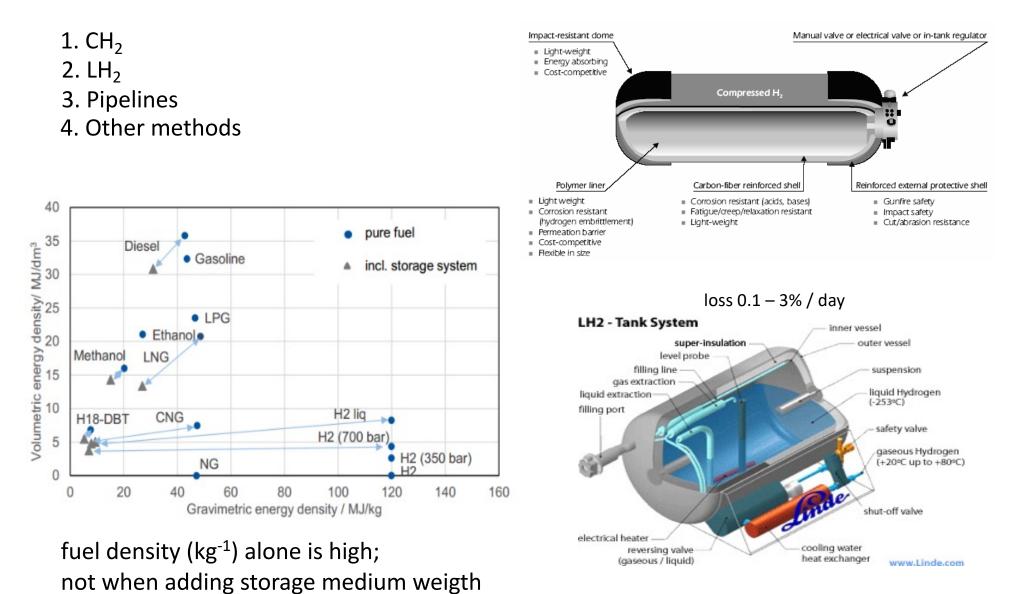
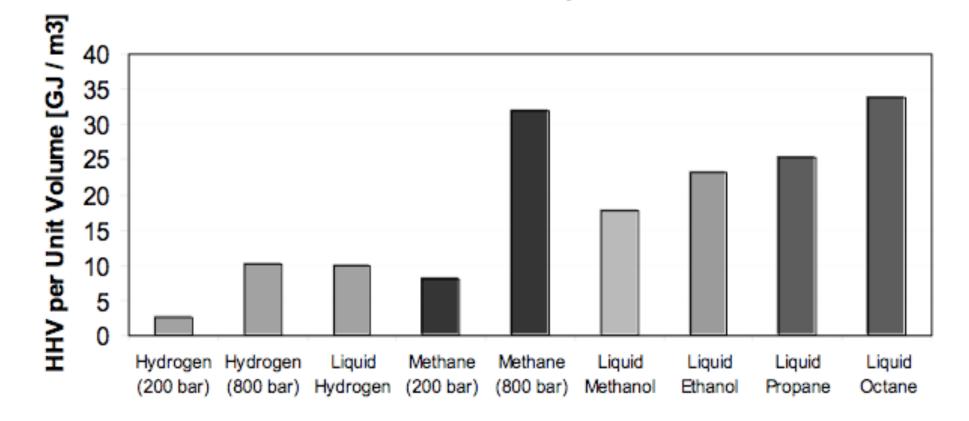

H₂ storage methods

- as compressed H₂ gas (=> 1000bar)
- as liquid H₂ (1bar)
 - optional: further cryocompression of liq H₂
- as physically adsorbed H₂-layer on high surface area materials
 - sorption increases at low T
- as H in hydrides
 - solid solution ---- > hydride H (interstitial H up to intermetallic compound)
 - complex hydrides (e.g. NaBH₄)
- as H in other chemical compound
 - LHOC (liquid hydrogen organic carrier)
 - NH₃ etc.

H₂ storage overview


(figure: Leonardo Gant)

H₂ vs. hydrocarbons: properties


		H ₂	Natural gas (CH ₄)	Gasoline
lowest volumetric density highest grav	Boiling point	-252.7 °C	-160°C	40-200°C
	Melting point	-259 °C	-182°C	-40°C
	Gas density	0.089 kg/m ³	0.707 kg /m ³	4 kg /m ³
	Liquid density	0.071 kg/L	0.41-0.5 kg/L	0.72-0.78 kg/L
	Lower HV	120.2 MJ/kg 8.6 MJ/L as liquid	47 MJ/kg 21 MJ/L as liquid	42 MJ/kg
	Higher HV <u>imetric</u> density	142 MJ/kg 12.7 MJ/m ³ 10.1 MJ/L as liquid	53 MJ/kg, 40 MJ/m ³ 24 MJ/L as liquid	46 MJ/kg 36 MJ/L
	Autoignition	585°C	632°C	220°C
	Flammability in air	4-75%	5-15%	1-7.6%
	Flame temperature	2045°C	1875°C	2200°C

H₂ storage : compressed gas, and liquid

(figures: Leonardo Gant)

HHV by volume

U. Bossel, H₂-economy

Review of hydrogen compression technologies

G. Sdanghi, G. Maranzana, A. Celzard, V. Fierro, "Review of the current technologies and performances of hydrogen compression for stationary and automotive applications", Renewable and Sustainable Energy Reviews 102 (2019), pp. 150 – 170

@1 atm highest gravimetric density: lowest volumetric density:

140 MJ/kg 0.011 MJ/L

(496.0 moles) (1/22.4th of a mole = 0.0446 mole)

H₂ compression technologies overview

- Mechanical: **volume flow** for H₂ is confined by a displacement device
 - 1. reciprocating piston
 - 2. diaphragm
 - 3. linear (magnetic)
 - 4. ionic liquid
- Non-mechanical : specifically designed for H₂ application
 - 1. cryogenic
 - 2. electrochemical (mass flow)
 - 3. adsorption (thermal)
 - 4. metal-hydride (thermal)

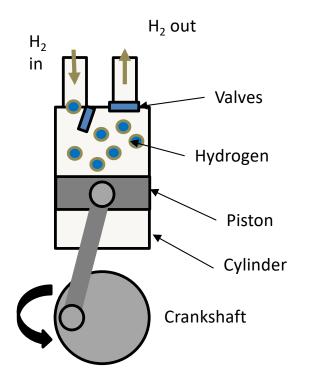
In terms of H₂-economy ('pack, distribute, store, deliver'), the cheapest solution today is: H₂-gas compression + truck-delivery (for small stations); in carbon-/glass fiber storage tanks to reduce weight: best values 1-2wt% @250 bar (steel), to 6wt% @700 bar (composite), and 30g H₂/L (still below the US-DOE targets of 40 g/L and 5.5wt%)

Mechanical compression

- 1. Reciprocating
- 2. Diaphragm
- 3. Linear
- 4. Ionic liquid

Due to low volumetric density of H_2 , mechanical compression efficiency is intrinsically low. Up to 1/3 of the stored gas energy is used in compression work.

Pressurized H₂


1 bar = 2 g / 22.4 L = 90 g $/m^3$ ideal gas: 1000 bar = 90 kg $/m^3$

(water : 1000kg/m³ !)

slide from Prof A Züttel, EPFL

1. Reciprocating piston compression

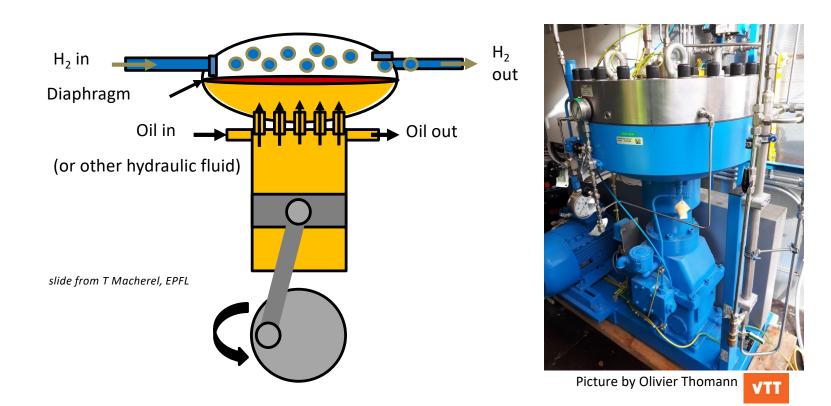
- Periodically compresses and expands the hydrogen through mechanical moving parts
- The work is generated by a thermal or electrical motor

slide from T Macherel, EPFL

Reciprocating piston

Advantages

- Mature
- Good for >30 bar; up to 1000 bar
- Good for multi-stage compression, on-site HRS where H₂ is generated at 6 bar
- Good for moderate flow. Large range of capacities (up to several thousands of Nm³/h, as high as 890 kg/h at 250 bar, 11 MW, and 430 kg/h at 850 bar, 300 Nm³/h at 1000 bar)


Limitations

- Not good for highest flow rates: limited by cylinder dimensions and cycle speed.
- Embrittlement of materials (must be selected): (cast) iron or steel with liner coating for wall protection and servicing
- pressure fluctuations
- Multiple moving mechanical parts → noise, vibration and maintenance (cost)
- Risk of hydrogen leakage (use of piston rings) and (lubricating oil) contamination
- difficult heat management (piston cooling not efficient) =>limited efficiency

Applications

- Catalytic reformers
- $-H_2$ plants
- Compressed gas storage
- HRS
- FCEV tanks
- Moving gas between vessels

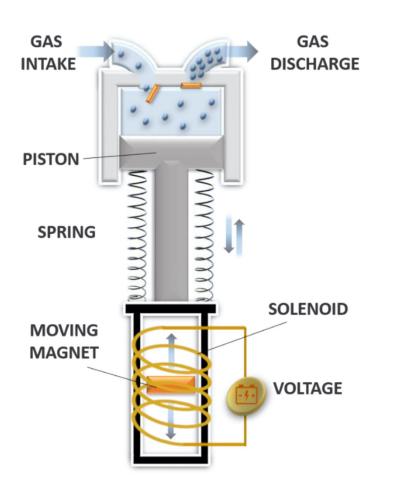
2. Diaphragm compressor

Diaphragm compressor

Advantages

- Mature
- High throughput, low power consumption, low cooling requirement (easier to cool the oil circuit)
- Up to 950 bar
- Good range of capacities (up to several 100 Nm³/h; 400-600 Nm³/h at 280bar; 50-280 Nm³/h at 510bar). High volumetric efficiency.
- Low risk of hydrogen leakage and contamination. High purity H₂ since piston and H₂ are isolated.

(High purity is crucial since H₂ leakage affecting the mechanical compressors are the primary risk in HRS.)


Limitations

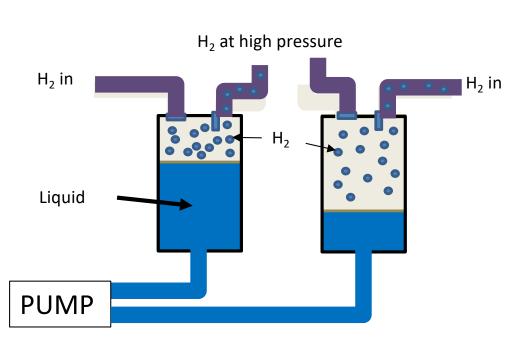
- Intermittent compression (fluctuating)
- Moving mechanical parts→ noise, vibration and maintenance
- Rather for lower flows. For microscale: electrostatic principle (diaphragm is moved by piezo)
- Fragility of the diaphragm which is the key component (mechanical stress, corrosion resistance, CrNi-steel, Cu-Bealloys) → maintenance

Applications

- HRS
- FCEV filling

3. Linear compressor

- Piston connected to linear motor with spring, absence of rod-crank system (less moving parts => cost saving)
- used in cryogenic applications (Stirling), and cooling of electronics
- Linear motor: usually magnetic (moving coil or moving magnet)
- High efficiency (73%), low vibration, low noise, long life, very reliable
- Piston and cilinder separated by gas bearing: high purity (no oil), no friction, silent
- Challenge is positioning control of the piston (effects of V, T)


Fig. from G. Sdanghi, G. Maranzana, A. Celzard, V. Fierro, "Review of the current technologies and performances of hydrogen T compression for stationary and automotive applications", Renewable and Sustainable Energy Reviews 102 (2019), pp. 150 – 170

4. Liquid compressors

 Use of liquids to directly compress gas without mechanical sliding seals: quasi-isothermal => high efficiency (83%)

- Liquid column piston driven by a pump. Used for compressed air storage @200-300 bar.
- Liquid rotary compressors. For saturated gases (with high liquid content). Low efficiency (50%).
- Ionic liquid (low melting point salts). Specifically developed for H₂.

Ionic liquid compressor

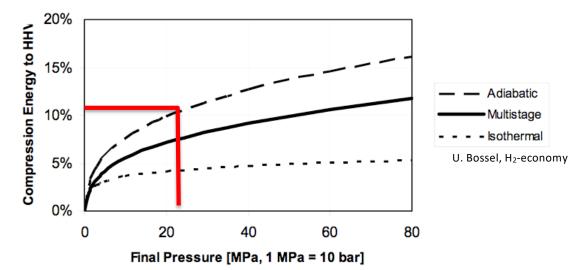
slide from T Macherel, EPFL

- The 'piston' is an ionic liquid instead of a solid part
- The liquid is connected to a pump that periodically compresses the gas in a cylinder while emptying the other
- Liquid : high thermal and chemical stability, very low volatility, very good lubricating behaviour (oilfree), very low solubility of most gases, good coolant => high compression ratio and high volumetric efficiency
- Efficiency 65-83%

Ionic liquid compressor

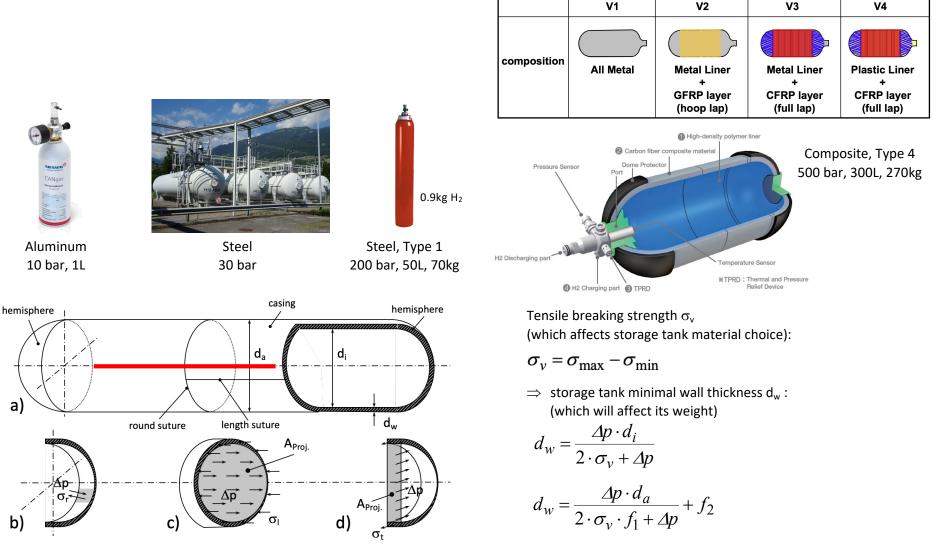
Advantages

- Up to 1000 bar. 8-30 kg/h at 450-900 bar, 100-700 Nm³/h
- good heat management
- less mechanical moving parts
- low energy consumption, long service life, low material costs, low noise


Limitations

- only one company (Linde, D)
- available only for high capacities (more than 300 Nm³/h)
- corrosion of components due to the ionic liquid => maintenance cost (316L steel is well suited)
- leakage of the ionic liquid

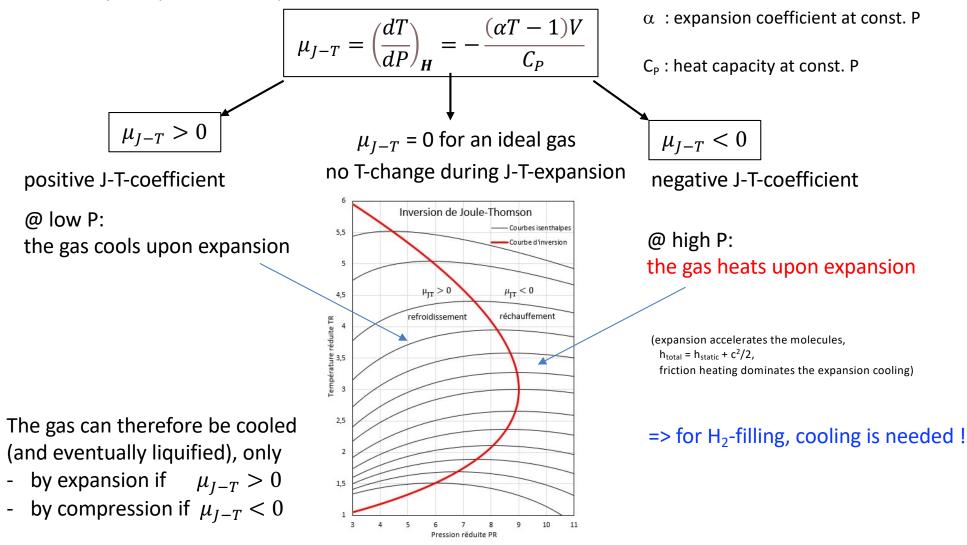
Application - HRS


Compression work

- ideal isothermal work_{id} $(J/kg) = p_0V_0 \ln(p_1/p_0)$
- adiabatic work_{ad} = $(\gamma/\gamma 1) p_0 V_0 ((p_1/p_0)^{(\gamma-1)/\gamma} 1)$ V_0 initial volume(m³/kg) (11.11 m³/kg for H₂, 1.39 m³/kg for CH₄) p_0 initial pressure, p_1 final pressure, $\gamma = C_p/C_v$ (1.41 for H₂, 1.31 for CH₄)
- @200 bar (W_{ad}): for CH₄ 2 MJ/kg, for H₂ <u>14</u>
 MJ/kg (10% HHV)

Compressed storage tanks

CRFP: carbon-fiber reinforced polymer



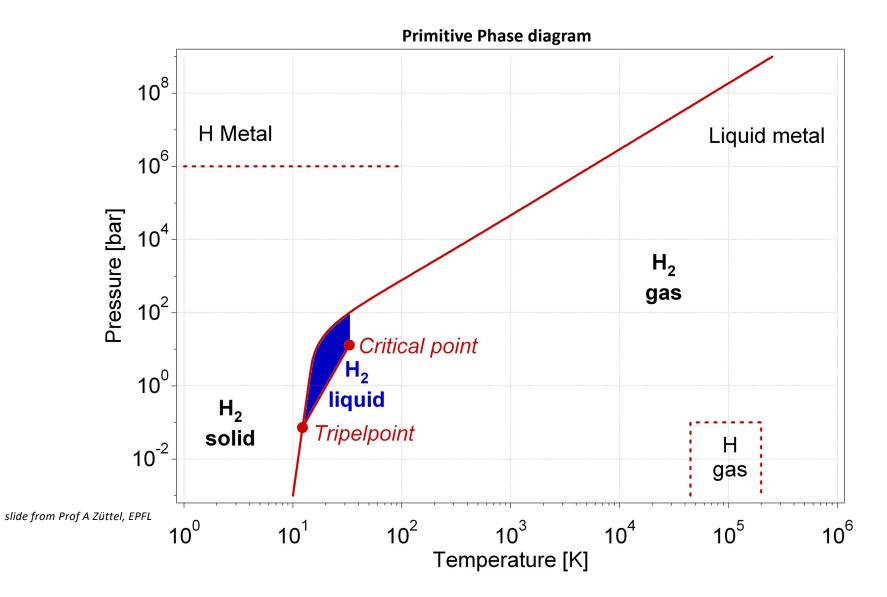
Wilhelm Matek, Dieter Muhs, Herbert Wittel and Manfred Becker, "Roloff/Matek Maschinenelemente", Viewegs Fachbücher der Technik (1994), 690 pages, ISBN: 3-528-74028-0

slide from Prof A Züttel, EPFL

Joule-Thomson effect /coefficient

isenthalpic expansion/compression:

Joule-Thomson Effect $\mu_{ m JT} = \left(rac{\partial T}{\partial p} ight)_H$ 0.5 ø (r) ▲ repulsive part Joule-Thomson coefficient (K/bar) 0.4 Contact Ar CO 2 0.3 N_2 H_2 0.2 r_0 0.1 Attractive part 0 Non contact не -0.1 Van der Waals 0 100 200 300 500 600 800 900 1000 400 700 Temperature (K) $\mu_{ m JT} = rac{1}{C_n} \cdot \left(rac{2a}{RT} - b ight) \qquad T_{ m inv} = rac{2a}{Rb}$ a(H₂) = 2.476·10⁻² m⁶·Pa·mol⁻² => T_{inv} = 200K b(H₂) = 2.661·10⁻⁵ m³·mol⁻¹ R = 8.314 J·K⁻¹·mol⁻¹


At ambient T, H₂ must be cooled for filling (expansion), and heated when compressing. At cryo-conditions (e.g. 77K and lower), it is the opposite.

slide from Prof A Züttel, EPFL

Non-mechanical compressors

- Cryogenic compression of liquefied H₂
- Electrochemical compression
- Thermally driven:
 - Adsorption of H₂ on high surface materials
 - Metal-hydride

Liquid Hydrogen

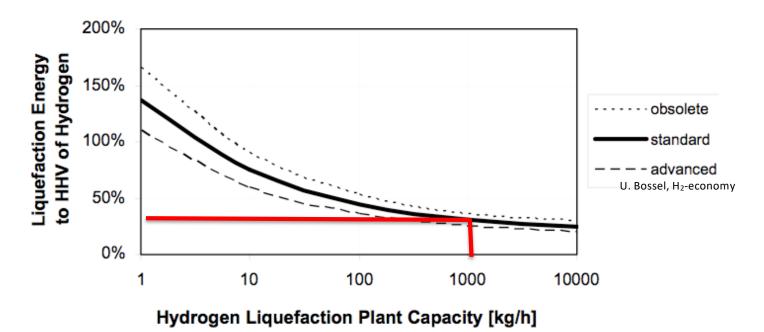
W. B. Leung, N. H. March and H. Motz, Physics Letters 56A (6) (1976), pp. 425-426

Liquefaction work

300K

225 kJ/kg

+703 kJ/kg

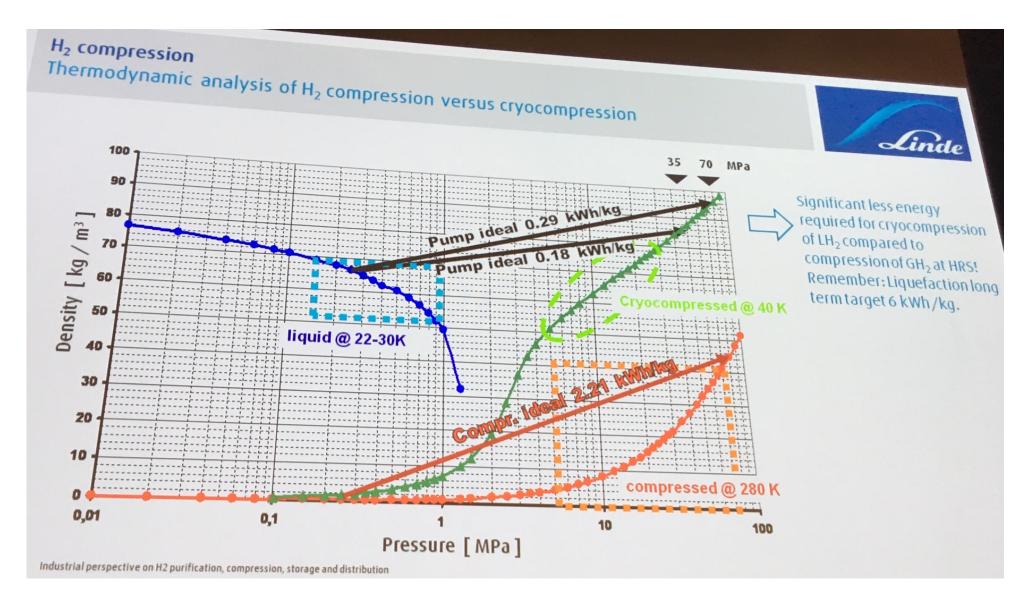

 $(T_{\rm a}-T_{\rm e})$

 $T_{\rm e}$

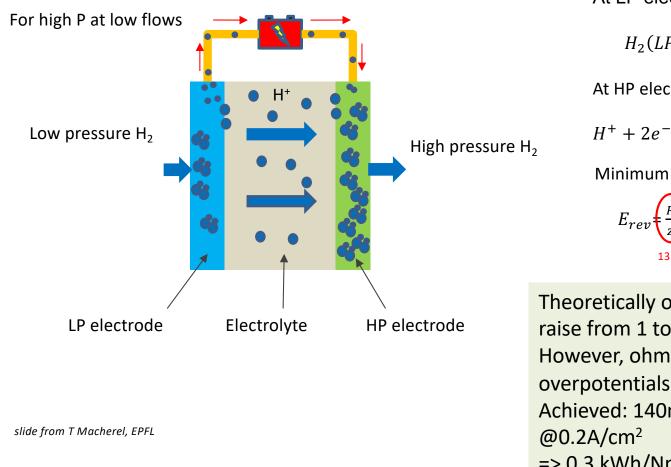
20K

 $W_{\rm L} = \Delta H$ As Carnot cycle with a heat sink at 300 K, the ideal work of liquefaction is $W_1 = 13 \text{ MJ kg}^{-1} (3.6 \text{ kWh kg}^{-1}) \text{ for } LH_2$

298 К → 20 К	MJ need per kg liquid H ₂	Reference
theoretical requirement	13 (10% of HHV)	Carnot
usual scale	54	182 kg / h, Linde plant (D)
large scale	36	2000 kg / h, USA
ultimate scale	30-25	12000 kg/h, study case



Cryogenic compression


- Combines liquefaction and then compression (of liq H₂) with the benefits and challenges of both high P at low T
- Interest: higher volumetric energy density of H₂ at low T => less compression work needed (only 1% of LHV). Twice the volumetric efficiency of mechanical compressors.
- But low T is a challenge (thermal insulation, vacuum stability). Only 30% (LHV) of the energy is stored due to the prior liquefaction energy requirement (=10-13 kWh/kg).

- 850 bar, 100 kg/h, 80g/L, 1000 Nm³/h
- Vessel: outer steel tank, inner carbon-coated metal tank, intermediate vacuum space filled with metallized plastic. (Al-alloy vessel can reach 9 wt% H₂ stored)
- Compared to liq. H₂ stored at 1 bar, cryo-compressed liq. H₂ has lower evaporation loss and less head space, allowing more fuel storage (2-3x). E.g. 100L tank 750 bar has 4 kg H₂ @RT = only 150 bar at 77K.
- Toyota Prius. BMW.

Cryocompression (Linde AG)

Electrochemical 'pump'


At LP electrode:

 $H_2(LP) \rightarrow H^+ + 2e^-$

At HP electrode:

 $H^+ + 2e^- \rightarrow H_2(HP)$

Minimum voltage:

Theoretically only 84 mV needed to raise from 1 to 700 bar. (ln(700)=6.55) However, ohmic drop and overpotentials increase the voltage. Achieved: 140mV for 50 bar => 0.3 kWh/Nm³ v. low consumption

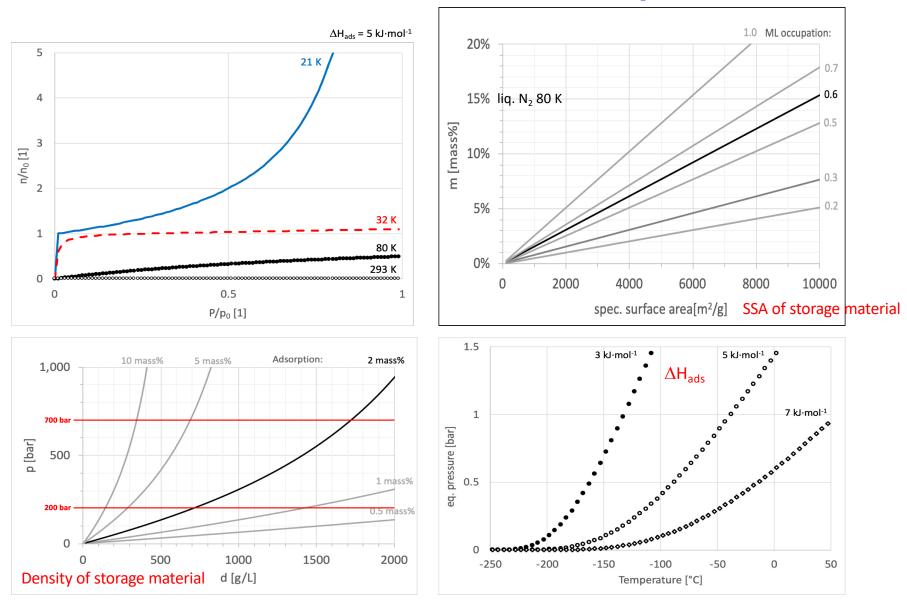
Electrochemical pump

Advantages

- up to 1300 bar (usually 200-350 bar), with multi-stack
- acts as a purification device
- continuous compression, vibration-free
- High efficiency (up to 90% at 1A/cm² and low applied voltage, but down to 60% due to overvoltages). Practically isothermal! E.g. 2 kWh/kg H₂ for EC-compression vs 7 kWh/kg H₂ for mech. compression

Limitations

- Limited capacity (usually few Nm³/h)
- Back diffusion of H₂ through membrane at high pressure ratio: highest single stage 170 bar, multistack up to 850 bar


Adsorption compressors

- Cf. absorption heat pump principle
- Tank filled with very high surface area material that can reversibly physisorb H₂ at low T (Van der Waals monolayer, 0.01-0.1eV, <u>surface</u> process). Then the tank is closed and heated to desorb H₂ that fills the available tank gas volume => raise in P.
- thermally-driven like metal-hydride (MH) compressor, whereas MH is a <u>volume</u> process involving chemical bonding
- Sorbent materials: activated C (AC), MOFs, C-nanotubes, zeolites (much lower weight than MH!)

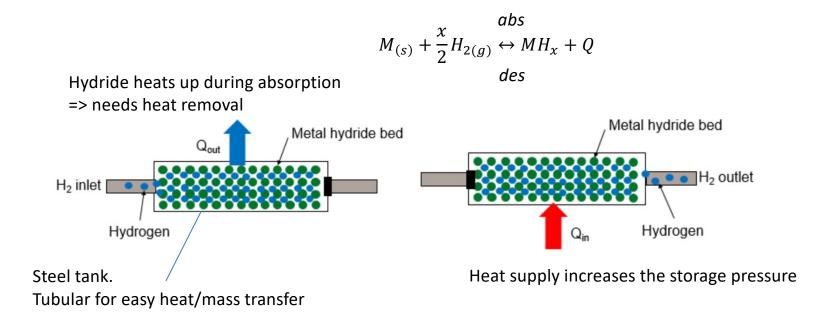
- Adsorption is exothermal and thus enhanced at low T (77K rather than 300K, where thermal motion energy 0.025 eV is of the same order as the Van der Waals forces).
- MOF 6000 m²/g achieves 10 wt% H₂ at 77 K and 56 bar
- AC 2600m²/g reached 6.4 wt% at 77K and 40 bar (theor limit is 6.8 wt%). At RT, the storage is only 1.6 wt% (700 bar).

Hydrogen Physisorption

The lower the temperature, the more H₂ can be adsorbed

slide from Prof A Züttel, EPFL

Adsorption compression


Advantages

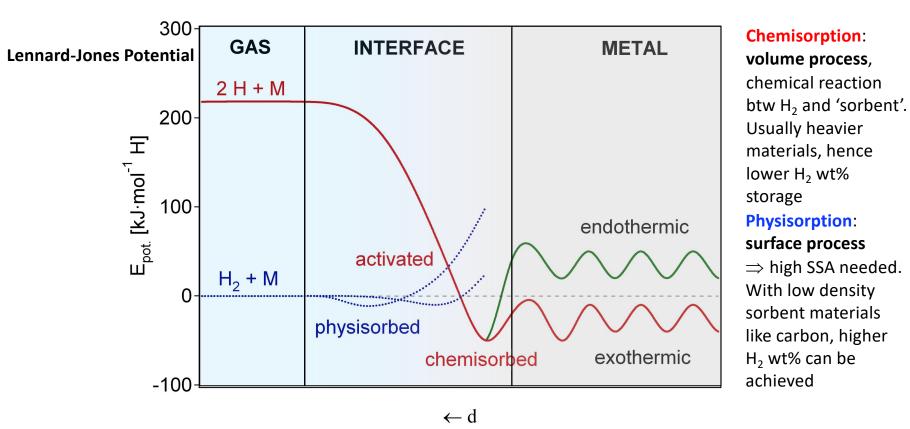
- Low pressures to store a given amount of H₂ (safety)
- Low weight

Limitations

- Complicated thermal management (heating/cooling at low T). Thermal gradients in beds (low material conductivity) => low efficiency (like MH)
- Limited capacity (<100 Nm³/h), 100-350 bar

Metal hydride compression

slide from T Macherel, EPFL

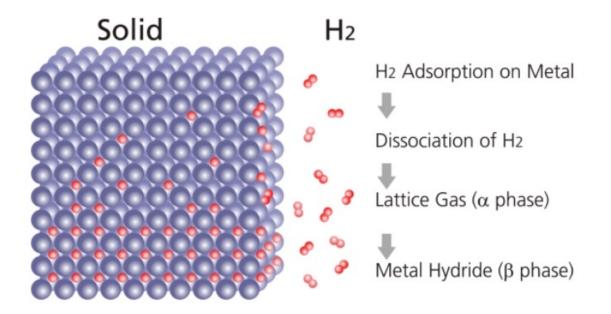

Hydride Materials

Hydrogenation-Dehydrogenation (schematic)

Solution domain (1/12)

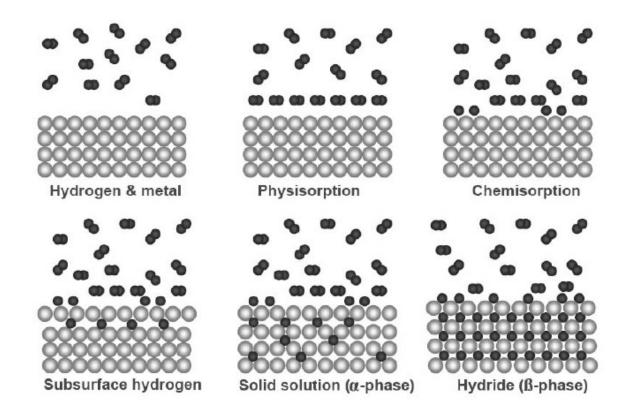
Metal Hydrides (MH)

J. E. Lennard-Jones, Trans. Faraday Soc. 28 (1932), pp. 333.

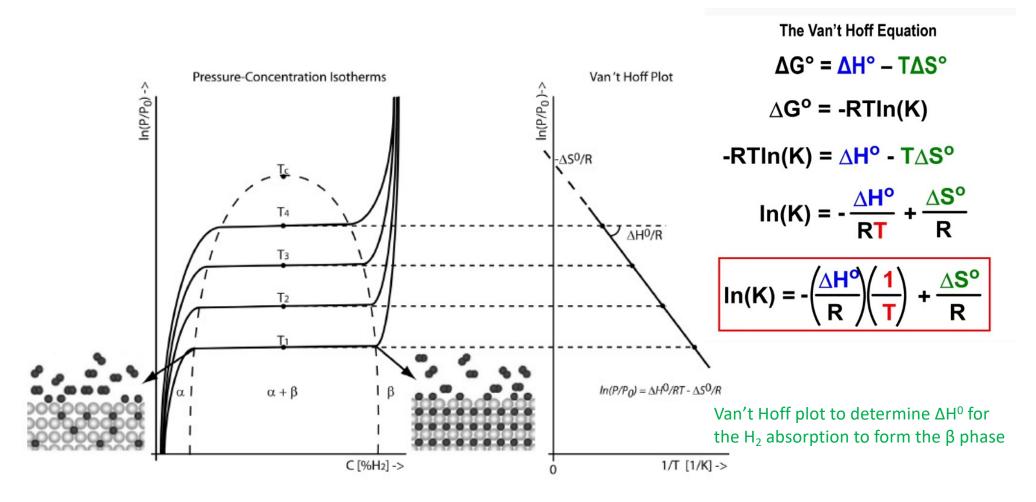

L. Schlapbach, Chapter 1, L. Schlapbach (Ed.) in Intermetallic Compounds I, Springer Series Topics in Applied Physics, Vol. 63, Springer–Verlag, 1988, p. 10.

slide from Prof A Züttel, EPFL

H₂ molecule Metal surface a) b) c) d)

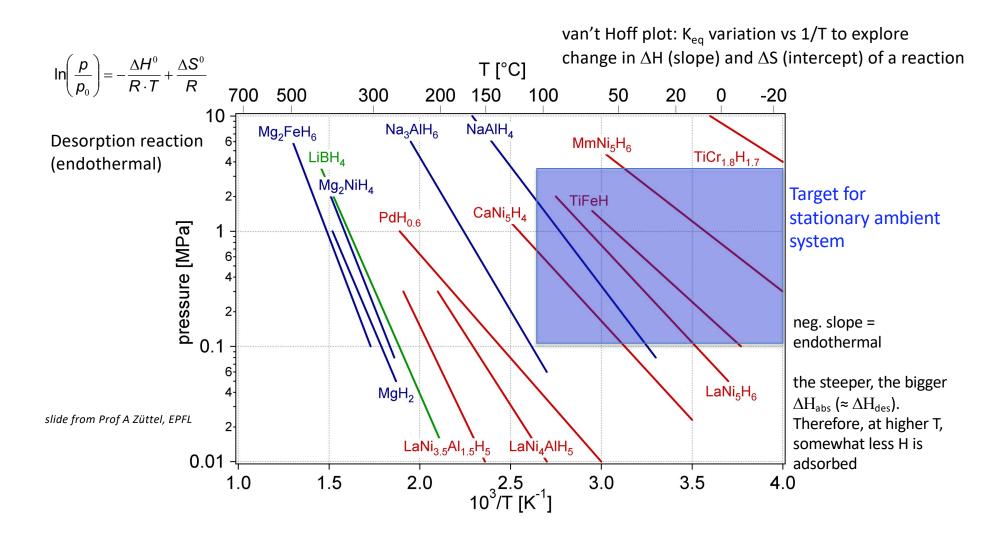

Absorption of H₂ with the metal to form a solid solution

The basic hydride formation process



 H_2 sorption into the solid lattice forming the dilute α and then fully filled β metal hydride phase

α and β metal hydride phases



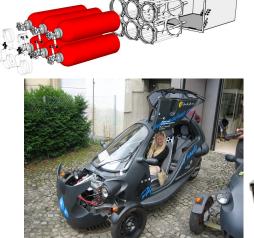
Pressure – Concentration – Temperature isotherm (PCT) plot

PCT plot summarizes the property of hydrogen concentration (C) in an equilibrium state when an HM alloy is exposed to various hydrogen pressures (P) while maintaining a certain alloy temperature (T).

Hydrides van't Hoff plot

Hydride storage applications

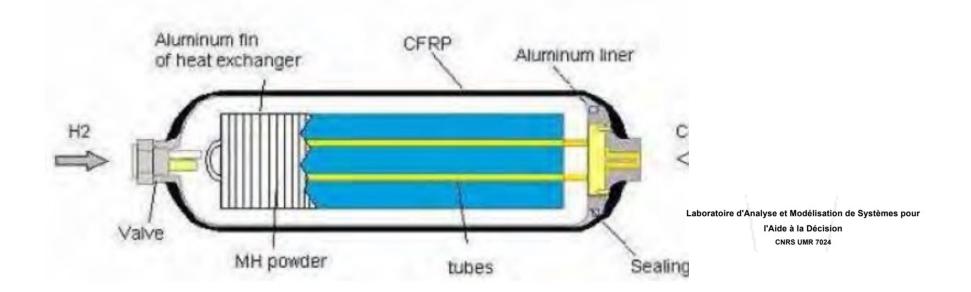
Battery : 300 Wh/kg = 30kWh/100kg


IC snowmobil, MH storage 5 kg H_2 , 1.0 mass%

MHStorage, 2 kg H₂, 50L, 250 kg, 80 kWh

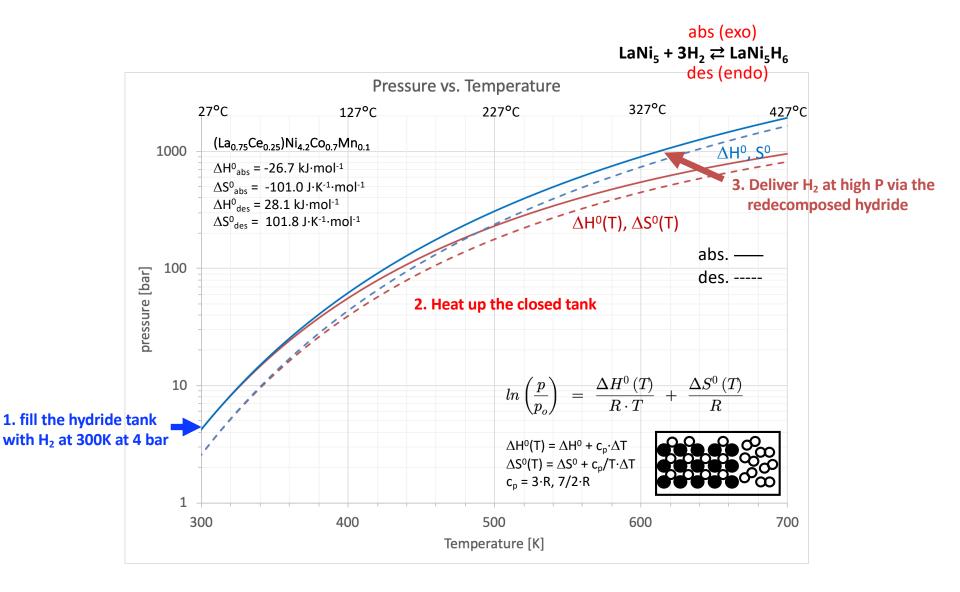
FC vehicle MH storage 0.5 kg H_2 , 1.2 mass%

FC canal boat, MH storage 2.5 kg H_2 , 1.0 mass%



MH Storage, 0.5 kg H_2 , 30 kg, 20 kWh

slide from Prof A Züttel, EPFL


Metal hydride storage container with cooling

Compared to conventional pressure vessels, metal hydride storage systems have a more than 10 times higher energy density by volume at pressures of 30 to 50 bars

www.grz-technologies.com

Metal Hydride Compression

Metal-Hydride compression: procedure

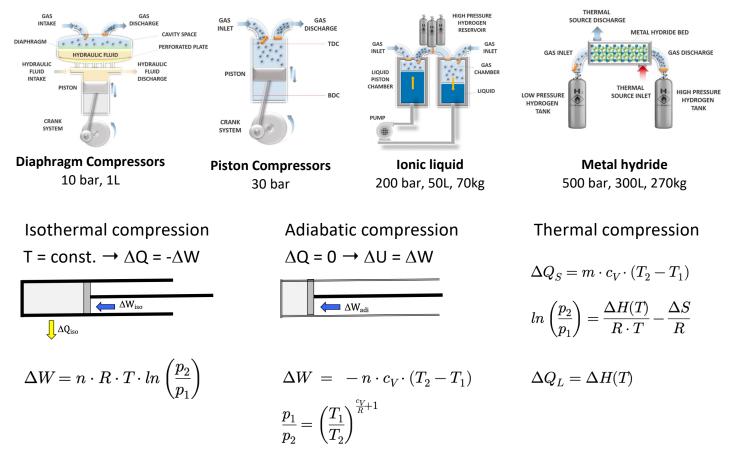
- Absorption starts at low T and continues until the equilibrium pressure P_{eq} (where both MH α -solution and β -hydride phase coexist), is equal to the supply pressure. P_{eq} is evaluated from Pressure-composition isotherms (P-c) specific to the hydride-forming material.
- Once P_{eq} is reached, heat is supplied to decompose the metal β -hydride and so desorb H_2 , delivered at a desired discharge pressure (3-10 times the supply pressure, depending on T-level), to reach a new P-c equilibrium.
- In essence, H₂ compression is the result of the sequential cooling and heating of the MH and controlled almost entirely by heat transfer (by natural or forced air convection, water- or oil-cooling).
- Multi-stage compression possible when selecting the successive hydride materials accordingly. LaNi₅ (<100 bar 1 stage, 700 bar 2stage). MnTi₂ (700 bar), TiFe.

Metal hydride compression

Advantages

- Absence of moving parts→ no wear, noise or vibration, low maintenance cost (1000 €/year vs 8000 €/year for mech. compressors)
- Compact design (400 L/1000 kg vs 6000 L/ 3600 kg for a mechanical compressor). High volumetric efficiency (93%)
- up to 700 bar; often 100-200 bar
- Thermally driven compressor, using waste or solar heat instead of electricity. (uses only 0.5 kWe vs 20 kWe for a comparable mechanical compressor). Smart is to recover electrolyser heat to drive a downstream MH-compressor at the electrolyser outlet.

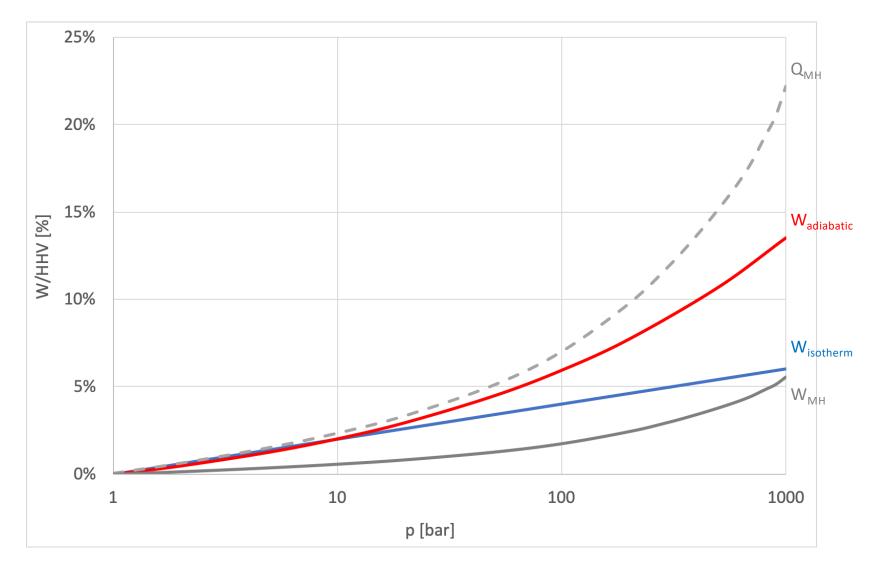
Limitations


- Low capacities (< 10 Nm³/h)
- Poor efficiency (10kWh/kg), when expressed as compression work vs heat input (max 25% and usually <10%), due to poor heat transfer with the MH.
- Repeated cycles can pulverise the MH alloys

Applications

- Small scale
- FCEV
- HRS
- industry

• Safe; high purity H₂


H₂ compression comparison

G. Sdanghi, G. Maranzana, A. Celzard, V. Fierro, "Review of the current technologies and performances of hydrogen T compression for stationary and automotive applications", Renewable and Sustainable Energy Reviews 102 (2019), pp. 150 – 170

slide from Prof A Züttel, EPFL

Hydrogen Compression Energy (Q: heat and W: work)

slide from Prof A Züttel, EPFL

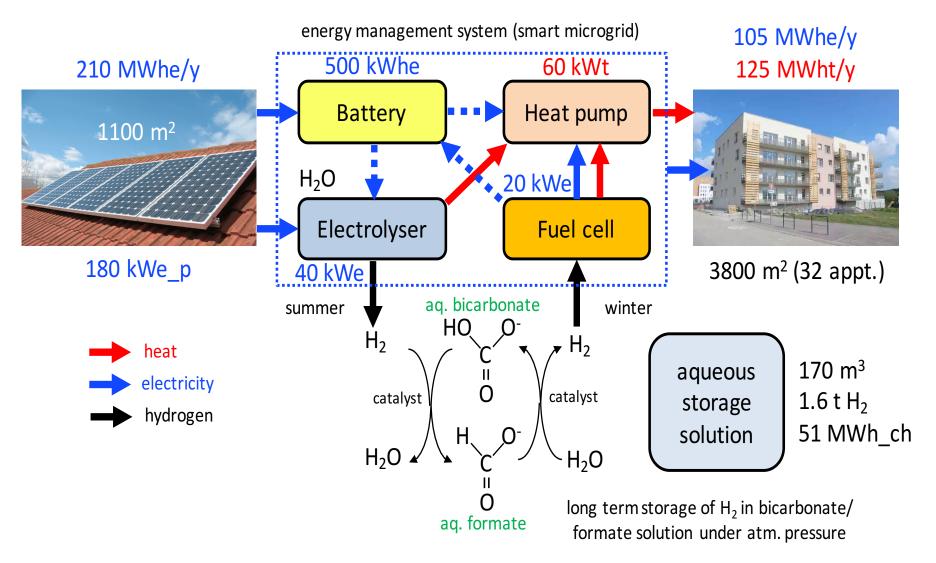
H₂ compression overview (Linde AG)

	Piston	Membrane	Screw	Electro- chemical	Metal- hydride	lonic compressor	Turbo- compressor
Scale Nm ³ /h	10 - 115000	1 - 4000	200 - 100000	5 - 280	1 - 12	750	>1000
Max P (bar)	1300	3000	55	950	250	1000	<50
TRL (H ₂)	9	9	commercial	7	5-6	8	low
Advant.	availability	availability no contamination	availability low maintenance	no moving parts low OPEX	thermal no contamin. no mov. parts	efficiency no contamination	availability low mainten. high vol. flow
Disadvant.	contamination maintenance	lim. suction maintenance	contamination H2 backflow	low vol. flow R&D	low vol. flow R&D	maintenance	Δp depends on mol weight

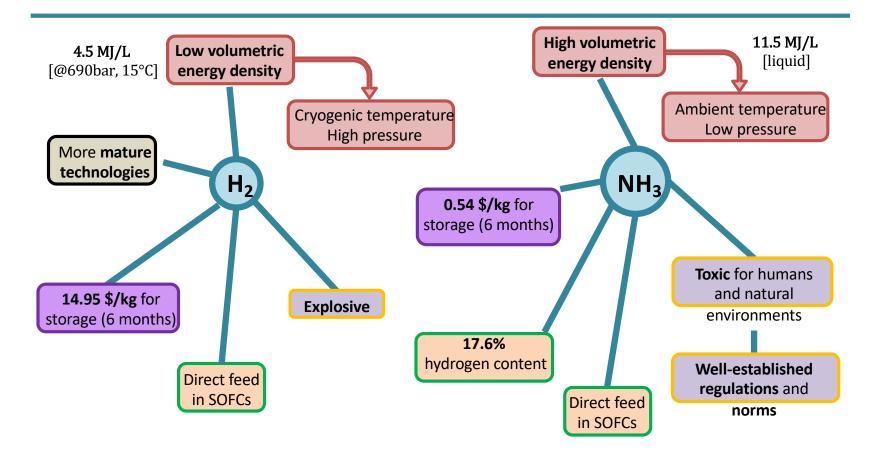
Linde AG presentation EFCF July 2019: Industrial perspective on H₂ purification, compression, storage and distribution

Overall compression technologies comparison: depends on application

Type of compressors		Capacity and pressure range	Availability of the market	Contamination And leaks	Efficiency [%]	Price of the market [€] *	Weight and volume	Type of flow	Noise/vibration /pressure fluctuations
Mechanical	Reciprocating piston				50-80	20k-80k		Intermittent	
	Diaphragm				50-80	30k-75k		Intermittent	
	lonic liquid				70	No data	No data	Intermittent	
Non- mechanical	Metal hydride				< 10	No data		Intermittent	
	Electrochemical				80-90	>180k		Continuous	


* For 1.5 Nm³/h, 0 bar(g) inlet and 15-20 bar(g) outlet pressure

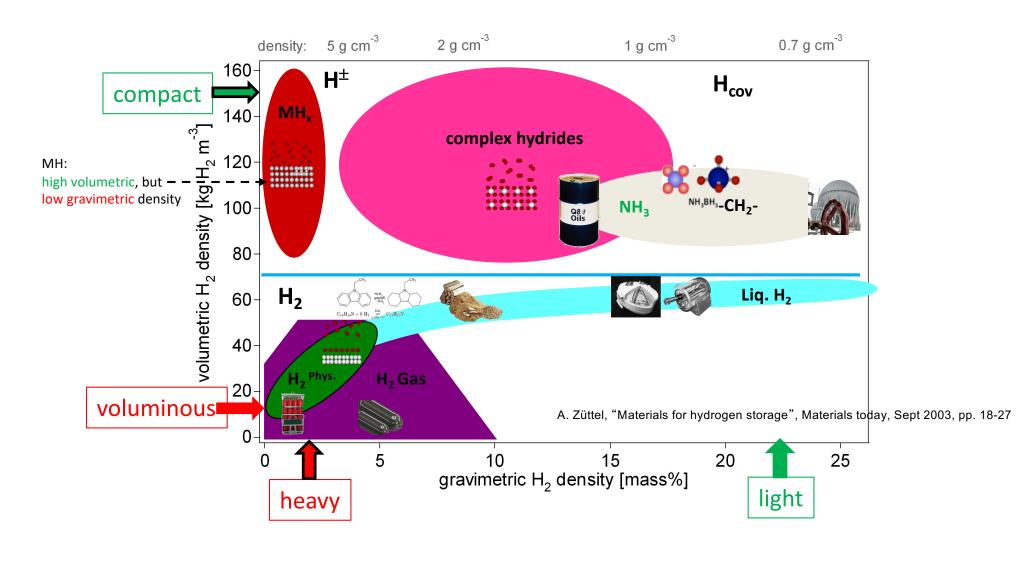
slide from T Macherel, EPFL


Chemical H-storage

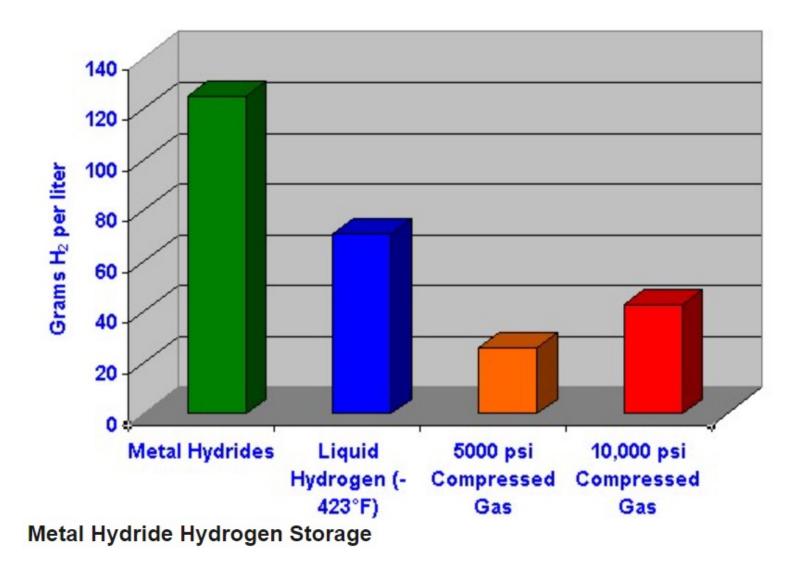
- Formic acid or formate
- NH₃
- LOHC (liquid organic hydrogen carriers)
- ...

Seasonal H₂ storage example with formate cycle (HCOO⁻)

Ammonia as H₂ energy vector

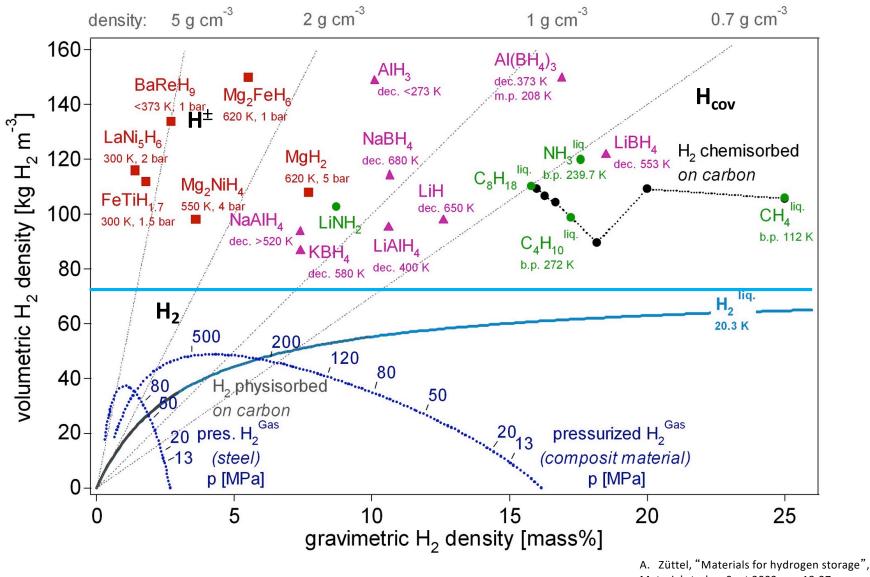


Energy density ٠

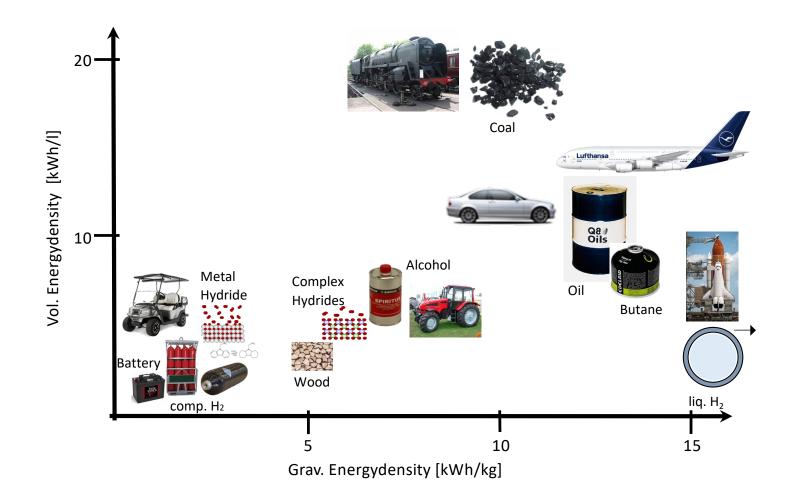

> by volume : diesel : GNL : NH_3 : H_2 -liq : H_2 -compressed 1

2 3 5 10 m³

Hydrogen Storage Density comparison



slide from Prof A Züttel, EPFL


Metal hydrides have a very high volumetric density – but low gravimetric density

Hydrogen Storage Materials comparison

Materials today, Sept 2003, pp. 18-27

Energy density of fuels overall

Hydrogen Storage in Mobility

Francois Isaac de Rivaz (1813)

Hindenburg (1937)

Karl Kordesch: Austin A40 (1966)

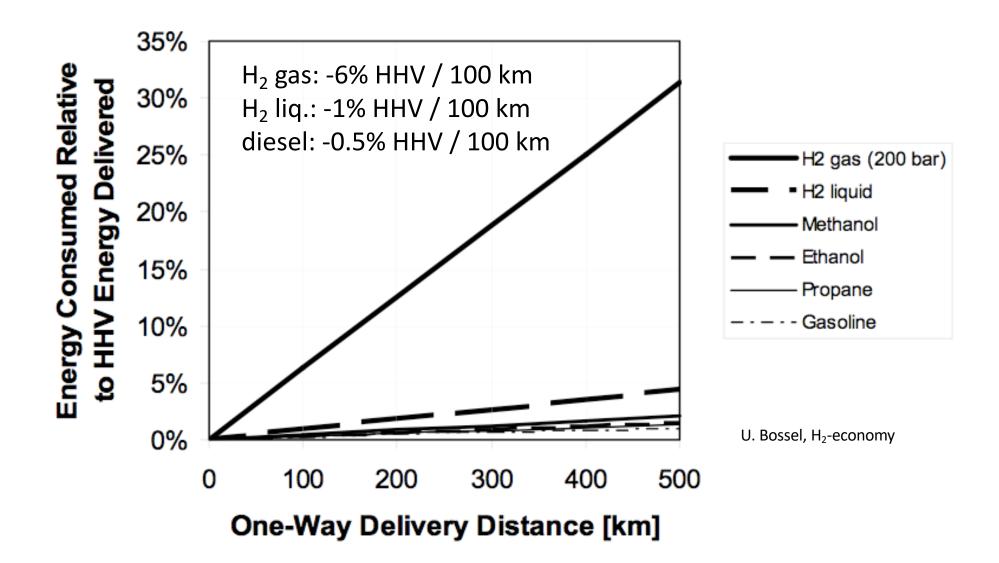
Tupolev 155 (1988)

Comparison H₂ storage (Linde AG)

	c-H2(g)	LH2	LOHC	MOFS	M-hydride	Complex hydrides	Salt hydrides
ი (kg /m³)	50bar: 4 700bar:36	71	57	material- dependent	material- dependent	material- dependent	material- dependent
wt% stored	100	100	6.2	5-9 (cryo) 0.5-1 (amb.)	1.4-2 (LaNi ₅ ,AB ₂)	5.6 (NaAlH ₄)	7.7 (MgH ₂)
Т	20°C	-253°C	150-200C ads 300C desorp.	-176°C ads. Des.:vacuum	0-30°C	70-170C ads. (20-150 bar) 100-200C des. (1bar)	250-300C ads. (10-15 bar) 300-350C des. (1bar)
Storage time	unlimited	limited (boil-off)					
Compression as % LHV	6%	22-34%	49% (if no heat avail.)	18% (if no heat avail.)		55% (if no heat avail.)	
Status	commercial	commercial	emerging	R&D		R&D	
Challenge	transport limited (low ρ)	boil-off	purity, stability weight	T_adsorpt P_desorb weight		T ads/des. P_desorb weight	
TRL	9	9	4	3	7	3-4	3-4

Linde AG presentation EFCF July 2019: Industrial perspective on H₂ purification, compression, storage and distribution

Hydrogen Distribution


- 1. by road (delivery trucks)
- 2. by pipeline
- 3. by on-site generation (electrolysis) at filling station

HRS H₂ dispension needs (Linde)

Vehicle	H ₂ kg/day	Number of vehicles supplied						
		cH ₂ (g) truck	LH ₂ truck	LH ₂ plant 5 tpd	LH ₂ plant 50 tpd			
car	0.4	2500	8750	12500	125000			
bus	30	33	117	167	1667			
truck	100	10	35	50	500			
train	250	4	14	20	200			
ship	2000	0.5	1.75	2.5	25			
large ship	10000	0.1	0.35	0.5	5			

Linde AG presentation EFCF July 2019: Industrial perspective on H₂ purification, compression, storage and distribution

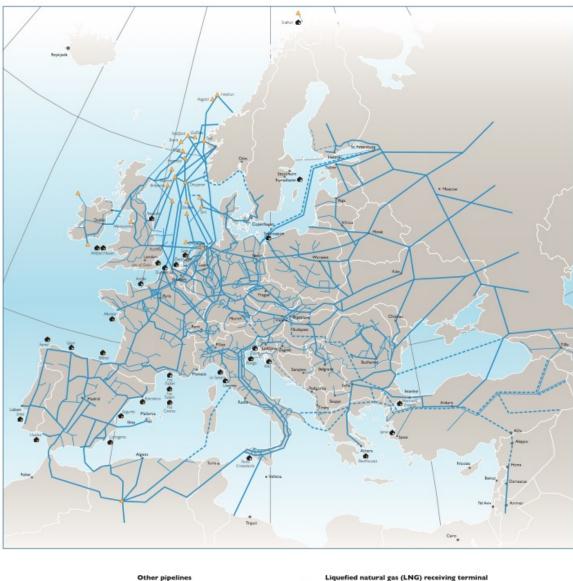
1. By road transport

2. Onsite electrolysis => exercise

- Q: How big an electrolyser is needed to produce the daily amount of H₂ for a filling station (HRS), under the following assumptions?:
 - 1000 cars/day, equivalent of 50 L gasoline/car (LHV_gasoline: 33MJ/L
 - car average consumption : 7L/100km
 - a FCEV consumes 1 kg H₂/100km (HHV_H₂ : 142 MJ/kg)
 - electrolyser efficiency 78% HHV
 - compression energy needed to 400 bar
 - the electrolyser operates 50% of the time

3. By pipeline

- NG pipelines are <u>not</u> fully <u>compatible</u> for H₂ use (diffusion loss, brittleness, compressor,...)
- energy carried: Q(W) = V(m³/s).ρ(kg/m³).HHV(MJ/kg) = section A (m²)*flow f(m/s). ρ(kg/m³).HHV(MJ/kg)
- with ρ_{CH4} =0.71 vs ρ_{H2} =0.09, and HHV_{H2}=142 vs HHV_{CH4}=53, the H_2-velocity has to be 3.1 times higher
- pumping power P(W)=A.f. Δp =A.f. $\frac{1}{2}(L/D)\rho f^2 \zeta$
- ratio $P_{H2}/P_{CH4} = (\rho_{H2}/\rho_{CH4}) \cdot (f_{H2}/f_{CH4})^3 = (0.09/0.71) \cdot (3.1)^3 = 3.85$
- f_{CH4}=10m/s, one compressor every 150 km consumes ca.
 0.3% of the passing energy stream


 \rightarrow for H₂,ca. 0.3%*3.85 = 1.16%

European Gas network

Vested infrastructure 42% of buildings heated by NG 112 million households

<u>Consumption</u>: 5375 TWh (23% of energy) <u>Storage</u>: 1200 TWh

= large reserve for injection of H₂ (and green methane)

Eurogas Statistical Report 2018

Limits of H₂ injection into the NG grid

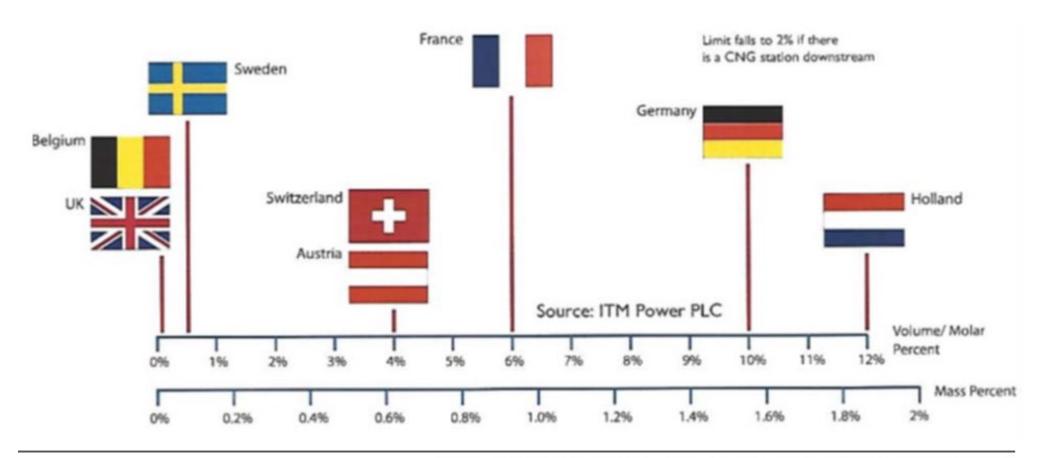
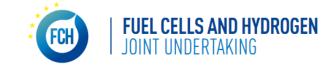
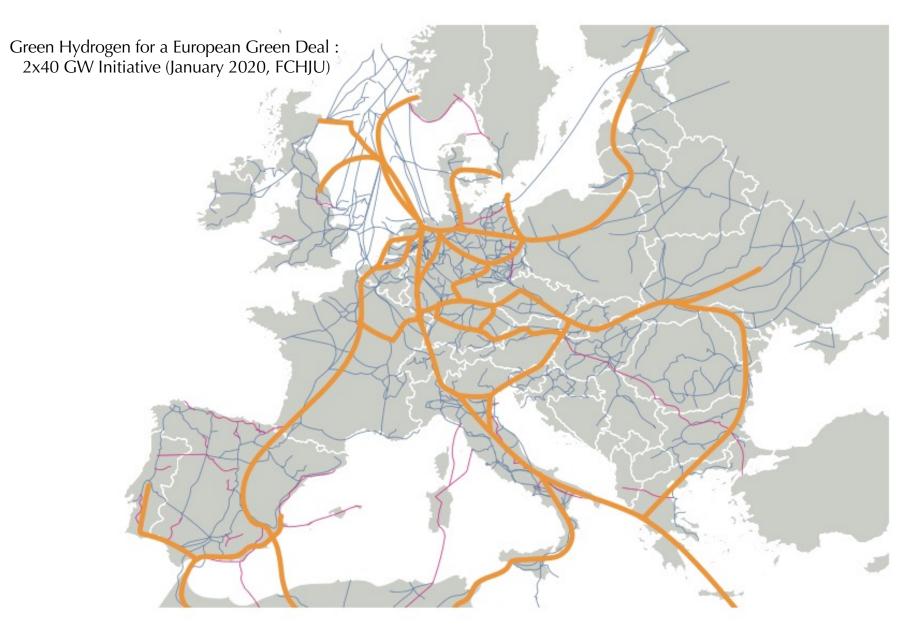




Figure 34: Hydrogen injection limit in national gas networks [71]

fch.europa.eu June2017 STUDY ON EARLY BUSINESS CASES FOR H2 IN ENERGY STORAGE AND POWER TO H2 APPLICATIONS p. 68

Figure 7 European Transnational Hydrogen Backbone - The natural gas infrastructure in Europe (blue and red lines) and an outline for a hydrogen backbone infrastructure (orange lines). The main part of the hydrogen backbone infrastructure consists of re-used natural gas transport pipelines with new compressors. A "new" hydrogen transport pipeline must be realised from Italy to Greece and from Greece to the Black See, also along the South Coast of the Iberian Peninsula a dedicated hydrogen pipeline has to be realised.

Green Hydrogen for a European Green Deal : 2x40 GW Initiative (January 2020, FCHJU)

- H₂ transport by pipeline (15-30 GW) is 10-20x cheaper than electricity transport by cable (1-2 GW); a pipeline adds only 0.2€/kgH₂ to the cost
- Capacity of the gas grid is >10x larger than of the electricity grid
 - e.g. NG pipeline Libya-Algeria-Italy-Spain = 60 GW
 - e.g. electricity line Morocco-Spain = 0.7 GW
- Natural gas is stored in large quantities in empty gas fields, porous rock formations and salt caverns (200bar). About 15-20% of the total gas consumption is stored to balance gas production and consumption
- 40 GWe H_2 in EU 2030 = 4.4 Mt H_2 = 173 TWh
- Additional 100-150GWe in PV/wind are expected

Recap on H₂

- Regarded as important intermediate energy vector, because:
 - 1. it can store large quantities of renewable electricity (wind, PV, ...) via electrolysis technologies
 - 2. it can be used in all sectors (industry, heating, power, mobility)
- Most hope is invested in (heavy duty) mobility and (heavy) industry, as these are difficult to decarbonise
- Different electrolyser technologies are likely to co-exist. The main challenges are:
 - 1. large scale deployment (TWe capacity will be needed) : manufacturing, materials, footprint
 - 2. storage, and transport, of H₂ (volume, weight)