

√
2) =

√
2

and τ(
√
3) = −

√
3. We see that σ2 = τ2 = IdL and that στ = τσ. Therefore Gal(L/Q) =<

σ, τ >∼= Z/2Z × Z/2Z. Now, Gal(L/Q) admits 3 non-trivial proper subgroups: < σ >,
< τ > and < στ >, each isomorphic to Z/2Z. Let H be one of these subgroups. By
applying Theorem 4.6.18, we determine that LH ⊆ L is Galois and [L : LH ] = |H| = 2.
Therefore, [LH : Q] = 2. One checks that Q(

√
3) ⊆ L<σ>, as σ(

√
3) =

√
3, and, similarly,

that Q(
√
2) ⊆ L<τ> and Q(

√
6) ⊆ L<στ>, respectively. We conclude that

L<σ> = Q(
√
3), L<τ> = Q(

√
2) and L<στ> = Q(

√
6).

3. Let L = Q(
√
2,
√
3,
√
5) and consider the extension chain:

Q ⊆ Q(
√
2,
√
3) ⊆ L

We have that [L : Q] = [L : Q(
√
2,
√
3)][Q(

√
2,
√
3) : Q] = 8, as

√
5 /∈ Q(

√
2,
√
3) is a root of

the polynomial x2− 5 ∈ Q(
√
2,
√
3)[x]. Now, Q is a perfect field and L is the splitting field of

(x2 − 2)(x2 − 3)(x2 − 5) ∈ Q[x] over Q, hence the extension Q ⊆ L is Galois. By Proposition
4.6.3(d), it follows that |Gal(L/Q)| = 8. Let σ1, σ2, σ3 ∈ Gal(L/Q) be such that:

σ1(
√
2) = −

√
2, σ1(

√
3) =

√
3 and σ1(

√
5) =

√
5



σ2(
√
2) =

√
2, σ2(

√
3) = −

√
3 and σ2(

√
5) =

√
5

σ3(
√
2) =

√
2, σ3(

√
3) =

√
3 and σ3(

√
5) = −

√
5

One shows that σ2i = IdL for all i = 1, 2, 3 and that σiσj = σjσi for all i 6= j, therefore
determining that Gal(L/Q) =< σ1, σ2, σ3 >∼= Z/2Z × Z/2Z × Z/2Z. We first consider the
subgroups of order 2 of Gal(L/Q). There are 7 of them and each of these is cyclic and
generated by an element of Gal(L/Q). Let H be one of these subgroups. We apply Theorem
4.6.18 to determine that LH ⊆ L is Galois with [L : LH ] = |H| = 2. Therefore we have
[LH : Q] = 4.

Let H =< σ1 >. One checks that Q(
√
3,
√
5) ⊆ LH , as σ1(

√
3) =

√
3 and σ1(

√
5) =

√
5.

Therefore, Q ⊆ Q(
√
3,
√
5) ⊆ LH , where [Q(

√
3,
√
5) : Q] = 4 and [LH : Q] = 4. We conclude

that LH = Q(
√
3,
√
5). Similarly, one shows that:

L<σ2> = Q(
√
2,
√
5), L<σ3> = Q(

√
2,
√
3), L<σ1σ2> = Q(

√
6,
√
5)

L<σ1σ3> = Q(
√
3,
√
10), L<σ2σ3> = Q(

√
2,
√
15), L<σ1σ2σ3> = Q(

√
6,
√
10,
√
15) = Q(

√
6,
√
10)

We now consider the subgroups of order 4 of Gal(L/Q). Again, there are 7 of them and each
of these is generated by two distinct elements of order 2 of Gal(L/Q) and is isomorphic to
Z/2Z×Z/2Z. Let H be one of these subgroups. We apply Theorem 4.6.18 to determine that
LH ⊆ L is Galois with [L : LH ] = |H| = 4. Therefore we have [LH : Q] = 2. One shows that:

L<σ1,σ2> = Q(
√
5), L<σ1,σ3> = Q(

√
3), L<σ1,σ2σ3> = Q(

√
15), L<σ2,σ3> = Q(

√
2)

L<σ2,σ1σ3> = Q(
√
10), L<σ3,σ1σ2> = Q(

√
6), L<σ1σ2,σ1σ3> = Q(

√
30).

4. First, we note that the extension Q ⊆ E is Galois, as Q is a perfect field and E is the splitting
field of the polynomial t4 − 2t2 − 1 ∈ Q[t] over Q. By Proposition 4.6.3(d), it follows that
|Gal(E/Q)| = [E : Q]. We see that t4−2t2−1 = (t2−1−

√
2)(t2−1+

√
2) = (t−

√
1 +
√
2)(t+√

1 +
√
2)(t −

√
1−
√
2)(t +

√
1−
√
2). Therefore E = Q(

√
1 +
√
2,
√
1−
√
2). Now, we

have that i =
√

1 +
√
2 ·
√
1−
√
2 ∈ E and thus Q(

√
1 +
√
2, i) ⊆ E. Conversely, we have√

1−
√
2 = i · (

√
1 +
√
2)−1 ∈ Q(

√
1 +
√
2, i) and we deduce that E = Q(

√
1 +
√
2, i). We

now consider the extension chain:

Q ⊆ Q(
√
1 +
√
2) ⊆ E.

Since
√
1 +
√
2 is a root of t4−2t2−1 ∈ Q[t], it follows that [Q(

√
1 +
√
2) : Q] ≤ 4. We have

already seen that the polynomial t4−2t2−1 does not admit roots in Q. We now assume that
there exist a, b, c, d ∈ Q such that:

t4 − 2t2 − 1 = (t2 + at+ b)(t2 + ct+ d).

Then


a+ c = 0

b+ ac+ d = −2
ad+ bc = 0

bd = −1

and so c = −a, d = −1
b and −a(1b + b) = 0.

• If a = 0, then c = 0 and b + d = −2. Keeping in mind that d = −1
b , it follows that

(b+ 1)2 = 2, hence
√
2 ∈ Q, which is a contradiction.

• If 1
b + b = 0, then b2 + 1 = 0 and so i ∈ Q, which is a contradiction.



We have thus shown that t4−2t2−1 ∈ Q[t] is irreducible and therefore [Q(
√

1 +
√
2) : Q] = 4.

We remark that Q(
√
1 +
√
2) ⊆ R and so [E : Q(

√
1 +
√
2)] = 2, as i /∈ Q(

√
1 +
√
2) is a

root of t2 + 1 ∈ Q(
√

1 +
√
2)[t]. In conclusion, [E : Q] = 8, hence |Gal(E/Q)| = 8.

Let σ, τ ∈ Gal(E/Q) be such that σ(
√
1 +
√
2) =

√
1−
√
2 and σ(i) = −i, respectively

τ(
√

1 +
√
2) =

√
1 +
√
2 and τ(i) = −i. One checks that:

σ2(

√
1 +
√
2) = −

√
1 +
√
2, σ2(i) = i

σ3(

√
1 +
√
2) = −

√
1−
√
2, σ3(i) = −i

σ4(

√
1 +
√
2) =

√
1 +
√
2, σ4(i) = i

and thus deduces that σ4 = τ2 = IdE . Now < σ > is a subgroup of order 4 in Gal(E/Q)
and τ /∈< σ >. We deduce that Gal(E/Q) =< σ, τ > and, moreover, as στ 6= τσ, Gal(E/Q)
is non-commutative. Lastly, Gal(E/Q) admits two elements of order 2: σ2 and τ , and we
conclude that Gal(E/Q) ∼= D8.

We now determine the subgroups of Gal(E/Q). There are 5 elements of order 2 in Gal(E/Q):
τ ,σ2, τσ2, τσ and στ , each generating a cyclic group of order 2. Let H be one of these
subgroups. By applying Theorem 4.6.18, we determine that EH ⊆ E is Galois and [E :
EH ] = |H| = 2. Therefore, [EH : Q] = 4. One checks that:

τσ2(

√
1 +
√
2) = τ(−

√
1 +
√
2) = −

√
1 +
√
2 and τσ2(i) = −i

τσ(

√
1 +
√
2) = τ(

√
1−
√
2) = τ(i(

√
1 +
√
2)−1) = −

√
1−
√
2 and τσ(i) = i

στ(

√
1 +
√
2) = σ(

√
1 +
√
2) =

√
1−
√
2 and στ(i) = i

and therefore

τσ2(
√
2) = τσ2((

√
1 +
√
2)2 − 1) = (τσ2((

√
1 +
√
2))2 − 1 = (−

√
1 +
√
2)2 − 1 =

√
2

τσ(

√
1 +
√
2−

√
1−
√
2) = τσ(

√
1 +
√
2)− τσ(i(

√
1 +
√
2)−1) = −

√
1−
√
2− τ(−i(

√
1−
√
2)−1)

= −
√
1−
√
2− τ(−

√
1 +
√
2) =

√
1 +
√
2−

√
1−
√
2

στ(

√
1 +
√
2 +

√
1−
√
2) =

√
1−
√
2 + στ(i(

√
1 +
√
2)−1) =

√
1−
√
2 + σ(−i(

√
1 +
√
2)−1)

=

√
1−
√
2 + i(

√
1−
√
2)−1 =

√
1−
√
2 +

√
1 +
√
2

The corresponding sub-extensions are

E<τ> = Q(
√

1 +
√
2), E<σ

2> = Q(
√
1−
√
2), E<τσ

2> = Q(
√
2, i)

E<τσ> = Q(
√

1 +
√
2−

√
1−
√
2) and E<στ> = Q(

√
1 +
√
2 +

√
1−
√
2).

Lastly, Gal(E/Q) admits 3 subgroups of order 4, one of which is cyclic, < σ >, and the
other two are isomorphic to Z/2Z × Z/2Z, < τ, σ2 > and < τσ, σ2 >.Let H be one of



these subgroups. By applying Theorem 4.6.18, we determine that EH ⊆ E is Galois and
[E : EH ] = |H| = 4. Therefore, [EH : Q] = 2. One checks that:

σ(i
√
2) = −iσ(

√
2) = −iσ((

√
1 +
√
2)2 − 1) = −i(

√
1−
√
2)2 − 1) = i

√
2{

τ(
√
2) = τ(

√
1 +
√
2)2 − 1)(=

√
1 +
√
2)2 − 1 =

√
2

σ2(
√
2) = σ2((

√
1 +
√
2)2 − 1) = (−

√
1 +
√
2)2 − 1 =

√
2

τσ(i) = τ(−i) = i and σ2(i) = i

The corresponding sub-extensions are:

E<σ> = Q(i
√
2), E<τ,σ

2> = Q(
√
2) and E<τσ,σ

2> = Q(i).

Exercice 6.
We have the following extension tower:

Q ⊆ Q(
√
2) ⊆ Q(

√
1 +
√
2).

The extension Q ⊆ Q(
√
2) is Galois, as Q is a perfect field and Q(

√
2) is the decomposition

field of the polynomial x2 − 2 ∈ Q[x], see Theorem 4.6.15. Similarly, the extension Q(
√
2) ⊆

Q(
√
1 +
√
2) is Galois, as Q(

√
2) is perfect and Q(

√
1 +
√
2) is the decomposition field of the

polynomial x2 − 1−
√
2 ∈ Q(

√
2)[x].

We now consider the extension Q ⊆ Q(
√
1 +
√
2). We know by Exercise 2. that

√
1 +
√
2

is a root of the irreducible polynomial x4 − 2x2 − 1 ∈ Q[x], hence m√
1+
√
2,Q

(x) = x4 − 2x2 − 1

and [Q(
√

1 +
√
2) : Q] = 4. Moreover, we have already seen that the other roots of x4 − 2x2 − 1

are −
√

1 +
√
2 and ±

√
1−
√
2. Now, we remark that Q(

√
1 +
√
2) ⊆ R, therefore ±

√
1−
√
2 /∈

Q(
√
1 +
√
2). Let σ ∈ Gal(Q(

√
1 +
√
2)/Q). Then σ(

√
1 +
√
2) ∈ Q(

√
1 +
√
2) is a root of

m√
1+
√
2,Q

(x) and thus σ(
√
1 +
√
2) = ±

√
1 +
√
2, see Proposition 4.6.3 (c). It follows that

|Gal(Q(
√

1 +
√
2)/Q)| = 2 and we conclude, using Corollary 4.6.13, that the extension Q ⊆

Q(
√
1 +
√
2) is not Galois.

Exercice 7. 1. AsK ⊆ L is Galois, hence separable, and of finite degree, we have that L = K(α)
for some α ∈ L\K, see Theorem 4.5.10. Similarly, one argues that E = L(β) for some
β ∈ E\L.
For all σ ∈ Gal(L/K), let σx : L[x]→ L[x] be the induced homomorphism, i.e.

σx(

n∑
i=1

aix
i) =

n∑
i=1

σ(ai)x
i.

Note that, since σ is a K-automorphism of L, it follows that σx is an isomorphism of L[x].

Consider the polynomial m1 = mβ,L and note that it is irreducible and separable over L. Let
{m1,m2, . . . ,mr} be the Gal(L/K)-orbit of m1 in L[x], where mi � mj for all i 6= j. Now,
since m1 is irreducible and, since for all mi, 1 ≤ i ≤ r, there exists σi ∈ Gal(L/K) such that
σxi (m1) = mi, it follows that mi is irreducible for all 1 ≤ i ≤ r. Therefore, gcd(mi,mj) = 1
for all i 6= j.

We will now show that the polynomials mi, 1 ≤ i ≤ r, are separable. First, note that m1

is separable as the extension L ⊆ E is Galois, hence we have that gcd(m1,
d
dxm1) = 1, see



Corollary 4.4.10. Since for all 1 ≤ i ≤ r there exists σi ∈ Gal(L/K) such that σxi (m1) = mi,
we have that σxi (

d
dxm1) =

d
dxmi and thus 1 = σxi (gcd(m1,

d
dxm1)) = gcd(mi,

d
dxmi). It follows

that the polynomial mi(x) ∈ L[x] is separable for all 1 ≤ i ≤ r.

Set g(x) =
r∏
i=1

mi(x) ∈ L[x]. Now, we have shown that the mi’s, 1 ≤ i ≤ r, are separable

polynomials with gcd(mi,mj) = 1, for all i 6= j. It follows that the polynomial g(x) is also
separable over L. We also remark that for all σ ∈ Gal(L/K) we have that

σx(g) = σx(

r∏
i=1

σxi (m1)) =

r∏
i=1

(σx ◦ σxi )(m1) =

r∏
i=1

mi,

as {m1,m2, . . . ,mr} is the Gal(L/K)-orbit ofm1 and σ◦σi ∈ Gal(L/K) for all σ ∈ Gal(L/K)
and all 1 ≤ i ≤ r. Therefore, we have that g(x) ∈ LGal(L/K)[x] = K[x], as K ⊆ L is Galois.

Let F be the decomposition field ofmα,K ·g over K. Then F is generated by the roots ofmα,K

and the roots of g. Note that mα,K and g do not admit a common root γ ∈ F . If they would
then γ ∈ L, as L is the decomposition field of mα,K , and therefore there would exist 1 ≤ i ≤ r
such that mi(γ) = 0, contradicting the fact that the mi’s are irreducible polynomials in L[x].
Now, as g and mα,K are separable polynomials that do not admit common roots, it follows
that F is generated by separable elements and thus the extension K ⊆ F is Galois. Lastly,
we have that E ⊆ F , as E = L(β), L = K(α) and α, β ∈ F , since they are roots of mα,K

and g, respectively. We have shown that there exist a tower of extensions K ⊆ E ⊆ F with
K ⊆ F Galois.

2. Let α ∈ E. Then, we have L ⊆ L(α) ⊆ E, where the extension L ⊆ L(α) is finite and

separable. Now, let mα,L(x) =
r∑
i=1

aix
i ∈ L[x]. Then we have the tower of extensions

K ⊆ K(a1, . . . , ar) ⊆ K(a1, . . . , ar, α) ⊆ L(α) where K ⊆ K(a1, . . . , ar) and K(a1, . . . , ar) ⊆
K(a1, . . . , ar, α) are finite and separable. Moreover, we note that mα,L(x) ∈ K(a1, . . . , ar)[x].

Set F to be the splitting field of
r∏
i=1

mai,K(x) over K. Then F : K is finite and F is generated,

over K, by the roots of mai,K for all 1 ≤ i ≤ r, see Lemma 4.3.3. As ai is separable over K
for all 1 ≤ i ≤ r, then so are all the other roots of mai,K and we deduce that the extension
K ⊆ F is separable. Hence, it is Galois. Moreover, we note that K(a1, . . . , ar) ⊆ F .
SetG be the splitting field ofmα,L(x) over F . Then [G : F ] is finite andG is generated, over F ,
by the roots of the polynomialmα,L(x), see Lemma 4.3.3. As α ∈ K(a1, . . . , ar, α) is separable
over K(a1, . . . , ar), we have that α is separable over F , since mα,F |mα,K(a1,...,ar). Therefore,
the extension F ⊆ G is Galois and finite. Moreover, we have that K(a1, . . . , ar, α) ⊆ G. We
have built the following extension diagram:

K K(a1, . . . , ar) K(a1, . . . , ar, α)

K F G H

where K ⊆ H is a Galois extension, see item 1. Therefore, H is separable over K, hence, in
particular, we have that K(a1, . . . , ar, α) is separable over K. We have shown that all α ∈ E
are separable over K and we conclude that E is separable over K.

Exercice 8.
Let K be a countable field and consider the polynomial ring K[x]. For all i ≥ 0 define the subsets
Ki[x] ⊆ K[x] with Ki[x] = {f ∈ K[x]| deg(f) = i}. We remark that K[x] =

⋃
i≥0

Ki[x] and that



Ki[x] ∼= Ki, hence |Ki[x]| = i · |K| = |K|, for all i ≥ 0. It follows that |K[x]| = ℵ0 · |K| = ℵ0 and
so K[x] is also countable.

We define the map φ : K → K[x] by φ(α) = mα,K . Now the subset φ(K) of K[x] contains
all polynomials of the form x − α, where α ∈ K, hence φ(K) is also countable. Lastly, for any
mα,K ∈ φ(K) we have that the preimage φ−1(mα,K) is non-empty and finite, as α ∈ φ−1(mα,K)
and mα,K admits a finite number of roots. We conclude that K has the same cardinality as φ(K),
hence it is countable.

Exercice 9.
Let G be a finite group and let |G| = n. By Cayley’s Theorem, we know that we can embed G as
a subgroup of Sn.

Now, consider the ring F = Q[x1, . . . , xn] and for each σ ∈ G define:

φσ : F → F by φσ(xi) = xσ(i) for all1 ≤ i ≤ n.

One shows that φσ is a ring homomorphism for all σ ∈ G. Moreover, we have that φσ ◦ φσ−1 =
φσ−1 ◦ φσ = IdF , hence φσ is invertible for all σ ∈ G with inverse φ−1σ = φσ−1 .

Let E = Q(x1, . . . , xn) be the field of fractions of F . Then φσ : F → E is an injective ring
homomorhism, as it is the composition of two injective ring homomorphisms.We now apply the
universal property of the fraction field, to determine that:

φσ : E → E, where φσ(xi) = xσ(i) for all 1 ≤ i ≤ n

is a field homomorphism. Now, one checks that, in fact, φσ is a Q-automorphism of E.
Let H = {φσ| σ ∈ G} be a subset of AutQ(E). Since φσ1 ◦ φσ2 = φσ1σ2 for all σ1, σ2 ∈ G,

it follows that H is a subgroup of AutQ(E). Moreover, we have that H ∼= G, hence H is a finite
group. We now apply Theorem 4.6.12 to E and H to deduce that [E : EH ] = |H| = |Gal(E/EH)|,
hence EH ⊆ E is Galois, see Corollary 4.6.13. We conclude that Gal(E/EH) = H ∼= G.

Supplementary exercise

Exercice 10. 1. As K ⊆ L is a purely inseparable extension, it follows that α ∈ L\K is purely
inseparable over K, thus there exists n ≥ 1 such that αpn ∈ K. We fix such an α ∈ L\K and
we let σ ∈ Gal(L/K). It suffices to show that σ(α) = α.

The element α ∈ L/K is the unique pnth root of αpn , see Exercise 2.(a) of Series 11. Therefore,
it suffices to show that (σ(α))pn = αp

n . We have:

(σ(α))p
n
= σ(αp

n
) = αp

n
.

We conclude that Gal(L/K) = {IdL}.

2. First, we will show that Linsep,K ⊆ LGal(L/K). For this, let α ∈ Linsep,K and let σ ∈
Gal(L/K). As α ∈ Linsep,K , there exists n ∈ Z≥0 such that αpn ∈ K. Then:

σ(α)p
n
= σ(αp

n
) = αp

n ∈ K

and it follows that σ(α) ∈ Linsep,K . Hence the restriction σ|Linsep,K
is a K-automorphism of

Linsep,K and thus σ|Linsep,K
= IdLinsep,K

, see item 1. Therefore σ(α) = σ|Linsep,K
(α) = α for

all α ∈ Linsep,K and thus Linsep,K ⊆ LGal(L/K).

We now consider the extension tower:

K ⊆ Linsep,K ⊆ LGal(L/K) ⊆ L.

We have that [L : K] = [L : Linsep,K ][Linsep,K : K], hence [L : Linsep,K ] = |Gal(L/K)|.On the
other hand, we have [L : LGal(L/K)] = |Gal(L/K)|, see Theorem 4.6.12, and we deduce that
[LGal(L/K) : Linsep,K ] = 1, hence LGal(L/K) = Linsep,K . Lastly, the extension LGal(L/K) ⊆ L
is separable, see Proposition 4.6.10, and we conclude that Linsep,K ⊆ L is separable.


