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Exercice 1. (a) Let v = v2+v3 € Q(v2,V3). We have that v—+/2 = v/3 and so (y—+/2)? = 3.
This gives 72 — 1 = 2y+/2, therefore (y2 — 1)2 = 8y% and so v* — 1042 + 1 = 0. It follows
that the polynomial t* — 10t2 + 1 € Q[t] admits v as a root. We will now show that this
polynomial is irreducible.

Assume that £ € Q, where p,r € Z, ged(p,7) = 1 and r # 0, is a root of t* —10t2 + 1. Then
p|1,7|1andsoZ ==+l One checks that neither 1 nor —1 is a root of t* — 10t + 1. We
now assume that there exist a, b, c,d € Q such that

t* =106 + 1 = (£ + at + b)(£* + ct + d).

a+c=0
b d=-10
Then Hact and we deduce that ¢(b — d) = 0.
ad + bc =0
bd =1
(a) If ¢ =0, then b — 1 which gives b° + 10b + 1 = 0. This implies that b € Q

is a root of the polynomial 2 + 10t + 1 € Q[t]. If we write b = L, where p,r € Z with
ged(p,r) =1 and r # 0, then p | 1, r | 1 and so b = £1. But neither 1 nor —1 is a root
of t2 4+ 10t + 1.

(b) If b = d, then > = 1 and so b = +1. Moreover, as b+ ac +d = —10 we also get that
c? =10+ 2b and so ¢ € {8,12}, contradicting the fact that ¢ € Q.

We conclude that t* — 10t2 + 1 € Q[t] is irreducible and therefore, as it admits v/2 + /3 as
a root, we have that m 5, z(t) = t4 —10t2 + 1 and [Q(v2 + V/3) : Q] = 4. Lastly, as
[Q(v/2,V3) : Q] = 4, see Exercise 5.2 of Series 9, we conclude that v/2 + /3 is a primitive
element of Q(v/2,/3).

(b) As [Q(v2,V3) : Q] = 4, it follows that dimg(Q(v/2,v/3)) = 4 and so, to show that the set
{1,v/2,4/3,V6} is a Q-basis of Q(v/2,/3), it suffices to show that it is linearly independent.
For this, let a,b, ¢, d € Q be such that

a+bvV2+ev3+dve =0,
Then a + dv6 = —(by/2 + ¢V/3) and so (a + dv/6)? = (bv/2 + ¢v/3)? which gives
a? + 6d? — 26 — 3¢* + 2(ad — be)V6 = 0.
a? +6d? — 26> — 3¢ =0
ad = bc

Analogously, since a + bv/2 = —(¢v/3 4+ dv/6) and a + ¢v/3 = —(bv/2 + dv/6), respectively,
a? +2b% —3¢* — 64> =0 4 a? +3c? —26% — 6d* = 0
an
ab = 3cd ac = 2bd

As V6 ¢ Q it follows that {

, respectively.

one shows that {
Now:
a2+ 6d2 -2 —-3c2=0 .
a?+20° -3 -6 =0 = a’= 5(2”2 + 3¢ + 6d%)
a?+32 -2 —6d2=0



which gives

a? = 120 + 3¢ + 6d?) 1 1
3 — b% = (3c® + 6d?) and so a® = = (3c¢% + 6d?).
{a2+2b2—302—6d2:0 4( ) 2( )

Then
a? = 1(3c? + 6d?)
b? = 1(3c? + 6d°) = =24
a® +3c2 — 20 — 6d% =0

If d # 0, then V2 = S € Q, which is a contradiction. It follows that d = 0 and, consequently,
c=0b=a=0. We conclude that a = b= ¢ = d = 0 and therefore {1,v/2,/3,v/6} is linearly
independent.

(c) Assume that v = av/3 + bv/6 is primitive in Q(\/§, \/g) If a =0orb=0, then v = b\/6,

respectively v = av/3, and, since Q(v/6) € Q(v/2,v/3) and Q(v/3) € Q(v/2,v/3) ,respectively,
it follows that 7 is not primitive in Q(v/2,v/3), a contradiction.
Assume that a, b # 0. Now, av/3 + bv/6 is primitive in @(ﬁ, \/3) if and only if v/3 + ¢V/6,
where ¢ = 2 # 0, is primitive in Q(v/2,v/3). As Q € Q(v/3 + ¢v6) C Q(v/2,v/3) we have
[Q(v3 +¢v6) : Q] | 4 and so [Q(v3 + ¢v6) : Q] € {1,2,4}. Clearly, [Q(v3 +¢cv6) : Q] #1
as V3 + cv/6 ¢ Q. Assume that [Q(v/3 + ¢v/6) : Q] = 2. Then, there exists a polynomial
t?2 + at + B € Q[t] which admits V3 + ¢V6 as a root. Thus:

(V3 +cevV6)2 + (V3 +cV6) + =0

and so:
6cvV2 4 aV3+caV6+3+ 62+ 5 =0.

By item (b), it follows that ¢ = 0, contradicting the fact that b # 0. We conclude that
[Q(v/3 + ¢V6) : Q] = 4 and therefore Q(v/3 + ¢v/6) = Q(+v/2,V3).

(d) Now, av/2 + bv/3 4 ¢V/6, where a,b,c € Q¥ is primitive in Q(v/2,/3) if and only if /2 +
dv/3 + eV/6, where d = g #0and e = £ # 0, is primitive in Q(v2,v/3). We argue as in item
(c) to show that [Q(v/2+ dv3 +ev6) : Q] € {1,2,4} and that [Q(v/2+dV3+eV6) : Q] # 1.

Assume [Q(v/2 + dv/3 + ev/6) : Q] = 2. Then there exists a polynomial t> + at 4+ 5 € Q[t]
that admits v/2 + dv/3 + eV/6 as a root. We have that:

(V24 dvV3+eV6)? + a(vV2+dV3+evV6) + =0

4 d=
and so { cta . Then a = —6de and we have 4e — 6d%e = e(4 — 6d?) = 0. Ase #0

0
bde +a =0
it follows that 6 = (2)? and so V6 € Q, a contradiction.

We conclude that [Q(v2 + dv/3 + ev6) : Q] = 4 and therefore Q(v/2 + dv/3 + eV6) =
Q(v2,V3).

Exercice 2. 1. Let 3 be a root of f. It holds that ¥ — 3+ a = 0. Let v € F, C K. Then,
using Fermat’s little theorem, which states that 4¥ = v modulo p, it holds that over a field
of characteristic p, we have

BN =B+ +a=8+1"=b-y+a=F+y-F-y+a=0-F+a=0.

Hence all 8 4 v, where v € F, are roots of f. We get p distinct roots, and as F, C K, by
adjoining /8 to K, all roots are contained in K () and hence L = K ().



Moreover, we have that mg i = f. Let mg x = [[,¢;(x—(B+7) in L[z] with I C F[z]. Then

the coefficients in front of zI=1 are exactly — EveI(BJﬂ) = [I|B + > ;- If we suppose
that |I| < p, one contradicts the fact that 5 ¢ K. Therefore mg ik = f.

We use Proposition 4.6.3 and get the following: by (a), G acts on the roots of f. By (b), since
L = K(), there is at most one element in G that sends the root 5 to the root 8 + ~, for
v € . Therefore, |G| < p. There are indeed p elements in G, which are of the form o, with
o,(B) =+~ for all k € F,. We get p automorphisms, and hence G = Z /pZ.

2. The fact that f is irreducible over K follows from Prop 4.6.3 (d), which states that |G| =
[L: K], where L = K(3) is the splitting field of f. By the previous point, |G| = p, and hence
[K(B) : K| = degmg x = p. Since 3 is a root of f, and since its minimal polynomial is of
degree p, it follows that f ~ mg i, and hence, f is irreducible over K.

3. Let { € Fy(t) a root of 2P — x 4 t. Then, g,h € Fy[t],h # 0 and it holds that

€>p_<g t = P _ ghP~l L pP =
(h h) + 0< g? —gh?™" +th? =0.
Denote the degree of g by dg4, and the degree of h by dj. Then, the degree of the following
polynomials are

deg(g”) = pdy, deg(gh?™') =dy+ (p—1)dp, deg(th?) =1+ pdy.

In order for the sum gP — ghP~! 4 thP? to be zero, the degrees of each of the summands needs
to be canceled out.

If dj, > dg, then the degree of th”, being 1+ pdp, is strictly bigger than pd, and dy+ (p—1)dp,
and hence th? can’t be canceled out, and the sum of polynomials can only be zero if h = 0,
but this is a contradiction to the choice of g, h.

On the other hand, if d; > dj,, then nothing can cancel out g”, which one sees by a degree
comparison, and hence the sum gP — gh?~! + th? can only be zero if g = 0 and h = 0, which
is a contradiction.

4. Let u be a root of f :uw’ —u+t =0« v’ —u = —t, and hence F(t) C Fy(u). With u
being transcendental over F,,, it follows that the splitting field is F,(u). We remark that by
the second part of the exercise, all roots are of the form u + 7, where v € ), and hence all
roots are contained in Fp(u).

Exercice 3. 1. First we note that we may apply the third Gauss lemma, from which it follows
that f is irreducible in Q[z] if and only if it is irreducible in Z[x]. We then argue as in Example
3.9.4 (b) that showing irreducibility of f in Z[z] can be done by showing irreducibility of
evy11(f) in Zly| since the evaluation evy : Z[z] — Z[y] is an isomorphism. But

evyr1(f) = (y+ 1%+ (y+1)° + 1 =9+ 6y + 155" + 21y° + 18y + 9y + 3,
which is irreducible in Z[y] by applying Eisensteins criterion with p = 3.

2. Let a be a root of f. Then, with a® + a3 4+ 1 = 0 it follows that a% = —a® — 1, and hence
=t b =a-a?-1)=-a-aP=—(—a?-1)-aP=a+1-a®=1andsoais a
root of 27 — 1 as well.

It holds that
2 — 1= (2 +2° +1)(2* - 1).

Using Prop. 4.4.10 (c), it follows from ged(z® — 1, é%(xg —1)) = ged(2? — 1,92%) = 1 that
the polynomial 2° — 1 does not have any double roots. Its 9 roots are the 9-th roots of unity.
Hence « is a 9-th root of unity as well. The 9-th roots of unity that are not primitive are



those roots that are simultaneously 3-rd roots of unity as well. But o can not be one of those
roots, since if o was a root simultaneously of f and of 23 — 1, then o would be a double root
of f- (2% —1) =2 — 1, which is not possible. We conclude that « is a primitive 9-th root of
unity.

3. Let a be as above a root of f. Then, a € {627”]‘;/9 | k =1,2,4,5,7,8}, and we may assume
without loss of generality that a = e2™/9. Then, the other roots of f are a?,a?,a® a’, a8.

By adjoining « to Q, we therefore adjoin all roots of f, from which it follows that L = Q(«).

Now by Prop 4.6.3 (a), every element in Gal(L/Q) acts on the roots of f in L. These 6 roots
are described above. By (b), as L = Q(«), there is at most one element in the Galois group
which sends « to one of other primitive roots o, where k = 1,2,4, 5,7, 8. Hence there are at
most 6 elements in the Galois group. But, using irreducibility of f, and part (c), there are
exactly 6, with the automorphisms defined by o3(a) = o*. The identification with (Z/9Z)*
is the obvious one, identifying o} € Gal(L/Q) with k € (Z/9Z)*. Lastly, this extension is
Galois by Thm. 4.6.15, using Q is perfect, and hence the extension is separable.

4. We have the following fields extensions, Q C Q(a + @) C Q(«), where @ denotes the complex
conjugate of a. We remark that @ = o® € Q(a).

Since the extension Q(«) over Q is Galois, we have that [Q(«) : Q] = | Gal(Q(«)/Q)| = 6.
We note that the polynomial g(x) = 2® — 3z + 1 € Q[z] vanishes at a + @. The other roots
of this polynomial are o + a”, and a* 4+ o”. Since no root is contained in the field Q, the
polynomial g is irreducible over QQ, and it is the minimal polynomial of a+a over Q. Therefore,
[Q(a+@a) : Q] = 3, and furthermore, the field Q(a + @) is the splitting field of the polynomial
g over Q. (Since the other two roots can be expressed in terms of o+ @, and hence adjoining
the roots o + @ ensures that all roots are contained in the field extension.) Again using Thm
4.6.15, and using that Q is perfect, and hence the extension is separable, we conclude that
the extension Q(a + @) over Q is Galois of degree 3.

Exercice 4 (Automorphism of C(z)). 1. We note that all C - automorphisms of C(x) are deter-
mined by the image of x. We have that:

1
F%(z) = zLﬁLl and F3(z) =z,
Tz —

therefore F3 = Idg(y). Similarly, we have:

w(—i—1)+1—
x(i+1)+1—14

G*(x) = ! and G3(z) =z

therefore G2 = Idc(y). Lastly, as

1
FG(z) = - and GF(z) = —x,

it follows that (FG)? = (GF)? = Idg(y).-

2. By item 1. we have [(FG) o (GF)|(z) = [(GF) o (FG)|(z) = % and we see that FG and

GF are commuting elements of order 2. It follows that the subgroup generated by them,
< FG,GF >, is isomorphic to Z/27 x 7 /27 and, moreover, it is normal in .4, since

F(FG)F~' = FFGF? = F(FGFG)G*F = F(ldc(,))G°F = (FG)(GF)

and
G(FG)G ' =GF



3. First, by items 1. and 2., we have that 3 | |A| and 4 | |A|, therefore |A| > 12. Since
FGFG = GFGF = Idc(y,), it follows that

FGF = G? and GFG = F?

and, keeping in mind the other relations established in items 1. and 2., one shows that Idc(y),
F, F? G, G? FG,GF, F?’G, FG?, G*F, GF?, FG?F are distinct elements of A.

Secondly, as A =< F,G >, then if H € A, we have H = F'GJ' ... FinGIm where n,m > 0
and i1,...,0n,j1,. ., jm € Z. Since F? = G = Idg(,), we have i1, j,m € {0,1,2} and
2y ey iny J1s e osdme1 € {1,2}. Lastly, as FG and GF commute, (FG)? = (GF)? =
lde), FGF = G? and GFG = F?, we deduce that n +m < 3 and conclude that A =
{Idc() F, G, F?,G* FG,GF, F*G,FG*,G*F,GF? FG*F}.

4. To show that this group is isomorphic to A4, we establish the following isomorphism:
o: A— Ay with o(F) = (123) and o(G) = (234).

Knowing a presentation of A4 by generators and relations, the calculations in items 1.,2. and
3. establish the isomorphism.

Another way to establish this isomorphism is to note that A is a non-commutative group
with 12 elements which admits a normal subgroup isomorphic to Z/27 x Z/2Z. Inspecting
the classification of finite groups of order 12, we determine that A = Ay.

Exercice 5 (Galois correspondence). 1. Let L = Q(+/7). We have that [L : Q] = 2, as V7 ¢ Q
is a root of the irreducible polynomial 2 — 7 € Q[z]. Now, Q is a perfect field and L is the
splitting field of 22 — 7 € Q[z] over Q, hence the extension Q C L is Galois. By Proposition
4.6.3(d), it follows that | Gal(L/Q)| = 2 and so Gal(L/Q) = Z/2Z. The only subgroups of
Gal(L/Q) are Gal(L/Q) and {Idy}, therefore the only sub-extensions of L are Q = LG2I(L/Q)
and L = Lde},

2. Let L = Q(+v/2,v/3). We have seen in Series 9, Exercise 5.2 that [L : Q] = 4. Now, Q is a
perfect field and L is the decomposition field of (2% — 2)(2? — 3) € Q[z] over Q, hence the
extension Q C L is Galois. By Proposition 4.6.3(d), it follows that | Gal(L/Q)| = 4. Now,
let 0,7 € Gal(L/Q) be such that o(v/2) = —v/2 and o(v/3) = /3, respectively 7(v/2) = /2
and 7(v/3) = —v/3. We see that 02 = 72 = Id;, and that o7 = 70. Therefore Gal(L/Q) =<
o,7 >= 7/27 x Z/2Z. Now, Gal(L/Q) admits 3 non-trivial proper subgroups: < o >,
< 7 > and < o7 >, each isomorphic to Z/27Z. Let H be one of these subgroups. By
applying Theorem 4.6.18, we determine that L7 C L is Galois and [L : L] = |H| = 2.
Therefore, [L7 : Q] = 2. One checks that Q(v/3) C L<7>, as ¢(v/3) = /3, and, similarly,
that Q(v/2) € L<™> and Q(v/6) C L=<, respectively. We conclude that

L<7> = Q(V3), L= = Q(v2) and L= = Q(V6).
3. Let L =Q(v/2, V3, v/5) and consider the extension chain:
QCQ(W2,V3)CL
We have that [L: Q] = [L: Q(v2,v3)][Q(v2,V3) : Q] = 8, as V5 ¢ Q(+/2,/3) is a root of
the polynomial 22 —5 € Q(v/2,v/3)[z]. Now, Q is a perfect field and L is the splitting field of

(22 — 2)(z? — 3)(z% — 5) € Q] over Q, hence the extension Q C L is Galois. By Proposition
4.6.3(d), it follows that | Gal(L/Q)| = 8. Let 01,092,035 € Gal(L/Q) be such that:

o1(V2) = —v2, 01(vV3) = V3 and 01(V5) = V5



72(V2) = V2, 02(V3) = —V3 and 03(V5) = V5
03(V2) = V2, 03(V3) = V3 and 03(V5) = —V5

One shows that 01-2 = Idg, for all i« = 1,2,3 and that o;0; = 0j0; for all i # j, therefore
determining that Gal(L/Q) =< 01,092,038 >= Z/27 x 7/27 x Z/2Z. We first consider the
subgroups of order 2 of Gal(L/Q). There are 7 of them and each of these is cyclic and
generated by an element of Gal(L/Q). Let H be one of these subgroups. We apply Theorem
4.6.18 to determine that L C L is Galois with [L : L] = |H| = 2. Therefore we have
(L7 Q] = 4.

Let H =< o7 >. One checks that Q(+/3, \/5) C L7, as 01(\/5) = /3 and a1(v5) = V5.
Therefore, Q C Q(v/3,+v/5) C L, where [Q(v/3,v/5) : Q] = 4 and [L¥ : Q] = 4. We conclude
that L7 = Q(+/3,+/5). Similarly, one shows that:

L=*” = Q(v2,v5), L¥7%” = Q(V2,V3), L<7"*> = Q(vV/6,V5)
L=17” = Q(v3,V/10), L=7%” = Q(v2, V15), L1720~ = Q(v/6, V10, V15) = Q(V6, V10)

We now consider the subgroups of order 4 of Gal(L/Q). Again, there are 7 of them and each
of these is generated by two distinct elements of order 2 of Gal(L/Q) and is isomorphic to
7.)27 x 7./27. Let H be one of these subgroups. We apply Theorem 4.6.18 to determine that
LH C L is Galois with [L : L] = |H| = 4. Therefore we have [L : Q] = 2. One shows that:

[<o1,02> Q(\/g), [<01,03> @(\/5), [,<01,0203> _ @(\/ﬁ), [,<02:03> _ Q(\@)
[<02:0103> _ @(\/E)7 [ <03:0102> _ Q(\/é), [<0102,0103> _ Q(\/%)

. First, we note that the extension Q C F is Galois, as Q is a perfect field and E is the splitting
field of the polynomial t* — 2t> — 1 € Q[t] over Q. By Proposition 4.6.3(d), it follows that
| Gal(E/Q)| = [E : Q]. Wesee that t*—2t2—1 = (2 —1—v2)(t*—14+v2) = (t— V1 + V2)(t+
V1I+V2)(t —V1—-v2)(t+ V1—+2). Therefore E = Q(\/l +v2,V1— V2). Now, we
have that 7 = \/1 +2- \/1 —+/2 € E and thus Q(v/1++/2,i) C E. Conversely, we have

1-vV2=i-(V1+v2)™ € QW1+ +2,i) and we deduce that £ = Q(v/1+v/2,i). We

now consider the extension chain:

QCQ(1+Vv2)CE
Since v/1 4 /2 is a root of t* —2t2 —1 € Q[t], it follows that [Q(v/1 +v/2) : Q] < 4. We have

already seen that the polynomial t* —2t2 — 1 does not admit roots in Q. We now assume that
there exist a, b, ¢, d € Q such that:

th—2t2 — 1= (> 4+ at + b)(t* + ct + d).

a+c=0
b d= -2

Then ract and so ¢ = —a, d = —3 and —a(3 +b) = 0.
ad+bc=0

bd = —1

o If a =0, then c =0 and b+ d = —2. Keeping in mind that d = —%, it follows that
(b+1)2 =2, hence v/2 € Q, which is a contradiction.

o If % +b=0, then b> +1 =0 and so i € Q, which is a contradiction.



We have thus shown that t* —2t2 —1 € Q[t] is irreducible and therefore [Q(v/1 + v/2) : Q] = 4.

We remark that Q(v/1++v2) C R and so [E: Q(v1+v2)] =2, asi ¢ Q(v/1+2) is a
root of 2 +1 € Q(v/1+ v/2)[t]. In conclusion, [E : Q] = 8, hence | Gal(E/Q)| = 8.

Let 0,7 € Gal(E/Q) be such that o(v/14++v2) = v/1— /2 and o(i) = —i, respectively
7(V1++2) = V142 and 7(i) = —i. One checks that:

2(\V14+V2) = —\1+V2, o%(i) =i

BW1+V2) = —\/1-V2, ¢3(i) = —i
oV 1+V2) =\14+V2, (i) =i

and thus deduces that o* = 72 = Idg. Now < ¢ > is a subgroup of order 4 in Gal(E/Q)
and 7 ¢< o >. We deduce that Gal(E/Q) =< 0,7 > and, moreover, as o7 # 7o, Gal(E/Q)
is non-commutative. Lastly, Gal(F/Q) admits two elements of order 2: o2 and 7, and we

conclude that Gal(E/Q) = Ds.

We now determine the subgroups of Gal(E/Q). There are 5 elements of order 2 in Gal(E/Q):

7,02, 70%, 7o and o7, each generating a cyclic group of order 2. Let H be one of these

subgroups. By applying Theorem 4.6.18, we determine that E¥ C E is Galois and [E :
Ef] = |H| = 2. Therefore, [Ef : Q] = 4. One checks that:

702(\V1+V2) =7(—\1+v2) = —\/14+ V2 and 702(i) = —i

To(\J1+V2)=7(\/1-v2) =7(i(\/1+V2)™") = —\/1- V2 and 70(i) =i
or(\V1+V2)=c(\/1+V2)=1\/1-V2and o7(i) =i
and therefore

r02(V2) = 702 (Y 1+ V22 = 1) = (re2(V 1+ V2)? =1 = (/1 + V2> — 1= V2

TU(\/1+\/§—\/1—\@)270(\/14-\@)—70(@'( 1+v2)™ ) = /1 -vV2—7(—i(\/1-v2)™}
:—\/1—[2—7(—\/1+\/§)=\/1+f—\/1—\/§

m(\/1+\/§+ \/1—\/5): V1I=V24+or(i(V14+vV2)™H) =1 - V2 +ao(—i(\/1+v2))

:\/1—x/§+i(\/1—\/§)‘1:\/1—\/§+\/1+x/§

The corresponding sub-extensions are

E<T> _ Q(‘ /1 + \/5)7 E<02> _ Q( 1— \/ﬁ), E<‘r¢72> _ Q(\/§, Z)
E<T7> :Q(\/1+f2—\/1—f2) and E<UT>=@(\/1+\@+ \/1—\/5).

Lastly, Gal(E/Q) admits 3 subgroups of order 4, one of which is cyclic, < o >, and the
other two are isomorphic to Z/27Z x Z/27, < 1,0 > and < 70,02 >.Let H be one of




these subgroups. By applying Theorem 4.6.18, we determine that E¥ C E is Galois and
[E: EH] = |H| = 4. Therefore, [E¥ : Q] = 2. One checks that:

o(iv2) = —ioc(V2) = —io((\V1+V2)? = 1) = —i(\/1 - V2)? - 1) = iV2

r(V2) = T(VI+ V22 - (= V14 VD2 - 1= V2
?(V2) = A(VI+ VD2~ 1) = (V14 V22— 1= V2

T0(i) = 7(—i) = i and o2(i) =i

The corresponding sub-extensions are:

F<o> _ Q(Z\/ﬁ), F<To?> _ Q(\/i) and F<To.0%> _ Q).

Exercice 6.
We have the following extension tower:

Q CQ(V2) CQ(\/1+Vv2).

The extension Q@ C Q(v/2) is Galois, as Q is a perfect field and Q(v/2) is the decomposition
field of the polynomial 22 — 2 € Q[z], see Theorem 4.6.15. Similarly, the extension Q(+/2) C

Q(v1+ \/5) is Galois, as Q(\/i) is perfect and Q(+/1+ v/2) is the decomposition field of the
polynomial 22 — 1 — /2 € Q(+/2)[z].

We now consider the extension Q C Q(v/1+ \/5) We know by Exercise 2. that 1+ V2
. . . . 4 2 _ 4 2
is a root of the irreducible polynomial z* — 2z* — 1 € Q|z], hence m m@(aﬁ) xt =227 —1

and [Q(v/1+v/2) : Q] = 4. Moreover, we have already seen that the other roots of 2% — 222 — 1
are —/1+ /2 and £v/1 — v/2. Now, we remark that QW1+ V2) C R, therefore /1 — /2 ¢
Q(V1++2). Let ¢ € Gal(Q(v/1++2)/Q). Then o(v1 ++v2) € Q(v/1++?2) is a root of
mm@(x) and thus o(v1 + v2) = £V/1++/2, see Proposition 4.6.3 (c). It follows that
| Gal(Q(v/1 ++/2)/Q)| = 2 and we conclude, using Corollary 4.6.13, that the extension Q C
Q(Vv/1 4 /2) is not Galois.

Exercice 7. 1. As K C L is Galois, hence separable, and of finite degree, we have that L = K («)
for some o € L\K, see Theorem 4.5.10. Similarly, one argues that E = L(f3) for some
g€ E\L.

For all o € Gal(L/K), let o® : L{x] — L[z] be the induced homomorphism, i.e.

n

Uz(z a;zt) = Z o(ai)z.
i=1

i=1
Note that, since o is a K-automorphism of L, it follows that o is an isomorphism of L[z].

Consider the polynomial m; = mg 1, and note that it is irreducible and separable over L. Let
{m1,ma,...,m;} be the Gal(L/K)-orbit of m; in L[z], where m; ~ m; for all i # j. Now,
since my is irreducible and, since for all m;, 1 < i <r, there exists o; € Gal(L/K) such that
ol (m1) = m,, it follows that m; is irreducible for all 1 <4 < r. Therefore, gcd(m;, m;) = 1
for all ¢ # j.

We will now show that the polynomials m;, 1 < ¢ < 7, are separable. First, note that m;
is separable as the extension L C F is Galois, hence we have that ged(m;, %ml) =1, see



Corollary 4.4.10. Since for all 1 <1 < r there exists 0; € Gal(L/K) such that o7 (m1) = m;,
we have that af(%ml) = %mi and thus 1 = 0¥ (ged(m, %ml)) = ged(my, %mi). It follows

that the polynomial m;(z) € L[x] is separable for all 1 <14 <.
Set g(z) = Hm,(az) € L[z]. Now, we have shown that the m;’s, 1 < ¢ < r, are separable
i=1

polynomials with ged(m;, m;) = 1, for all i # j. It follows that the polynomial g(x) is also
separable over L. We also remark that for all o € Gal(L/K) we have that

T

o*(g) = " ([ oF (1)) = [ [ (0" 0 oF)(m1) = [ [ s,
i=1 i=1 i=1
as {mi,ma,...,m,} is the Gal(L/K)-orbit of m; and coo; € Gal(L/K) for all 0 € Gal(L/K)
and all 1 <4 < r. Therefore, we have that g(x) € LG/ K)[z] = K[z], as K C L is Galois.

Let F' be the decomposition field of mq i -g over K. Then F'is generated by the roots of mq, ik
and the roots of g. Note that mq x and g do not admit a common root v € F'. If they would
then v € L, as L is the decomposition field of m, , and therefore there would exist 1 <7 <r
such that m;(y) = 0, contradicting the fact that the m;’s are irreducible polynomials in L[z].
Now, as g and mq, i are separable polynomials that do not admit common roots, it follows
that F' is generated by separable elements and thus the extension K C F' is Galois. Lastly,
we have that £ C F', as E = L(f), L = K(«) and «, € F, since they are roots of mq i
and g, respectively. We have shown that there exist a tower of extensions K C E C F with
K C F Galois.

2. Let « € E. Then, we have L C L(a) C FE, where the extension L C L(«) is finite and
T

separable. Now, let mq r(z) = Zaixi € L[z]. Then we have the tower of extensions
i=1

K C K(ay,...,a) QK(al,...,ar,;x) C L(a) where K C K(ay,...,a,) and K(aq,...,a,) C
K(a1,...,ar, ) are finite and separable. Moreover, we note that mq, 1.(z) € K(a1,...,a,)[z].

T
Set F' to be the splitting field of H Mg, k() over K. Then F' : K is finite and F is generated,

1=
over K, by the roots of mg, i for all 1 <i < r, see Lemma 4.3.3. As a; is separable over K
for all 1 <4 < r, then so are all the other roots of m,, x and we deduce that the extension
K C F is separable. Hence, it is Galois. Moreover, we note that K(ay,...,a,) C F.

Set G be the splitting field of mq, () over F'. Then [G : F] is finite and G is generated, over F,
by the roots of the polynomial mq, 1,(z), see Lemma 4.3.3. Asa € K(ay,...,a,, ) is separable
over K(ay,...,a;), we have that a is separable over F, since mq,r|Mqa k(a,,....a.)- T herefore,
the extension F' C G is Galois and finite. Moreover, we have that K(a1,...,a,,a) C G. We
have built the following extension diagram:

K —— K(a,...,a,) —— K(a1,...,ar, )

. 3

where K C H is a Galois extension, see item 1. Therefore, H is separable over K, hence, in
particular, we have that K(aq,...,a,,a) is separable over K. We have shown that all o« € E
are separable over K and we conclude that E is separable over K.

K - > H

Exercice 8.

Let K be a countable field and consider the polynomial ring K[x]. For all i > 0 define the subsets

Ki[z] C K[z] with K'[z] = {f € K[z]|deg(f) = i}. We remark that K[z] = UKZ[QS] and that
i>0



Ki[z] 2 K, hence |K'[z]| =i - |K| = | K|, for all i > 0. It follows that |K[z]| = Rg - |K| = R¢ and
so K[z] is also countable.

We define the map ¢ : K — Klz] by ¢(a) = ma k. Now the subset ¢(K) of K[z] contains
all polynomials of the form x — a, where a € K, hence ¢(K) is also countable. Lastly, for any
Mma,x € ¢(K) we have that the preimage ¢~!(mq k) is non-empty and finite, as a € ¢~ (mq k)
and m,, x admits a finite number of roots. We conclude that K has the same cardinality as ¢(K),
hence it is countable.

Exercice 9.
Let G be a finite group and let |G| = n. By Cayley’s Theorem, we know that we can embed G as
a subgroup of S,,.

Now, consider the ring F' = Q[z1,...,z,] and for each ¢ € G define:

b : F' = F by ¢5(1;) = 24(;y for alll <i<n.

One shows that ¢, is a ring homomorphism for all ¢ € G. Moreover, we have that ¢, o ¢,-1 =
b,-1 0 ¢ = Idp, hence ¢, is invertible for all o € G with inverse ¢, = ¢, 1.

Let E = Q(z1,...,zy,) be the field of fractions of F. Then ¢, : F' — E is an injective ring
homomorhism, as it is the composition of two injective ring homomorphisms.We now apply the
universal property of the fraction field, to determine that:

¢o 1 £ — E, where ¢,(7;) = z,(; forall 1 <i<n

is a field homomorphism. Now, one checks that, in fact, ¢, is a Q-automorphism of F.

Let H = {¢,| 0 € G} be a subset of Autg(E). Since ¢y, © ¢g, = Poy0, for all 01,00 € G,
it follows that H is a subgroup of Autg(E). Moreover, we have that H = G, hence H is a finite
group. We now apply Theorem 4.6.12 to F and H to deduce that [E : E¥] = |H| = | Gal(E/EH)|,
hence B! C E is Galois, see Corollary 4.6.13. We conclude that Gal(E/E") = H = G.

Supplementary exercise

Exercice 10. 1. As K C L is a purely inseparable extension, it follows that a € L\ K is purely
inseparable over K, thus there exists n > 1 such that o”" € K. We fix such an o € L\ K and
we let 0 € Gal(L/K). It suffices to show that o(a) = a.

The element o € L/K is the unique p™th root of a?”, see Exercise 2.(a) of Series 11. Therefore,
it suffices to show that (o(a))?" = a?". We have:

(c(@)P" =o(a?") =a".
We conclude that Gal(L/K) = {Id}.

2. First, we will show that Ljpsepx C LGaL/K)  For this, let & € Lipsep,x and let o €
Gal(L/K). As & € Linsep i, there exists n € Zx>q such that aP" € K. Then:

o) =o(a?) =" € K

is a K-automorphism of
() = « for

and it follows that o(a) € Linsep,ic. Hence the restriction o|r,,.., «
Linsep,c and thus o, . =1dp, . ., see item 1. Therefore o(a) = oL,
all o € Lipsep, ik and thus Lipsep k1 C LGallL/K)

We now consider the extension tower:

insep, K

K C Linsep,K - LGal(L/K) C L.

We have that [L : K| = [L : Linsep, k][ Linsep,ic : K], hence [L : Liysep i) = | Gal(L/K)|.On the
other hand, we have [L : LG2(L/K)] = | Gal(L/K)|, see Theorem 4.6.12, and we deduce that
[LGal(L/K) . Linsep,k] = 1, hence LGAL/K) — Linsep, k- Lastly, the extension LGAL/K) C [,
is separable, see Proposition 4.6.10, and we conclude that L;,sep, k € L is separable.



