Exercice 1. (a) Let $\gamma = \sqrt{2} + \sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$. We have that $\gamma - \sqrt{2} = \sqrt{3}$ and so $(\gamma - \sqrt{2})^2 = 3$. This gives $\gamma^2 - 1 = 2\gamma\sqrt{2}$, therefore $(\gamma^2 - 1)^2 = 8\gamma^2$ and so $\gamma^4 - 10\gamma^2 + 1 = 0$. It follows that the polynomial $t^4 - 10t^2 + 1 \in \mathbb{Q}[t]$ admits γ as a root. We will now show that this polynomial is irreducible.

Assume that $\frac{p}{r} \in \mathbb{Q}$, where $p, r \in \mathbb{Z}$, gcd(p, r) = 1 and $r \neq 0$, is a root of $t^4 - 10t^2 + 1$. Then $p \mid 1, r \mid 1$ and so $\frac{p}{r} = \pm 1$. One checks that neither 1 nor -1 is a root of $t^4 - 10t^2 + 1$. We now assume that there exist $a, b, c, d \in \mathbb{Q}$ such that

$$t^{4} - 10t^{2} + 1 = (t^{2} + at + b)(t^{2} + ct + d).$$

Then $\begin{cases} a+c=0\\ b+ac+d=-10\\ ad+bc=0\\ bd=1 \end{cases}$ and we deduce that c(b-d)=0.

- (a) If c = 0, then $\begin{cases} b+d = -10 \\ bd = 1 \end{cases}$ which gives $b^2 + 10b + 1 = 0$. This implies that $b \in \mathbb{Q}$ is a root of the polynomial $t^2 + 10t + 1 \in \mathbb{Q}[t]$. If we write $b = \frac{p}{r}$, where $p, r \in \mathbb{Z}$ with gcd(p,r) = 1 and $r \neq 0$, then $p \mid 1, r \mid 1$ and so $b = \pm 1$. But neither 1 nor -1 is a root of $t^2 + 10t + 1$.
- (b) If b = d, then $b^2 = 1$ and so $b = \pm 1$. Moreover, as b + ac + d = -10 we also get that $c^2 = 10 + 2b$ and so $c^2 \in \{8, 12\}$, contradicting the fact that $c \in \mathbb{Q}$.

We conclude that $t^4 - 10t^2 + 1 \in \mathbb{Q}[t]$ is irreducible and therefore, as it admits $\sqrt{2} + \sqrt{3}$ as a root, we have that $m_{\sqrt{2}+\sqrt{3},\mathbb{Q}}(t) = t^4 - 10t^2 + 1$ and $[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}] = 4$. Lastly, as $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}] = 4$, see Exercise 5.2 of Series 9, we conclude that $\sqrt{2} + \sqrt{3}$ is a primitive element of $\mathbb{Q}(\sqrt{2},\sqrt{3})$.

(b) As $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}] = 4$, it follows that $\dim_{\mathbb{Q}}(\mathbb{Q}(\sqrt{2},\sqrt{3})) = 4$ and so, to show that the set $\{1,\sqrt{2},\sqrt{3},\sqrt{6}\}$ is a \mathbb{Q} -basis of $\mathbb{Q}(\sqrt{2},\sqrt{3})$, it suffices to show that it is linearly independent. For this, let $a, b, c, d \in \mathbb{Q}$ be such that

$$a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} = 0.$$

Then $a + d\sqrt{6} = -(b\sqrt{2} + c\sqrt{3})$ and so $(a + d\sqrt{6})^2 = (b\sqrt{2} + c\sqrt{3})^2$ which gives

$$a^{2} + 6d^{2} - 2b^{2} - 3c^{2} + 2(ad - bc)\sqrt{6} = 0.$$

As $\sqrt{6} \notin \mathbb{Q}$ it follows that $\begin{cases} a^2 + 6d^2 - 2b^2 - 3c^2 = 0\\ ad = bc \end{cases}$.

Analogously, since $a + b\sqrt{2} = -(c\sqrt{3} + d\sqrt{6})$ and $a + c\sqrt{3} = -(b\sqrt{2} + d\sqrt{6})$, respectively, one shows that $\begin{cases} a^2 + 2b^2 - 3c^2 - 6d^2 = 0\\ ab = 3cd \end{cases}$ and $\begin{cases} a^2 + 3c^2 - 2b^2 - 6d^2 = 0\\ ac = 2bd \end{cases}$, respectively. Now:

$$\begin{cases} a^2 + 6d^2 - 2b^2 - 3c^2 = 0\\ a^2 + 2b^2 - 3c^2 - 6d^2 = 0\\ a^2 + 3c^2 - 2b^2 - 6d^2 = 0 \end{cases} \implies a^2 = \frac{1}{3}(2b^2 + 3c^2 + 6d^2)$$

which gives

$$\begin{cases} a^2 = \frac{1}{3}(2b^2 + 3c^2 + 6d^2) \\ a^2 + 2b^2 - 3c^2 - 6d^2 = 0 \end{cases} \implies b^2 = \frac{1}{4}(3c^2 + 6d^2) \text{ and so } a^2 = \frac{1}{2}(3c^2 + 6d^2).$$

Then

$$\begin{cases} a^2 = \frac{1}{2}(3c^2 + 6d^2) \\ b^2 = \frac{1}{4}(3c^2 + 6d^2) \\ a^2 + 3c^2 - 2b^2 - 6d^2 = 0 \end{cases} \implies c^2 = 2d^2$$

If $d \neq 0$, then $\sqrt{2} = \frac{c}{d} \in \mathbb{Q}$, which is a contradiction. It follows that d = 0 and, consequently, c = b = a = 0. We conclude that a = b = c = d = 0 and therefore $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ is linearly independent.

(c) Assume that $\gamma = a\sqrt{3} + b\sqrt{6}$ is primitive in $\mathbb{Q}(\sqrt{2},\sqrt{3})$. If a = 0 or b = 0, then $\gamma = b\sqrt{6}$, respectively $\gamma = a\sqrt{3}$, and, since $\mathbb{Q}(\sqrt{6}) \subsetneq \mathbb{Q}(\sqrt{2},\sqrt{3})$ and $\mathbb{Q}(\sqrt{3}) \subsetneq \mathbb{Q}(\sqrt{2},\sqrt{3})$, respectively, it follows that γ is not primitive in $\mathbb{Q}(\sqrt{2},\sqrt{3})$, a contradiction.

Assume that $a, b \neq 0$. Now, $a\sqrt{3} + b\sqrt{6}$ is primitive in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ if and only if $\sqrt{3} + c\sqrt{6}$, where $c = \frac{b}{a} \neq 0$, is primitive in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. As $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{3} + c\sqrt{6}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ we have $[\mathbb{Q}(\sqrt{3} + c\sqrt{6}) : \mathbb{Q}] \mid 4$ and so $[\mathbb{Q}(\sqrt{3} + c\sqrt{6}) : \mathbb{Q}] \in \{1, 2, 4\}$. Clearly, $[\mathbb{Q}(\sqrt{3} + c\sqrt{6}) : \mathbb{Q}] \neq 1$ as $\sqrt{3} + c\sqrt{6} \notin \mathbb{Q}$. Assume that $[\mathbb{Q}(\sqrt{3} + c\sqrt{6}) : \mathbb{Q}] = 2$. Then, there exists a polynomial $t^2 + \alpha t + \beta \in \mathbb{Q}[t]$ which admits $\sqrt{3} + c\sqrt{6}$ as a root. Thus:

$$(\sqrt{3} + c\sqrt{6})^2 + \alpha(\sqrt{3} + c\sqrt{6}) + \beta = 0$$

and so:

$$6c\sqrt{2} + \alpha\sqrt{3} + c\alpha\sqrt{6} + 3 + 6c^2 + \beta = 0.$$

By item (b), it follows that c = 0, contradicting the fact that $b \neq 0$. We conclude that $[\mathbb{Q}(\sqrt{3} + c\sqrt{6}) : \mathbb{Q}] = 4$ and therefore $\mathbb{Q}(\sqrt{3} + c\sqrt{6}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.

(d) Now, $a\sqrt{2} + b\sqrt{3} + c\sqrt{6}$, where $a, b, c \in \mathbb{Q}^*$, is primitive in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ if and only if $\sqrt{2} + d\sqrt{3} + e\sqrt{6}$, where $d = \frac{b}{a} \neq 0$ and $e = \frac{c}{a} \neq 0$, is primitive in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. We argue as in item (c) to show that $[\mathbb{Q}(\sqrt{2} + d\sqrt{3} + e\sqrt{6}) : \mathbb{Q}] \in \{1, 2, 4\}$ and that $[\mathbb{Q}(\sqrt{2} + d\sqrt{3} + e\sqrt{6}) : \mathbb{Q}] \neq 1$. Assume $[\mathbb{Q}(\sqrt{2} + d\sqrt{3} + e\sqrt{6}) : \mathbb{Q}] = 2$. Then there exists a polynomial $t^2 + \alpha t + \beta \in \mathbb{Q}[t]$ that admits $\sqrt{2} + d\sqrt{3} + e\sqrt{6}$ as a root. We have that:

$$(\sqrt{2} + d\sqrt{3} + e\sqrt{6})^2 + \alpha(\sqrt{2} + d\sqrt{3} + e\sqrt{6}) + \beta = 0$$

and so $\begin{cases} 4e + \alpha d = 0\\ 6de + \alpha = 0 \end{cases}$. Then $\alpha = -6de$ and we have $4e - 6d^2e = e(4 - 6d^2) = 0$. As $e \neq 0$

it follows that $6 = (\frac{2}{d})^2$ and so $\sqrt{6} \in \mathbb{Q}$, a contradiction.

We conclude that $[\mathbb{Q}(\sqrt{2} + d\sqrt{3} + e\sqrt{6}) : \mathbb{Q}] = 4$ and therefore $\mathbb{Q}(\sqrt{2} + d\sqrt{3} + e\sqrt{6}) = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$

Exercice 2. 1. Let β be a root of f. It holds that $\beta^p - \beta + \alpha = 0$. Let $\gamma \in \mathbb{F}_p \subseteq K$. Then, using Fermat's little theorem, which states that $\gamma^p = \gamma$ modulo p, it holds that over a field of characteristic p, we have

$$(\beta + \gamma)^p - (\beta + \gamma) + \alpha = \beta^p + \gamma^p - \beta - \gamma + \alpha = \beta^p + \gamma - \beta - \gamma + \alpha = \beta^p - \beta + \alpha = 0.$$

Hence all $\beta + \gamma$, where $\gamma \in \mathbb{F}_p$ are roots of f. We get p distinct roots, and as $\mathbb{F}_p \subseteq K$, by adjoining β to K, all roots are contained in $K(\beta)$ and hence $L = K(\beta)$.

Moreover, we have that $m_{\beta,K} = f$. Let $m_{\beta,K} = \prod_{\gamma \in I} (x - (\beta + \gamma) \text{ in } L[x] \text{ with } I \subset \mathbb{F}_p[x]$. Then the coefficients in front of $x^{|I|-1}$ are exactly $-\sum_{\gamma \in I(\beta+\gamma)} = |I|\beta + \sum_{\gamma \in I} \gamma$. If we suppose that |I| < p, one contradicts the fact that $\beta \notin K$. Therefore $m_{\beta,K} = f$.

We use Proposition 4.6.3 and get the following: by (a), G acts on the roots of f. By (b), since $L = K(\beta)$, there is at most one element in G that sends the root β to the root $\beta + \gamma$, for $\gamma \in \mathbb{F}_p$. Therefore, $|G| \leq p$. There are indeed p elements in G, which are of the form σ_{γ} , with $\sigma_{\gamma}(\beta) = \beta + \gamma$ for all $k \in \mathbb{F}_p$. We get p automorphisms, and hence $G \cong \mathbb{Z}/p\mathbb{Z}$.

- 2. The fact that f is irreducible over K follows from Prop 4.6.3 (d), which states that |G| = [L:K], where $L = K(\beta)$ is the splitting field of f. By the previous point, |G| = p, and hence $[K(\beta):K] = \deg m_{\beta,K} = p$. Since β is a root of f, and since its minimal polynomial is of degree p, it follows that $f \sim m_{\beta,K}$, and hence, f is irreducible over K.
- 3. Let $\frac{g}{h} \in \mathbb{F}_p(t)$ a root of $x^p x + t$. Then, $g, h \in \mathbb{F}_p[t], h \neq 0$ and it holds that

$$\left(\frac{g}{h}\right)^p - \left(\frac{g}{h}\right) + t = 0 \Leftrightarrow g^p - gh^{p-1} + th^p = 0.$$

Denote the degree of g by d_g , and the degree of h by d_h . Then, the degree of the following polynomials are

$$\deg(g^p) = pd_g, \quad \deg(gh^{p-1}) = d_g + (p-1)d_h, \quad \deg(th^p) = 1 + pd_h.$$

In order for the sum $g^p - gh^{p-1} + th^p$ to be zero, the degrees of each of the summands needs to be canceled out.

If $d_h \ge d_g$, then the degree of th^p , being $1 + pd_h$, is strictly bigger than pd_g and $d_g + (p-1)d_h$ and hence th^p can't be canceled out, and the sum of polynomials can only be zero if h = 0, but this is a contradiction to the choice of g, h.

On the other hand, if $d_g > d_h$, then nothing can cancel out g^p , which one sees by a degree comparison, and hence the sum $g^p - gh^{p-1} + th^p$ can only be zero if g = 0 and h = 0, which is a contradiction.

- 4. Let u be a root of $f : u^p u + t = 0 \Leftrightarrow u^p u = -t$, and hence $\mathbb{F}(t) \subseteq \mathbb{F}_p(u)$. With u being transcendental over \mathbb{F}_p , it follows that the splitting field is $\mathbb{F}_p(u)$. We remark that by the second part of the exercise, all roots are of the form $u + \gamma$, where $\gamma \in \mathbb{F}_p$, and hence all roots are contained in $\mathbb{F}_p(u)$.
- **Exercice 3.** 1. First we note that we may apply the third Gauss lemma, from which it follows that f is irreducible in $\mathbb{Q}[x]$ if and only if it is irreducible in $\mathbb{Z}[x]$. We then argue as in Example 3.9.4 (b) that showing irreducibility of f in $\mathbb{Z}[x]$ can be done by showing irreducibility of $ev_{y+1}(f)$ in $\mathbb{Z}[y]$ since the evaluation $ev_{y+1}: \mathbb{Z}[x] \to \mathbb{Z}[y]$ is an isomorphism. But

$$ev_{y+1}(f) = (y+1)^6 + (y+1)^3 + 1 = y^6 + 6y^5 + 15y^4 + 21y^3 + 18y^2 + 9y + 3,$$

which is irreducible in $\mathbb{Z}[y]$ by applying Eisensteins criterion with p = 3.

2. Let α be a root of f. Then, with $\alpha^6 + \alpha^3 + 1 = 0$ it follows that $\alpha^6 = -\alpha^3 - 1$, and hence $\alpha^9 = \alpha^3 \cdot \alpha^6 = \alpha^3(-\alpha^3 - 1) = -\alpha^6 - \alpha^3 = -(-\alpha^3 - 1) - \alpha^3 = \alpha^3 + 1 - \alpha^3 = 1$, and so α is a root of $x^9 - 1$ as well.

It holds that

$$x^{9} - 1 = (x^{6} + x^{3} + 1)(x^{3} - 1).$$

Using Prop. 4.4.10 (c), it follows from $gcd(x^9 - 1, \frac{\partial}{\partial x}(x^9 - 1)) = gcd(x^9 - 1, 9x^8) = 1$ that the polynomial $x^9 - 1$ does not have any double roots. Its 9 roots are the 9-th roots of unity. Hence α is a 9-th root of unity as well. The 9-th roots of unity that are not primitive are

those roots that are simultaneously 3-rd roots of unity as well. But α can not be one of those roots, since if α was a root simultaneously of f and of $x^3 - 1$, then α would be a double root of $f \cdot (x^3 - 1) = x^9 - 1$, which is not possible. We conclude that α is a primitive 9-th root of unity.

- 3. Let α be as above a root of f. Then, $\alpha \in \{e^{2\pi i k/9} \mid k = 1, 2, 4, 5, 7, 8\}$, and we may assume without loss of generality that $\alpha = e^{2\pi i/9}$. Then, the other roots of f are $\alpha^2, \alpha^4, \alpha^5, \alpha^7, \alpha^8$. By adjoining α to \mathbb{Q} , we therefore adjoin all roots of f, from which it follows that $L = \mathbb{Q}(\alpha)$. Now by Prop 4.6.3 (a), every element in $\operatorname{Gal}(L/\mathbb{Q})$ acts on the roots of f in L. These 6 roots are described above. By (b), as $L = \mathbb{Q}(\alpha)$, there is at most one element in the Galois group which sends α to one of other primitive roots α^k , where k = 1, 2, 4, 5, 7, 8. Hence there are at most 6 elements in the Galois group. But, using irreducibility of f, and part (c), there are exactly 6, with the automorphisms defined by $\sigma_k(\alpha) = \alpha^k$. The identification with $(\mathbb{Z}/9\mathbb{Z})^{\times}$ is the obvious one, identifying $\sigma_k \in \operatorname{Gal}(L/\mathbb{Q})$ with $k \in (\mathbb{Z}/9\mathbb{Z})^{\times}$. Lastly, this extension is Galois by Thm. 4.6.15, using \mathbb{Q} is perfect, and hence the extension is separable.
- 4. We have the following fields extensions, $\mathbb{Q} \subseteq \mathbb{Q}(\alpha + \overline{\alpha}) \subseteq \mathbb{Q}(\alpha)$, where $\overline{\alpha}$ denotes the complex conjugate of α . We remark that $\overline{\alpha} = \alpha^8 \in \mathbb{Q}(\alpha)$.

Since the extension $\mathbb{Q}(\alpha)$ over \mathbb{Q} is Galois, we have that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = |\operatorname{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q})| = 6$. We note that the polynomial $g(x) = x^3 - 3x + 1 \in \mathbb{Q}[x]$ vanishes at $\alpha + \overline{\alpha}$. The other roots of this polynomial are $\alpha^2 + \alpha^7$, and $\alpha^4 + \alpha^5$. Since no root is contained in the field \mathbb{Q} , the polynomial g is irreducible over \mathbb{Q} , and it is the minimal polynomial of $\alpha + \overline{\alpha}$ over \mathbb{Q} . Therefore, $[\mathbb{Q}(\alpha + \overline{\alpha}) : \mathbb{Q}] = 3$, and furthermore, the field $\mathbb{Q}(\alpha + \overline{\alpha})$ is the splitting field of the polynomial g over \mathbb{Q} . (Since the other two roots can be expressed in terms of $\alpha + \overline{\alpha}$, and hence adjoining the roots $\alpha + \overline{\alpha}$ ensures that all roots are contained in the field extension.) Again using Thm 4.6.15, and using that \mathbb{Q} is perfect, and hence the extension is separable, we conclude that the extension $\mathbb{Q}(\alpha + \overline{\alpha})$ over \mathbb{Q} is Galois of degree 3.

Exercice 4 (Automorphism of $\mathbb{C}(x)$). 1. We note that all \mathbb{C} - automorphisms of $\mathbb{C}(x)$ are determined by the image of x. We have that:

$$F^{2}(x) = i \frac{x+1}{x-1}$$
 and $F^{3}(x) = x$,

therefore $F^3 = \mathrm{Id}_{\mathbb{C}(x)}$. Similarly, we have:

$$G^{2}(x) = \frac{x(-i-1)+1-i}{x(i+1)+1-i}$$
 and $G^{3}(x) = x$

therefore $G^3 = \mathrm{Id}_{\mathbb{C}(x)}$. Lastly, as

$$FG(x) = -\frac{1}{x}$$
 and $GF(x) = -x$,

it follows that $(FG)^2 = (GF)^2 = \mathrm{Id}_{\mathbb{C}(x)}$.

2. By item 1. we have $[(FG) \circ (GF)](x) = [(GF) \circ (FG)](x) = \frac{1}{x}$ and we see that FG and GF are commuting elements of order 2. It follows that the subgroup generated by them, $\langle FG, GF \rangle$, is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and, moreover, it is normal in \mathcal{A} , since

$$F(FG)F^{-1} = FFGF^2 = F(FGFG)G^2F = F(\mathrm{Id}_{\mathbb{C}(x)})G^2F = (FG)(GF)$$

and

$$G(FG)G^{-1} = GF$$

3. First, by items 1. and 2., we have that $3 \mid |\mathcal{A}|$ and $4 \mid |\mathcal{A}|$, therefore $|\mathcal{A}| \geq 12$. Since $FGFG = GFGF = \mathrm{Id}_{\mathbb{C}(x)}$, it follows that

$$FGF = G^2$$
 and $GFG = F^2$

and, keeping in mind the other relations established in items 1. and 2., one shows that $\mathrm{Id}_{\mathbb{C}(x)}$, $F, F^2, G, G^2, FG, GF, F^2G, FG^2, G^2F, GF^2, FG^2F$ are distinct elements of \mathcal{A} .

Secondly, as $\mathcal{A} = \langle F, G \rangle$, then if $H \in \mathcal{A}$, we have $H = F^{i_1}G^{j_1} \cdots F^{i_n}G^{j_m}$, where $n, m \geq 0$ and $i_1, \ldots, i_n, j_1, \ldots, j_m \in \mathbb{Z}$. Since $F^3 = G^3 = \mathrm{Id}_{\mathbb{C}(x)}$, we have $i_1, j_m \in \{0, 1, 2\}$ and $i_2, \ldots, i_n, j_1, \ldots, j_{m-1} \in \{1, 2\}$. Lastly, as FG and GF commute, $(FG)^2 = (GF)^2 = \mathrm{Id}_{\mathbb{C}(x)}$, $FGF = G^2$ and $GFG = F^2$, we deduce that $n + m \leq 3$ and conclude that $\mathcal{A} = \{\mathrm{Id}_{\mathbb{C}(x)}, F, G, F^2, G^2, FG, GF, F^2G, FG^2, G^2F, GF^2, FG^2F\}$.

4. To show that this group is isomorphic to A_4 , we establish the following isomorphism:

$$\sigma : \mathcal{A} \to A_4$$
 with $\sigma(F) = (123)$ and $\sigma(G) = (234)$.

Knowing a presentation of A_4 by generators and relations, the calculations in items 1.,2. and 3. establish the isomorphism.

Another way to establish this isomorphism is to note that \mathcal{A} is a non-commutative group with 12 elements which admits a normal subgroup isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Inspecting the classification of finite groups of order 12, we determine that $\mathcal{A} \cong A_4$.

- **Exercice 5** (Galois correspondence). 1. Let $L = \mathbb{Q}(\sqrt{7})$. We have that $[L : \mathbb{Q}] = 2$, as $\sqrt{7} \notin \mathbb{Q}$ is a root of the irreducible polynomial $x^2 7 \in \mathbb{Q}[x]$. Now, \mathbb{Q} is a perfect field and L is the splitting field of $x^2 7 \in \mathbb{Q}[x]$ over \mathbb{Q} , hence the extension $\mathbb{Q} \subseteq L$ is Galois. By Proposition 4.6.3(d), it follows that $|\operatorname{Gal}(L/\mathbb{Q})| = 2$ and so $\operatorname{Gal}(L/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z}$. The only subgroups of $\operatorname{Gal}(L/\mathbb{Q})$ are $\operatorname{Gal}(L/\mathbb{Q})$ and $\{\operatorname{Id}_L\}$, therefore the only sub-extensions of L are $\mathbb{Q} = L^{\operatorname{Gal}(L/\mathbb{Q})}$ and $L = L^{\{\operatorname{Id}_L\}}$.
 - 2. Let $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. We have seen in Series 9, Exercise 5.2 that $[L : \mathbb{Q}] = 4$. Now, \mathbb{Q} is a perfect field and L is the decomposition field of $(x^2 2)(x^2 3) \in \mathbb{Q}[x]$ over \mathbb{Q} , hence the extension $\mathbb{Q} \subseteq L$ is Galois. By Proposition 4.6.3(d), it follows that $|\operatorname{Gal}(L/\mathbb{Q})| = 4$. Now, let $\sigma, \tau \in \operatorname{Gal}(L/\mathbb{Q})$ be such that $\sigma(\sqrt{2}) = -\sqrt{2}$ and $\sigma(\sqrt{3}) = \sqrt{3}$, respectively $\tau(\sqrt{2}) = \sqrt{2}$ and $\tau(\sqrt{3}) = -\sqrt{3}$. We see that $\sigma^2 = \tau^2 = \operatorname{Id}_L$ and that $\sigma\tau = \tau\sigma$. Therefore $\operatorname{Gal}(L/\mathbb{Q}) = \langle \sigma, \tau \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Now, $\operatorname{Gal}(L/\mathbb{Q})$ admits 3 non-trivial proper subgroups: $\langle \sigma \rangle$, $\langle \tau \rangle$ and $\langle \sigma\tau \rangle$, each isomorphic to $\mathbb{Z}/2\mathbb{Z}$. Let H be one of these subgroups. By applying Theorem 4.6.18, we determine that $L^H \subseteq L$ is Galois and $[L : L^H] = |H| = 2$. Therefore, $[L^H : \mathbb{Q}] = 2$. One checks that $\mathbb{Q}(\sqrt{3}) \subseteq L^{\langle \sigma \rangle}$, as $\sigma(\sqrt{3}) = \sqrt{3}$, and, similarly, that $\mathbb{Q}(\sqrt{2}) \subseteq L^{\langle \tau \rangle}$ and $\mathbb{Q}(\sqrt{6}) \subseteq L^{\langle \sigma \tau \rangle}$, respectively. We conclude that

$$L^{<\sigma>} = \mathbb{Q}(\sqrt{3}), \ L^{<\tau>} = \mathbb{Q}(\sqrt{2}) \text{ and } L^{<\sigma\tau>} = \mathbb{Q}(\sqrt{6}).$$

3. Let $L = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ and consider the extension chain:

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2},\sqrt{3}) \subseteq L$$

We have that $[L:\mathbb{Q}] = [L:\mathbb{Q}(\sqrt{2},\sqrt{3})][\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}] = 8$, as $\sqrt{5} \notin \mathbb{Q}(\sqrt{2},\sqrt{3})$ is a root of the polynomial $x^2 - 5 \in \mathbb{Q}(\sqrt{2},\sqrt{3})[x]$. Now, \mathbb{Q} is a perfect field and L is the splitting field of $(x^2 - 2)(x^2 - 3)(x^2 - 5) \in \mathbb{Q}[x]$ over \mathbb{Q} , hence the extension $\mathbb{Q} \subseteq L$ is Galois. By Proposition 4.6.3(d), it follows that $|\operatorname{Gal}(L/\mathbb{Q})| = 8$. Let $\sigma_1, \sigma_2, \sigma_3 \in \operatorname{Gal}(L/\mathbb{Q})$ be such that:

$$\sigma_1(\sqrt{2}) = -\sqrt{2}, \ \sigma_1(\sqrt{3}) = \sqrt{3} \text{ and } \sigma_1(\sqrt{5}) = \sqrt{5}$$

$$\sigma_2(\sqrt{2}) = \sqrt{2}, \ \sigma_2(\sqrt{3}) = -\sqrt{3} \text{ and } \sigma_2(\sqrt{5}) = \sqrt{5}$$

 $\sigma_3(\sqrt{2}) = \sqrt{2}, \ \sigma_3(\sqrt{3}) = \sqrt{3} \text{ and } \sigma_3(\sqrt{5}) = -\sqrt{5}$

One shows that $\sigma_i^2 = \operatorname{Id}_L$ for all i = 1, 2, 3 and that $\sigma_i \sigma_j = \sigma_j \sigma_i$ for all $i \neq j$, therefore determining that $\operatorname{Gal}(L/\mathbb{Q}) = \langle \sigma_1, \sigma_2, \sigma_3 \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. We first consider the subgroups of order 2 of $\operatorname{Gal}(L/\mathbb{Q})$. There are 7 of them and each of these is cyclic and generated by an element of $\operatorname{Gal}(L/\mathbb{Q})$. Let H be one of these subgroups. We apply Theorem 4.6.18 to determine that $L^H \subseteq L$ is Galois with $[L : L^H] = |H| = 2$. Therefore we have $[L^H : \mathbb{Q}] = 4$.

Let $H = \langle \sigma_1 \rangle$. One checks that $\mathbb{Q}(\sqrt{3}, \sqrt{5}) \subseteq L^H$, as $\sigma_1(\sqrt{3}) = \sqrt{3}$ and $\sigma_1(\sqrt{5}) = \sqrt{5}$. Therefore, $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{3}, \sqrt{5}) \subseteq L^H$, where $[\mathbb{Q}(\sqrt{3}, \sqrt{5}) : \mathbb{Q}] = 4$ and $[L^H : \mathbb{Q}] = 4$. We conclude that $L^H = \mathbb{Q}(\sqrt{3}, \sqrt{5})$. Similarly, one shows that:

$$L^{<\sigma_2>} = \mathbb{Q}(\sqrt{2}, \sqrt{5}), \ L^{<\sigma_3>} = \mathbb{Q}(\sqrt{2}, \sqrt{3}), \ L^{<\sigma_1\sigma_2>} = \mathbb{Q}(\sqrt{6}, \sqrt{5})$$

 $L^{<\sigma_1\sigma_3>} = \mathbb{Q}(\sqrt{3},\sqrt{10}), \ L^{<\sigma_2\sigma_3>} = \mathbb{Q}(\sqrt{2},\sqrt{15}), \ L^{<\sigma_1\sigma_2\sigma_3>} = \mathbb{Q}(\sqrt{6},\sqrt{10},\sqrt{15}) = \mathbb{Q}(\sqrt{6},\sqrt{10})$

We now consider the subgroups of order 4 of $\operatorname{Gal}(L/\mathbb{Q})$. Again, there are 7 of them and each of these is generated by two distinct elements of order 2 of $\operatorname{Gal}(L/\mathbb{Q})$ and is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Let H be one of these subgroups. We apply Theorem 4.6.18 to determine that $L^H \subseteq L$ is Galois with $[L:L^H] = |H| = 4$. Therefore we have $[L^H:\mathbb{Q}] = 2$. One shows that:

$$L^{<\sigma_1,\sigma_2>} = \mathbb{Q}(\sqrt{5}), \ L^{<\sigma_1,\sigma_3>} = \mathbb{Q}(\sqrt{3}), \ L^{<\sigma_1,\sigma_2\sigma_3>} = \mathbb{Q}(\sqrt{15}), \ L^{<\sigma_2,\sigma_3>} = \mathbb{Q}(\sqrt{2})$$
$$L^{<\sigma_2,\sigma_1\sigma_3>} = \mathbb{Q}(\sqrt{10}), \ L^{<\sigma_3,\sigma_1\sigma_2>} = \mathbb{Q}(\sqrt{6}), \ L^{<\sigma_1\sigma_2,\sigma_1\sigma_3>} = \mathbb{Q}(\sqrt{30}).$$

4. First, we note that the extension $\mathbb{Q} \subseteq E$ is Galois, as \mathbb{Q} is a perfect field and E is the splitting field of the polynomial $t^4 - 2t^2 - 1 \in \mathbb{Q}[t]$ over \mathbb{Q} . By Proposition 4.6.3(d), it follows that $|\operatorname{Gal}(E/\mathbb{Q})| = [E:\mathbb{Q}]$. We see that $t^4 - 2t^2 - 1 = (t^2 - 1 - \sqrt{2})(t^2 - 1 + \sqrt{2}) = (t - \sqrt{1 + \sqrt{2}})(t + \sqrt{1 + \sqrt{2}})(t - \sqrt{1 - \sqrt{2}})(t + \sqrt{1 - \sqrt{2}})$. Therefore $E = \mathbb{Q}(\sqrt{1 + \sqrt{2}}, \sqrt{1 - \sqrt{2}})$. Now, we have that $i = \sqrt{1 + \sqrt{2}} \cdot \sqrt{1 - \sqrt{2}} \in E$ and thus $\mathbb{Q}(\sqrt{1 + \sqrt{2}}, i) \subseteq E$. Conversely, we have $\sqrt{1 - \sqrt{2}} = i \cdot (\sqrt{1 + \sqrt{2}})^{-1} \in \mathbb{Q}(\sqrt{1 + \sqrt{2}}, i)$ and we deduce that $E = \mathbb{Q}(\sqrt{1 + \sqrt{2}}, i)$. We now consider the extension chain:

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{1+\sqrt{2}}) \subseteq E.$$

Since $\sqrt{1+\sqrt{2}}$ is a root of $t^4 - 2t^2 - 1 \in \mathbb{Q}[t]$, it follows that $[\mathbb{Q}(\sqrt{1+\sqrt{2}}):\mathbb{Q}] \leq 4$. We have already seen that the polynomial $t^4 - 2t^2 - 1$ does not admit roots in \mathbb{Q} . We now assume that there exist $a, b, c, d \in \mathbb{Q}$ such that:

$$t^{4} - 2t^{2} - 1 = (t^{2} + at + b)(t^{2} + ct + d).$$

Then $\begin{cases} a + c = 0\\ b + ac + d = -2\\ ad + bc = 0\\ bd = -1 \end{cases}$ and so c = -a, $d = -\frac{1}{b}$ and $-a(\frac{1}{b} + b) = 0$.

- If a = 0, then c = 0 and b + d = -2. Keeping in mind that $d = -\frac{1}{b}$, it follows that $(b+1)^2 = 2$, hence $\sqrt{2} \in \mathbb{Q}$, which is a contradiction.
- If $\frac{1}{b} + b = 0$, then $b^2 + 1 = 0$ and so $i \in \mathbb{Q}$, which is a contradiction.

We have thus shown that $t^4 - 2t^2 - 1 \in \mathbb{Q}[t]$ is irreducible and therefore $[\mathbb{Q}(\sqrt{1+\sqrt{2}}):\mathbb{Q}] = 4$. We remark that $\mathbb{Q}(\sqrt{1+\sqrt{2}}) \subseteq \mathbb{R}$ and so $[E:\mathbb{Q}(\sqrt{1+\sqrt{2}})] = 2$, as $i \notin \mathbb{Q}(\sqrt{1+\sqrt{2}})$ is a root of $t^2 + 1 \in \mathbb{Q}(\sqrt{1+\sqrt{2}})[t]$. In conclusion, $[E:\mathbb{Q}] = 8$, hence $|\operatorname{Gal}(E/\mathbb{Q})| = 8$.

Let $\sigma, \tau \in \text{Gal}(E/\mathbb{Q})$ be such that $\sigma(\sqrt{1+\sqrt{2}}) = \sqrt{1-\sqrt{2}}$ and $\sigma(i) = -i$, respectively $\tau(\sqrt{1+\sqrt{2}}) = \sqrt{1+\sqrt{2}}$ and $\tau(i) = -i$. One checks that:

$$\sigma^{2}(\sqrt{1+\sqrt{2}}) = -\sqrt{1+\sqrt{2}}, \ \sigma^{2}(i) = i$$

$$\sigma^{3}(\sqrt{1+\sqrt{2}}) = -\sqrt{1-\sqrt{2}}, \ \sigma^{3}(i) = -i$$

$$\sigma^{4}(\sqrt{1+\sqrt{2}}) = \sqrt{1+\sqrt{2}}, \ \sigma^{4}(i) = i$$

and thus deduces that $\sigma^4 = \tau^2 = \mathrm{Id}_E$. Now $\langle \sigma \rangle$ is a subgroup of order 4 in $\mathrm{Gal}(E/\mathbb{Q})$ and $\tau \notin \langle \sigma \rangle$. We deduce that $\mathrm{Gal}(E/\mathbb{Q}) = \langle \sigma, \tau \rangle$ and, moreover, as $\sigma \tau \neq \tau \sigma$, $\mathrm{Gal}(E/\mathbb{Q})$ is non-commutative. Lastly, $\mathrm{Gal}(E/\mathbb{Q})$ admits two elements of order 2: σ^2 and τ , and we conclude that $\mathrm{Gal}(E/\mathbb{Q}) \cong D_8$.

We now determine the subgroups of $\operatorname{Gal}(E/\mathbb{Q})$. There are 5 elements of order 2 in $\operatorname{Gal}(E/\mathbb{Q})$: $\tau, \sigma^2, \tau \sigma^2, \tau \sigma$ and $\sigma \tau$, each generating a cyclic group of order 2. Let H be one of these subgroups. By applying Theorem 4.6.18, we determine that $E^H \subseteq E$ is Galois and $[E : E^H] = |H| = 2$. Therefore, $[E^H : \mathbb{Q}] = 4$. One checks that:

$$\tau \sigma^2(\sqrt{1+\sqrt{2}}) = \tau(-\sqrt{1+\sqrt{2}}) = -\sqrt{1+\sqrt{2}} \text{ and } \tau \sigma^2(i) = -i$$

$$\tau \sigma(\sqrt{1+\sqrt{2}}) = \tau(\sqrt{1-\sqrt{2}}) = \tau(i(\sqrt{1+\sqrt{2}})^{-1}) = -\sqrt{1-\sqrt{2}} \text{ and } \tau \sigma(i) = i$$

$$\sigma \tau(\sqrt{1+\sqrt{2}}) = \sigma(\sqrt{1+\sqrt{2}}) = \sqrt{1-\sqrt{2}} \text{ and } \sigma \tau(i) = i$$

and therefore

$$\tau\sigma^2(\sqrt{2}) = \tau\sigma^2((\sqrt{1+\sqrt{2}})^2 - 1) = (\tau\sigma^2((\sqrt{1+\sqrt{2}}))^2 - 1) = (-\sqrt{1+\sqrt{2}})^2 - 1 = \sqrt{2}$$

$$\tau\sigma(\sqrt{1+\sqrt{2}} - \sqrt{1-\sqrt{2}}) = \tau\sigma(\sqrt{1+\sqrt{2}}) - \tau\sigma(i(\sqrt{1+\sqrt{2}})^{-1}) = -\sqrt{1-\sqrt{2}} - \tau(-i(\sqrt{1-\sqrt{2}})^{-1}) = -\sqrt{1-\sqrt{2}} - \tau(-\sqrt{1+\sqrt{2}}) = \sqrt{1+\sqrt{2}} - \sqrt{1-\sqrt{2}}$$

$$\sigma\tau(\sqrt{1+\sqrt{2}}+\sqrt{1-\sqrt{2}}) = \sqrt{1-\sqrt{2}} + \sigma\tau(i(\sqrt{1+\sqrt{2}})^{-1}) = \sqrt{1-\sqrt{2}} + \sigma(-i(\sqrt{1+\sqrt{2}})^{-1})$$
$$= \sqrt{1-\sqrt{2}} + i(\sqrt{1-\sqrt{2}})^{-1} = \sqrt{1-\sqrt{2}} + \sqrt{1+\sqrt{2}}$$

The corresponding sub-extensions are

$$E^{<\tau>} = \mathbb{Q}(\sqrt{1+\sqrt{2}}), \ E^{<\sigma^{2}>} = \mathbb{Q}(\sqrt{1-\sqrt{2}}), \ E^{<\tau\sigma^{2}>} = \mathbb{Q}(\sqrt{2},i)$$
$$E^{<\tau\sigma>} = \mathbb{Q}(\sqrt{1+\sqrt{2}}-\sqrt{1-\sqrt{2}}) \text{ and } E^{<\sigma\tau>} = \mathbb{Q}(\sqrt{1+\sqrt{2}}+\sqrt{1-\sqrt{2}}).$$

Lastly, $\operatorname{Gal}(E/\mathbb{Q})$ admits 3 subgroups of order 4, one of which is cyclic, $\langle \sigma \rangle$, and the other two are isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $\langle \tau, \sigma^2 \rangle$ and $\langle \tau\sigma, \sigma^2 \rangle$.Let H be one of

these subgroups. By applying Theorem 4.6.18, we determine that $E^H \subseteq E$ is Galois and $[E:E^H] = |H| = 4$. Therefore, $[E^H:\mathbb{Q}] = 2$. One checks that:

$$\begin{aligned} \sigma(i\sqrt{2}) &= -i\sigma(\sqrt{2}) = -i\sigma((\sqrt{1+\sqrt{2}})^2 - 1) = -i(\sqrt{1-\sqrt{2}})^2 - 1) = i\sqrt{2} \\ \begin{cases} \tau(\sqrt{2}) &= \tau(\sqrt{1+\sqrt{2}})^2 - 1)(=\sqrt{1+\sqrt{2}})^2 - 1 = \sqrt{2} \\ \sigma^2(\sqrt{2}) &= \sigma^2((\sqrt{1+\sqrt{2}})^2 - 1) = (-\sqrt{1+\sqrt{2}})^2 - 1 = \sqrt{2} \\ \tau\sigma(i) &= \tau(-i) = i \text{ and } \sigma^2(i) = i \end{aligned}$$

The corresponding sub-extensions are:

$$E^{\langle \sigma \rangle} = \mathbb{Q}(i\sqrt{2}), \ E^{\langle \tau, \sigma^2 \rangle} = \mathbb{Q}(\sqrt{2}) \text{ and } E^{\langle \tau\sigma, \sigma^2 \rangle} = \mathbb{Q}(i).$$

Exercice 6.

We have the following extension tower:

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{1+\sqrt{2}}).$$

The extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2})$ is Galois, as \mathbb{Q} is a perfect field and $\mathbb{Q}(\sqrt{2})$ is the decomposition field of the polynomial $x^2 - 2 \in \mathbb{Q}[x]$, see Theorem 4.6.15. Similarly, the extension $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{1+\sqrt{2}})$ is Galois, as $\mathbb{Q}(\sqrt{2})$ is perfect and $\mathbb{Q}(\sqrt{1+\sqrt{2}})$ is the decomposition field of the polynomial $x^2 - 1 - \sqrt{2} \in \mathbb{Q}(\sqrt{2})[x]$.

We now consider the extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{1+\sqrt{2}})$. We know by Exercise 2. that $\sqrt{1+\sqrt{2}}$ is a root of the irreducible polynomial $x^4 - 2x^2 - 1 \in \mathbb{Q}[x]$, hence $m_{\sqrt{1+\sqrt{2}},\mathbb{Q}}(x) = x^4 - 2x^2 - 1$ and $[\mathbb{Q}(\sqrt{1+\sqrt{2}}):\mathbb{Q}] = 4$. Moreover, we have already seen that the other roots of $x^4 - 2x^2 - 1$ are $-\sqrt{1+\sqrt{2}}$ and $\pm\sqrt{1-\sqrt{2}}$. Now, we remark that $\mathbb{Q}(\sqrt{1+\sqrt{2}}) \subseteq \mathbb{R}$, therefore $\pm\sqrt{1-\sqrt{2}} \notin \mathbb{Q}(\sqrt{1+\sqrt{2}})$. Let $\sigma \in \operatorname{Gal}(\mathbb{Q}(\sqrt{1+\sqrt{2}})/\mathbb{Q})$. Then $\sigma(\sqrt{1}+\sqrt{2}) \in \mathbb{Q}(\sqrt{1+\sqrt{2}})$ is a root of $m_{\sqrt{1+\sqrt{2}},\mathbb{Q}}(x)$ and thus $\sigma(\sqrt{1}+\sqrt{2}) = \pm\sqrt{1+\sqrt{2}}$, see Proposition 4.6.3 (c). It follows that $|\operatorname{Gal}(\mathbb{Q}(\sqrt{1+\sqrt{2}})/\mathbb{Q})| = 2$ and we conclude, using Corollary 4.6.13, that the extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{1+\sqrt{2}})$ is not Galois.

Exercice 7. 1. As $K \subseteq L$ is Galois, hence separable, and of finite degree, we have that $L = K(\alpha)$ for some $\alpha \in L \setminus K$, see Theorem 4.5.10. Similarly, one argues that $E = L(\beta)$ for some $\beta \in E \setminus L$.

For all $\sigma \in \text{Gal}(L/K)$, let $\sigma^x : L[x] \to L[x]$ be the induced homomorphism, i.e.

$$\sigma^x(\sum_{i=1}^n a_i x^i) = \sum_{i=1}^n \sigma(a_i) x^i.$$

Note that, since σ is a K-automorphism of L, it follows that σ^x is an isomorphism of L[x].

Consider the polynomial $m_1 = m_{\beta,L}$ and note that it is irreducible and separable over L. Let $\{m_1, m_2, \ldots, m_r\}$ be the $\operatorname{Gal}(L/K)$ -orbit of m_1 in L[x], where $m_i \approx m_j$ for all $i \neq j$. Now, since m_1 is irreducible and, since for all m_i , $1 \leq i \leq r$, there exists $\sigma_i \in \operatorname{Gal}(L/K)$ such that $\sigma_i^x(m_1) = m_i$, it follows that m_i is irreducible for all $1 \leq i \leq r$. Therefore, $\operatorname{gcd}(m_i, m_j) = 1$ for all $i \neq j$.

We will now show that the polynomials m_i , $1 \le i \le r$, are separable. First, note that m_1 is separable as the extension $L \subseteq E$ is Galois, hence we have that $gcd(m_1, \frac{d}{dx}m_1) = 1$, see

Corollary 4.4.10. Since for all $1 \leq i \leq r$ there exists $\sigma_i \in \text{Gal}(L/K)$ such that $\sigma_i^x(m_1) = m_i$, we have that $\sigma_i^x(\frac{d}{dx}m_1) = \frac{d}{dx}m_i$ and thus $1 = \sigma_i^x(\text{gcd}(m_1, \frac{d}{dx}m_1)) = \text{gcd}(m_i, \frac{d}{dx}m_i)$. It follows that the polynomial $m_i(x) \in L[x]$ is separable for all $1 \leq i \leq r$.

Set $g(x) = \prod_{i=1}^{r} m_i(x) \in L[x]$. Now, we have shown that the m_i 's, $1 \le i \le r$, are separable

polynomials with $gcd(m_i, m_j) = 1$, for all $i \neq j$. It follows that the polynomial g(x) is also separable over L. We also remark that for all $\sigma \in Gal(L/K)$ we have that

$$\sigma^{x}(g) = \sigma^{x}(\prod_{i=1}^{r} \sigma_{i}^{x}(m_{1})) = \prod_{i=1}^{r} (\sigma^{x} \circ \sigma_{i}^{x})(m_{1}) = \prod_{i=1}^{r} m_{i}$$

as $\{m_1, m_2, \ldots, m_r\}$ is the $\operatorname{Gal}(L/K)$ -orbit of m_1 and $\sigma \circ \sigma_i \in \operatorname{Gal}(L/K)$ for all $\sigma \in \operatorname{Gal}(L/K)$ and all $1 \leq i \leq r$. Therefore, we have that $g(x) \in L^{\operatorname{Gal}(L/K)}[x] = K[x]$, as $K \subseteq L$ is Galois.

Let F be the decomposition field of $m_{\alpha,K} \cdot g$ over K. Then F is generated by the roots of $m_{\alpha,K}$ and the roots of g. Note that $m_{\alpha,K}$ and g do not admit a common root $\gamma \in F$. If they would then $\gamma \in L$, as L is the decomposition field of $m_{\alpha,K}$, and therefore there would exist $1 \leq i \leq r$ such that $m_i(\gamma) = 0$, contradicting the fact that the m_i 's are irreducible polynomials in L[x]. Now, as g and $m_{\alpha,K}$ are separable polynomials that do not admit common roots, it follows that F is generated by separable elements and thus the extension $K \subseteq F$ is Galois. Lastly, we have that $E \subseteq F$, as $E = L(\beta)$, $L = K(\alpha)$ and $\alpha, \beta \in F$, since they are roots of $m_{\alpha,K}$ and g, respectively. We have shown that there exist a tower of extensions $K \subseteq E \subseteq F$ with $K \subseteq F$ Galois.

2. Let $\alpha \in E$. Then, we have $L \subseteq L(\alpha) \subseteq E$, where the extension $L \subseteq L(\alpha)$ is finite and separable. Now, let $m_{\alpha,L}(x) = \sum_{i=1}^{r} a_i x^i \in L[x]$. Then we have the tower of extensions $K \subseteq K(a_1, \ldots, a_r) \subseteq K(a_1, \ldots, a_r, \alpha) \subseteq L(\alpha)$ where $K \subseteq K(a_1, \ldots, a_r)$ and $K(a_1, \ldots, a_r) \subseteq K(a_1, \ldots, a_r, \alpha)$ are finite and separable. Moreover, we note that $m_{\alpha,L}(x) \in K(a_1, \ldots, a_r)[x]$.

Set F to be the splitting field of $\prod_{i=1}^{r} m_{a_i,K}(x)$ over K. Then F: K is finite and F is generated, over K, by the roots of $m_{a_i,K}$ for all $1 \le i \le r$, see Lemma 4.3.3. As a_i is separable over Kfor all $1 \le i \le r$, then so are all the other roots of $m_{a_i,K}$ and we deduce that the extension $K \subseteq F$ is separable. Hence, it is Galois. Moreover, we note that $K(a_1, \ldots, a_r) \subseteq F$.

Set G be the splitting field of $m_{\alpha,L}(x)$ over F. Then [G:F] is finite and G is generated, over F, by the roots of the polynomial $m_{\alpha,L}(x)$, see Lemma 4.3.3. As $\alpha \in K(a_1, \ldots, a_r, \alpha)$ is separable over $K(a_1, \ldots, a_r)$, we have that α is separable over F, since $m_{\alpha,F}|m_{\alpha,K(a_1,\ldots,a_r)}$. Therefore, the extension $F \subseteq G$ is Galois and finite. Moreover, we have that $K(a_1, \ldots, a_r, \alpha) \subseteq G$. We have built the following extension diagram:

where $K \subseteq H$ is a Galois extension, see item 1. Therefore, H is separable over K, hence, in particular, we have that $K(a_1, \ldots, a_r, \alpha)$ is separable over K. We have shown that all $\alpha \in E$ are separable over K and we conclude that E is separable over K.

Exercice 8.

Let K be a countable field and consider the polynomial ring K[x]. For all $i \ge 0$ define the subsets $K^i[x] \subseteq K[x]$ with $K^i[x] = \{f \in K[x] | \deg(f) = i\}$. We remark that $K[x] = \bigcup_{i\ge 0} K^i[x]$ and that

 $K^{i}[x] \cong K^{i}$, hence $|K^{i}[x]| = i \cdot |K| = |K|$, for all $i \ge 0$. It follows that $|K[x]| = \aleph_{0} \cdot |K| = \aleph_{0}$ and so K[x] is also countable.

We define the map $\phi : \overline{K} \to K[x]$ by $\phi(\alpha) = m_{\alpha,K}$. Now the subset $\phi(\overline{K})$ of K[x] contains all polynomials of the form $x - \alpha$, where $\alpha \in K$, hence $\phi(\overline{K})$ is also countable. Lastly, for any $m_{\alpha,K} \in \phi(\overline{K})$ we have that the preimage $\phi^{-1}(m_{\alpha,K})$ is non-empty and finite, as $\alpha \in \phi^{-1}(m_{\alpha,K})$ and $m_{\alpha,K}$ admits a finite number of roots. We conclude that \overline{K} has the same cardinality as $\phi(\overline{K})$, hence it is countable.

Exercice 9.

Let G be a finite group and let |G| = n. By Cayley's Theorem, we know that we can embed G as a subgroup of S_n .

Now, consider the ring $F = \mathbb{Q}[x_1, \ldots, x_n]$ and for each $\sigma \in G$ define:

$$\phi_{\sigma}: F \to F$$
 by $\phi_{\sigma}(x_i) = x_{\sigma(i)}$ for all $1 \leq i \leq n$.

One shows that ϕ_{σ} is a ring homomorphism for all $\sigma \in G$. Moreover, we have that $\phi_{\sigma} \circ \phi_{\sigma^{-1}} = \phi_{\sigma^{-1}} \circ \phi_{\sigma} = \operatorname{Id}_{F}$, hence ϕ_{σ} is invertible for all $\sigma \in G$ with inverse $\phi_{\sigma}^{-1} = \phi_{\sigma^{-1}}$.

Let $E = \mathbb{Q}(x_1, \ldots, x_n)$ be the field of fractions of F. Then $\phi_{\sigma} : F \to E$ is an injective ring homomorphism, as it is the composition of two injective ring homomorphisms. We now apply the universal property of the fraction field, to determine that:

$$\phi_{\sigma}: E \to E$$
, where $\phi_{\sigma}(x_i) = x_{\sigma(i)}$ for all $1 \le i \le n$

is a field homomorphism. Now, one checks that, in fact, ϕ_{σ} is a Q-automorphism of E.

Let $H = \{\phi_{\sigma} | \sigma \in G\}$ be a subset of $\operatorname{Aut}_{\mathbb{Q}}(E)$. Since $\phi_{\sigma_1} \circ \phi_{\sigma_2} = \phi_{\sigma_1\sigma_2}$ for all $\sigma_1, \sigma_2 \in G$, it follows that H is a subgroup of $\operatorname{Aut}_{\mathbb{Q}}(E)$. Moreover, we have that $H \cong G$, hence H is a finite group. We now apply Theorem 4.6.12 to E and H to deduce that $[E : E^H] = |H| = |\operatorname{Gal}(E/E^H)|$, hence $E^H \subseteq E$ is Galois, see Corollary 4.6.13. We conclude that $\operatorname{Gal}(E/E^H) = H \cong G$.

Supplementary exercise

Exercice 10. 1. As $K \subseteq L$ is a purely inseparable extension, it follows that $\alpha \in L \setminus K$ is purely inseparable over K, thus there exists $n \geq 1$ such that $\alpha^{p^n} \in K$. We fix such an $\alpha \in L \setminus K$ and we let $\sigma \in \text{Gal}(L/K)$. It suffices to show that $\sigma(\alpha) = \alpha$.

The element $\alpha \in L/K$ is the unique p^n th root of α^{p^n} , see Exercise 2.(a) of Series 11. Therefore, it suffices to show that $(\sigma(\alpha))^{p^n} = \alpha^{p^n}$. We have:

$$(\sigma(\alpha))^{p^n} = \sigma(\alpha^{p^n}) = \alpha^{p^n}.$$

We conclude that $\operatorname{Gal}(L/K) = {\operatorname{Id}_L}.$

2. First, we will show that $L_{insep,K} \subseteq L^{\operatorname{Gal}(L/K)}$. For this, let $\alpha \in L_{insep,K}$ and let $\sigma \in \operatorname{Gal}(L/K)$. As $\alpha \in L_{insep,K}$, there exists $n \in \mathbb{Z}_{\geq 0}$ such that $\alpha^{p^n} \in K$. Then:

$$\sigma(\alpha)^{p^n} = \sigma(\alpha^{p^n}) = \alpha^{p^n} \in K$$

and it follows that $\sigma(\alpha) \in L_{insep,K}$. Hence the restriction $\sigma|_{L_{insep,K}}$ is a K-automorphism of $L_{insep,K}$ and thus $\sigma|_{L_{insep,K}} = \mathrm{Id}_{L_{insep,K}}$, see item 1. Therefore $\sigma(\alpha) = \sigma|_{L_{insep,K}}(\alpha) = \alpha$ for all $\alpha \in L_{insep,K}$ and thus $L_{insep,K} \subseteq L^{\mathrm{Gal}(L/K)}$.

We now consider the extension tower:

$$K \subseteq L_{insep,K} \subseteq L^{\operatorname{Gal}(L/K)} \subseteq L.$$

We have that $[L:K] = [L:L_{insep,K}][L_{insep,K}:K]$, hence $[L:L_{insep,K}] = |\operatorname{Gal}(L/K)|$. On the other hand, we have $[L:L^{\operatorname{Gal}(L/K)}] = |\operatorname{Gal}(L/K)|$, see Theorem 4.6.12, and we deduce that $[L^{\operatorname{Gal}(L/K)}:L_{insep,K}] = 1$, hence $L^{\operatorname{Gal}(L/K)} = L_{insep,K}$. Lastly, the extension $L^{\operatorname{Gal}(L/K)} \subseteq L$ is separable, see Proposition 4.6.10, and we conclude that $L_{insep,K} \subseteq L$ is separable.