
Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks and RL : Lecture 14

from brain-computing to neuromorphic computing

Objectives for today:

- local learning rules for hardware

- Spiking Neural Networks (SNN)

- neuromorphic chips

- reducing energy consumption 



Background reading:

Bert Offrein et al., 2020, Prospects for photonic implementations of neuromorphic 

devices and systems, IEEE Xplore, 

https://ieeexplore.ieee.org/abstract/document/9371915

LOIHI Chip (intel)

https://en.wikichip.org/wiki/intel/loihi

https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-

computing-loihi-2-brief.pdf

Recent Development at IBM and INTEL:

Chip companies invest in neuromorphic

Potential reduction of energy consumption with SNN

and local learning rules (three-factor rules)

IBM research lab

https://ieeexplore.ieee.org/abstract/document/9371915/
https://ieeexplore.ieee.org/abstract/document/9371915
https://en.wikichip.org/wiki/intel/loihi
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
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from brain-computing to neuromorphic computing

1. Review: Local Learning rules



Previous slide:

This final lecture is an outlook onto current developments for specialized, bio-inspired chips that will 

eventually use much less energy than conventional chips. The class of chips is often called neuromorphic 

chips since they take inspiration from biological principles in neuroscience.

In particular, they use communication with spiking neurons and local learning rules.



brain algorithms

non-von-Neumann

computing &hardware

Learning Rules 



Previous slide:

The lecture last week covered the relation between learning rules used by the brain and those implemented 

in modern reinforcement learning algorithms.

This lecture will make the link to recent developments in modern neuromorphic computing architectures that 

are completely different than the class model of von-Neumann computing architectures.

One aspect is that these hardware approaches show potential advantage of Spiking Neural Networks.

Another aspect is that the rely on local learning rules, in particular three-factor rules.

A third aspect is that they could potentially reduce energy consumption



Review: Policy gradient rule  with  softmax and 1-hot coding

North: 𝒂𝟏=1 ; 𝑎2=𝑎3 =𝑎4 = 0

𝑥𝑘𝑥1

𝑎1 𝑎4

𝑤11
𝑤35

s1  s2

East:

Discrete actions with

1 hot coding

If at time t, the action

𝑎𝑖
𝑡 = 1 is chosen then

𝑎𝑗
𝑡 = 0 for all other 

output neurons 𝑗 ≠ 𝑖

Action choice:

Softmax policy

𝑎1 =𝑎2=𝑎3 =0; 𝒂𝟒 = 𝟏



Previous slide:

Last week we considered reinforcement learning in a simple network where the state is represented by some 

basis functions and reinforcement learning is restricted to the final layer of action choices.

The action choices are based one one-hot coding:

If the output symbol for action i is +1 (𝒂𝟏=1)  then the symbol for all other actions j not equal i is zero (𝒂𝒋=0) .

In our example network, the policy of action choices is a stochastic  softmax policy.



Review: Policy Gradient as three-factor rule

Stimulusparameter = weight wij

Change depends on pre and post

Three factors: success  post pre

postsynaptic factor is

‘activity – expected activity’

pre

post
ij

success

𝑆 𝑎𝑖
𝑡 ,  𝑥 [ 𝑎𝑖

𝑡 − 𝑎𝑖(  𝑥) ]𝑥𝑗D𝑤𝑖𝑗 =h



Previous slide:

For this example we have found that the update of weights in the output layer can be written as a three-

factor learning rule:

- The presynaptic factor and the postsynaptic factor define the connection weight that is updated (the two 

local factors.

- The third factor is global (independent of neuronal indices) and signals success.

- Success can be reward or the TD error (for actor-critic).



Reinforcement Learning

= reward + Hebb

SUCCESS

),,( SUCCESSpostpreFwij D

local      global

Review: Local Rules for Reinforcement Learning

broadly diffused signal:

neuromodulator

(e.g., dopamine) 



Previous slide:

The traditional Hebb rule has the same two local factors as the three-factor rules.

Thus the three-factor rule can be seen as a Hebbian rule modulated by the global success factor.

These notions will be important for the discussion of modern neuromorphic hardware later on.



Review:  Three-factor STDP for reward-based learning              

Xie and Seung 2003,, Izhikevich, 2007;  Florian, 

2007;  Legenstein et al., 2008,

Fremaux et al. 2010, 2013

Hebb rule/eligibility trace

Success signal

success

ijijij eSTDPe
dt

d


)(tSew
dt

d
ijij 

Success signal:

TD error 

post

i

pre

j

STDP window

HEBBij

𝑑𝑤𝑖𝑗

𝑑𝑡
= 𝐹(𝑤𝑖𝑗; PRE𝑗 , POST𝑖 , 3𝑟𝑑)

10 ms

Eligibility trace:

Weight



Previous slide:

A specific biologically plausible three-factor rule with eligibility traces would be the following:

- Spike-Timing-Dependent Plasticity (STDP) picks up coincidences between pre and postsynaptic spikes on 

a time scale of 10 milliseconds. STDP is hence a spike-based version of Hebbian learning. 

- If furthermore the success signal arrives within one second, then the weight is updated.



‘traces’ for STDP: how to implement Hebb with spikes

pre               

j

post
i

ijw

pre

jt

post

it

pre-before-post

𝑥𝑗 ← l+ 𝑥𝑗

𝑥𝑗

D𝑥𝑗 = 1 𝑖𝑓 𝑡 = 𝑡𝑗
𝑝𝑟𝑒

(i) Trace left by presynaptic spike (discrete time steps of 1ms):

(ii) Update of eligibility trace at moment of postsynaptic spike

D𝑒𝑖𝑗 = 𝑥𝑗 𝑖𝑓 𝑡 = 𝑡𝑖
𝑝𝑜𝑠𝑡

𝑒𝑖𝑗 ← l 𝑒𝑖𝑗

(iii) Update of weights prop to eligibility trace and Success S

5 ms

Simple STDP model
(Gerstner et al. 1996,

Song-Miller-Abbott 2000, etc)

STDP window

pre-before-post

10 ms

D𝑤𝑖𝑗 = 𝑒𝑖𝑗 𝑆



Previous slide:

𝜏+ = 1/𝜆+

- For example, the pre-before-post ‘HEBB’ condition can be implemented by saying that the presynaptic 

spike leaves an exponential trace (decaying with a time constant 𝜏+ = 1/𝜆+ of 10 millisecond); if the 

postsynaptic spike arrives a few milliseconds afterwards, it sets an eligibility trace that is proportional to 

the value of the presynaptic trace.

- The eligibility trace decays on slower time scale (time scale 1/l = 1 second).

- If  the success signal arrives within one second, then the weight is updated.

- We can consider a special case (all time scales are the same discrete time step):

If (i) the eligibility trace has a time constant of  𝜏+ = 1/𝜆+ 10ms

(ii) the Hebbian STDP window is one-sided with a time scale of 10ms

(iii) the discrete time step is 10ms,

then the three-factor STDP is very similar to the

three-factor policy gradient rule 

- A two-sided STDP window can be implemented by stating that the 

postsynaptic spike leaves another trace (postsynaptic trace) which 

leads to a negative updated of the eligibility trace  at the moment of 

the next presynaptic spike arrival.

STDP window

10 ms



Formalism of  Three-factor rules with eligibility trace

D𝑒𝑖𝑗 =h  𝑓(𝑦𝑖) 𝑔(𝑥𝑗) 

𝑀 𝑆  𝑦,  𝑥 𝑒𝑖𝑗

pre

post
ij

Success signal

𝑀(𝑆  𝑦,  𝑥 )𝑥𝑗 = activity-trace left by of presynaptic neuron

𝑦𝑖 = activity-trace left by of postsynaptic neuron

D𝑤𝑖𝑗 =h

Step 1: co-activation sets eligibility trace

Step 2: eligibility trace decays over time

𝑒𝑖𝑗 ← l 𝑒𝑖𝑗

Step 3: eligibility trace translated into weight change

Three-factor rule defines a framework



Previous slide:

There are many different Hebbian rules or STDP rules. Similarly, there is not a single three-factor rule. 

Rather three-factor rules are a framework formulated as follows:

- The trace left by presynaptic activity contributes some nonlinear factor  𝑔(𝑥𝑗) 

- The trace left by postsynaptic activity contributes some nonlinear factor 𝑓(𝑦𝑖) 

- The eligibility trace 𝑒𝑖𝑗 is changed proportional to the two factors f times g

- The eligibility trace decays by a factor l

- Weights are updates proportional to eligibility trace 𝑒𝑖𝑗 times M with a modulator M that is a nonlinear 

function of the success S.



brain algorithms

Learning Rules 

The learning rule of the (advantage) actor-critic or

REINFORCE with eligibility traces are both compatible

with three-factor rules 

Updates proportional to the reward r or TD error 𝛿𝑡

D𝑤𝑙𝑘= h  𝑟𝑡 𝑒𝑙𝑘

D𝑤𝑙𝑘= h  𝛿𝑡 𝑒𝑙𝑘



Previous slide:

The main difference between REINFORCE with eligibility trace and Advantage-actor-critic is just the way the 

success signal is defined.



Quiz: Relation of Advantage-Actor-Critic to other Policy Gradient Algos

‘learning rule’

of Advantage

Actor-Critic

with eligibility trace

[ ] We get the Advantage Actor-Critic without eligibility trace if we set 𝜆𝑤 = 𝜆𝜃 = 0.

[ ] We get REINFORCE without baseline (with eligibility trace)  if set 𝛿 ← 𝑟t+1

[ ] We get REINFORCE without baseline and without eligibility trace

if set 𝛿 ← 𝑅 = 𝑟t+1 + 𝛾𝑟t+2 +
[ ] REINFORCE without baseline and without eligibility trace has many terms 

propto 𝛻𝜃𝜋𝜃(𝑎t, 𝑥t), 𝛻𝜃𝜋𝜃(𝑎t+1 , 𝑥t+1), …   and is therefore not an online algorithm

𝜃 ← 𝜃 + 𝛼𝜃𝛻𝜃𝜋𝜃(𝑎t, 𝑥t)

[x]

[x]

[ ]

[x] 



Previous slide.  Your notes. All these algorithms have been covered in the lecture 

on policy gradient methods.

R denotes the return (sum of discounted rewards, starting from state t)



brain algorithms

non-von-Neumann

computing &hardware

Learning Rules 



Previous slide:

After this review of three-factor rules, we make a small detour before we prepared to look at the first 

hardware implementation.
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from brain-computing to neuromorphic computing

1. Review: Local Learning rules

2. Detour:  Spiking Neural Networks (SNN) 



Previous slide:

The standard model of Spiking Neural Networks (SNN) is the leaky integrate-and-fire model.

In the community of computational neuroscience it is usually written in continuous time.

For computer science applications, it is usually written in discrete time.

We show both versions. 



u
i



)()( tRIuuu
dt

d
rest 

 )u t   Fire+reset

linear

threshold

Spike emission

resetI

j

ru u

Spiking Neural Network – Leaky Integrate-and-Fire Model

0

(continuous time formulation)

Ii t =  𝑗 𝑤𝑖𝑗 𝛿(𝑡 − 𝑡𝑗
𝑝𝑟𝑒

)

Ii t



Previous slide:

The Leaky integrate-and-fire model written in continuous time involves a LINEAR differential equation that 

can be interpreted as an electrical RC circuit charged by a current I(t). This current I(t) consists of short 

electrical pulses that present spike arrivals. The 𝛿(𝑡 − 𝑡𝑗
𝑝𝑟𝑒

)

denotes the Dirac delta function for each presynaptic spike arrival at times 𝑡𝑗
𝑝𝑟𝑒

and 𝑤𝑖𝑗 are the weights.

The linear equation is combined with a NONLINEAR FIRE-and-RESET  process. If the variable u 

(‘membrane potential of the neuron’) reaches the threshold theta, then u is reset to zero.

Side Note: An electrical RC circuit consists of a capacitance C and a resistor R and has a time constant 

𝜏 = 𝑅𝐶



u
i



fire+reset

Linear, discrete time steps

Threshold 

Spike emission

resetI

j

Spiking Neural Network – Leaky Integrate-and-Fire Model

𝑢𝑖 ← 0

D𝑢𝑖 = 𝑤𝑖𝑗 𝑖𝑓 𝑡 = 𝑡𝑗
𝑝𝑟𝑒

𝑖𝑓 𝑢𝑖 = 𝜗

(continuous time formulation)

𝑢𝑖 ← 𝜆𝑚𝑢𝑖

𝜆𝑚



Previous slide:

The Leaky integrate-and-fire model written in  discrete time (say time step = 1ms) 

has two linear update steps: 

- each presynaptic spike causes a jump by the synaptic weight 𝑤𝑖𝑗.

- In each time step the membrane potential decays with a factor 𝜆𝑚<1.

continuous time involves a LINEAR differential equation that can be interpreted as an electrical RC circuit 

charged by a current I(t). This current I(t) consists of short electrical pulses that present spike arrivals.

The linear equation is combined with a NONLINEAR FIRE-and-RESET  process. If the variable u 

(‘membrane potential of the neuron’) reaches the threshold theta, then u is reset to zero.



Summary: the brain is a large recurrent network of neurons

Active neuron = spike emission

- spikes are rare events

- only events are transmitted  low bandwith



Previous slide:

This slide has already been shown in the very first week. In a spiking neural network, most neurons are most 

of the time silent. Spikes are rare events.

This is exploited in spiking hardware. 
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1. Review: Local Learning rules

2. Detour:  Spiking Neural Networks 

3. Loihi chip (INTEL)



Previous slide:

The Loihi chip of Intel that appeared as a research support chip in 2017/2018 is interesting because it gives 

a direct implementation of the above three-factor rule.



INTEL:

Loihi (announced 2017, appeared 2018)

Loihi2 (announced 2021, appears 2022)



Previous slide:

More recently the first generation of Loihi has been replaced by Loihi2 with more general functionalities.



INTEL, Loihi research chip

Computing Architectures

https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf



Previous slide:

This slide from INTEL emphasize the differences in the computing architecture.

LEFT: classical von Neumann computing with separation of CPU and memory. Compute operations are 

mapped to logical operations performed in discrete time.

MIDDLE: Parallel computing and GPU architectures. The separation of computing and memory remains, and 

operations are still performed in discrete time. The only difference is that certain operations (such as 

convolutions) or updates of layer-wise dynamics in ANNs can be performed in parallel.

RIGHT: Neuromorphic computing architectures. Neurons compute with spikes which leads to nonlinear 

compute operations and signal transmission at rare moments in time defined by the moments of threshold-

crossing.  In between neurons are updated  in ‘subthreshold’ mode with simple linear operations (leaky 

integration). Ideally, computing is asynchronous and in continuous time (even though this specific INTEL 

hardware implementation is still ‘digital’).



Two related arguments:

- energy consumption:

Loihi < 1 W  (GPU > 300W)

- asynchronous computing/event-based messaging

1 chip = mesh of 128 neuromorphic cores

Spiking neural network (SNN)

1 core = 1024 simple spiking neurons 

On-chip integrated learning rule

https://en.wikichip.org/wiki/intel/loihi

https://en.wikichip.org/wiki/intel/loihi


Previous slide:

Why would one want to change the computing architecture?

Essentially because asynchronous, event-based computing could lead to enormous reductions in energy 

consumptions, because expensive nonlinear processing steps and transmission steps are sparse in time: 

they are rare compared to the elementary time step in a discrete-time implementation.

1 chip contains 128 cores, each one able to simulate about 1000 simple leaky integrate-and-fire neurons.



Loihi: (first chip, 2018)

- 128 neuron cores per chip

- Upto 128’000 neurons per chip

- 2 billion transistors

- Standard integrate-fire

neuron model

- Three-factor learning rule

trace(pre)trace(post)success



Previous slide:

Importantly, the framework of the  learning rule that is possible on the Loihi chip is exactly that of three-factor 

rules explained above.

Each presynaptic spike leaves a trace. The combination with the trace left by a postsynaptic spike and a 

success signal defines the weight update.



Learning rules

Loihi (2017): Three-factor learning rules 
presynaptic factor, postsynaptic factor, global success

 single-layer RL algorithms

 Loihi2 (2022): Detailed three-factor learning rules

presynaptic factor, postsynaptic factor, neuron-specific feedback

 approximate BackProp in Multi-Layer RL



Previous slide:

In the new version, they generalized the learning rule so that it can now also implement an approximate 

version of BackProp. 





Previous slide:

Official INTEL slide.



Loihi2 (2022):

- 128 neuron cores per chip

- Upto 1 Mio neurons per chip

- 2 billion transistors

- programmable neuron model

- programmable learning rule

f(pre),g(post),3rd(neuron_i)

- spike broadcast at 

destination chip

- Convolutional networks

- outer-product weight matrix

- Linked to C/Phython

programming interface



Previous slide:

Apart from spike broadcast (as opposed to targeted delivery lines), the chip also implements features such 

as weight matrices compatible with convolutional neural networks and outer-product weight matrices 

(factorial, see conv-net lecture).

Importantly, the learning rule framework now enables the user to switch from a GLOBAL third factor to a use-

defined programmable NEURON-specific third factor.
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2. Detour:  Spiking Neural Networks 

3. Loihi chip (INTEL)

4. Memristor chips (IBM research)



Previous slide:



© 2020 IBM Corporation

Bert Jan Offrein

Analog synaptic signal processing 
for neural network inference and training

Neuromorphic Devices and Systems Group, IBM Research Europe - Zurich



Reading
Bert Offrein et al., 2020, Prospects for photonic implementations of neuromorphic 

devices and systems, IEEE Xplore, 

https://ieeexplore.ieee.org/abstract/document/9371915

The slides are adapted from a presentation of Bert Offrein who 

leads a group of neuromorphic computing at IBM research in 

Zurich-Ruschlikon.

https://ieeexplore.ieee.org/abstract/document/9371915/
https://ieeexplore.ieee.org/abstract/document/9371915


Accelerating Neuromorphic Workloads – Innovation required at all levels

IBM slide



Previous slide:

The project of IBM research focuses mostly on Matrix multiplication (middle) and update of the matrix 

elements as a result of a learning rule (‘algorithm’, right). 



Three pillars for Si technology

PackagingScalingMaterials

www.semi.org

The traditional scaling law is dead! IBM slide



Previous slide:

In the IBM research the focus is more on new materials that enable faster and energy-efficient matrix 

multiplication as well as weight-update rules.

The three drivers of the changes are:

Left: New materials combine many more elements than older ones.

Middle: Moore’s law, the traditional scaling law of hardware performance increase, has come to its end.

Right: Packaging has to go from 2-dim to 3-dim arrangements.



Experiment: “Human Brain vs. Computer”

Task 1: Mathematics

2= ?

Task 2: Image recognition

Traditional silicon scaling ended

New types of problems gain interest

Explore new functionalities, More than Moore

Explore new computing paradigms

- approximate computing

- large parallel data streams



Previous slide:

This shows a simple theoretical experiment, where we want to compare the performance of the human brain 

with a computer based on two different tasks.

In task 1, both candidates have to calculate the square root of 2 as fast as possible.

In task 2 both candidates have to interpret a scene.

The point is that that task requirements in task 2 are very different!

For example, a single noisy pixel (or noisy compute process) is less relevant. Handling of large data streams 

is more important.



Review Brain inspired computing:

• Feed-forward sequential processing

• Information encoded in signal amplitude 

• Neuron activation: Accumulate + 
Threshold 

• Training: Backpropagation Algorithm

Deep Artificial Neural Network:Brain-like Neural network:

Simplify

“Cat”

“Dog”

“Mouse”

 Omni-directional signal flow

 Asynchronous pulse signals

 Information encoded in signal 
timing/Spiking Neural Networks

 Difficult to implement efficiently on 
standard computer hardware

Information processing flow

“Mouse”

“Dog”

“Cat”

IBM slide



Previous slide:

Standard comparison of a few differences Brain vs ANN



For many training cases x with target response t:

1. Forward Propagate:

2. Determine output error:

3. Backward Propagate: Determine neuron input 

influence 𝛿 on error E:

4. Adjust the active weights, proportional to their 
influence on the error:   Δ𝑊 = −𝜂 𝒙⨂𝜹

Review:  Training with  Backpropagation algorithm

: Signal vector

: Synaptic weight matrix

: Per-element neural activation     
function (sigmoid)

𝑊𝑛

𝜎

Neural net as chain of vector operations:

x 𝑊1 𝜎 𝑊2 𝜎 y

Input Output

𝑊3 𝜎

Backpropagation algorithm:

x 𝑊1 𝜎 𝑊2 𝜎 y𝑊3 𝜎
𝑥1 𝑥2 𝑥3

(𝒚 − 𝒕)2 E

x 𝜎′ 𝜎′ E𝑊3
𝑇 𝜎′𝑊2

𝑇𝑊1
𝑇

𝛿1 𝛿2 𝛿3

x Δ𝑊1 𝜎 Δ𝑊2 𝜎 yΔ𝑊3 𝜎
𝑥1 𝑥2 𝑥3𝛿1 𝛿2 𝛿3

𝑥

𝜎
(𝑥

)

0

1

0 IBM slide



Previous slide:

Backpropagation involves 

- multiple Matrix multiplications (weight matrix per layer)

- Update of the matrix elements (learning rule)



Analog signal processing for scalability

 Limiting factors of von 

Neumann architecture
 Memory access

 Sequential operations

 Digital signal processing

63

Overcome by
 In-memory computing

 Parallel operations

 Analog signal processing

Processing 
Unit

Compute effort ~O(#Neurons2) Compute effort ~O(N)

Electrical and optical solutions are viable candidates



Previous slide:

For these kind of matrix operations we should exploit new computing concepts.

The traditional von-Neumann paradigm is limited by signal flow and bad scaling as a the number of neurons 

per layer increases.



Efficient training of Deep Artificial Neural Networks:

Training by Backpropagation Method: 

• Processing dominated by many large matrix operations

• Forward Propagation: 𝑊1,2..

• Backward Propagation:  𝑊1,2..
𝑇

• Weight Update:              ∆𝑊1,2..

Scale ∝ 𝑁2

GPU Inefficient on standard Von Neumann systems:
– (Mostly) Serial processing
– Low computation to IO ratio Memory 

bottleneck

For fast and efficient neural network data processing:

 Fully parallel processing

 Tight integration of processing and memory

 Analog signal processing

Neurons/layer

 G. W. Burr et al., “Tech. Dig. - Int. Electron Devices Meet. IEDM, vol. 2016–Febru, no. 408, p. 4.4.1-4.4.4, 2016.

 T. Gokmen and Y. Vlasov, Front. Neurosci., vol. 10, no. JUL, pp. 1–13, 2016.

Crossbar arrays
• Electrical
• Optical

𝒙

𝑾𝒙



Previous slide:

Top:

In the week on BackPropagation we already discussed the scaling:

The algorithm scale proportional to the number of weights.

Assume that we have many layers and N neurons per layer. Then the scaling is O(𝑁2).

This is true for each of the three steps: forward pass, backward pass, weight update. 

Bottom:

With analog implementation of the matrix multiplication we should be able to achieve a better scaling:

Forward pass: O(1)

Backward pass: O(1)

Weight update: O(𝑁2) ????



Efficient training of Deep Artificial Neural Networks:

𝒙

𝑾𝒙

Matrix multiplication = Ohms law:  V=R I

Input signal 𝑥𝑗 = 𝑉𝑗 voltage of neuron j 

Weight        𝑤𝑖𝑗 = 1/𝑅𝑖𝑗 resistor at crossing

Output   𝐼𝑖 =  𝑗
𝑉𝑗

𝑅𝑖𝑗
= 𝑗 𝑤𝑖𝑗 𝑥𝑗 current into neuron i

Electrical crossbar array: 



Previous slide:

Each blue bar is a perfect conductor. The red crossing points are tunable resistors that play the role of 

synaptic weights.

From Ohm’s law follows that the current from neuron j to neuron i is 𝐼𝑖𝑗 = 𝑉𝑗/𝑅𝑖𝑗.

Kirchhoff’s law (conservation of current) gives the final summation equation.



Tunable weights via  Memristive Devices

• Resistance depends 
on molecular 
configuration

• Resistance increase or 
decreases with 
voltage pulses above 
threshold value

• Resistance keeps 
memory

HfO2 baseline

IBM MO3+HfO2

Woo et al. IEEE Electr. Dev. Lett. 38, 9 (2017)

Abrupt switching

Continuous & 

symmetric 

change of R

Understanding the mechanism

‘memory of resistance’ = ‘memristor’



Previous slide:

Memristive material studied by IBM.

The basic function  arises from the following principle. 

The  material in light blue is an electrical  insulator (dielectric material). However, with a first strong voltage 

pulse one can create an initial breakdown in the material. This leads to a short-cut illustrated by a thin red 

column of molecules in a conducting state (lower left). Now the material is now longer insulating, but has a 

finite resistance.

With an additional medium-sized positive voltage pulse (red), the column of conducting molecules can be 

made thicker so that the resistance decreases (lower right).

With a later medium-sized negative voltage pulse (blue), one can return to the initial configuration (lower 

left).

Weak currents and weak voltage pulses have no effect. Hence the material keeps its configuration and 

resistance for a long time. It has a ‘Memory of Resistance’  Memristor.



Efficient training of Deep Artificial Neural Networks: spiking network

For fast and efficient neural network data processing:

 Fully parallel processing

 Pulse coding

 Stochastic Poisson Process

Crossbar arrays
• Electrical 𝒙

𝑾𝒙

Weight update

order 1 !

Gokman and Vlasov, Acceleration of Deep Neural 

Networks with Resistive Cross-Point Devices

Frontiers, 2016

- Local Hebbian Learning rule

- Spike coding (SNN)



Previous slide:

We now image the following coding principle (not yet implemented in hardware, but proposed some years 

ago).

Each presynaptic neurons sends voltage pulses (‘spikes’ of finite width) at random moments in time (Poisson 

process).

Each postsynaptic neuron sends voltage pulses (‘spikes’ of finite width) at random moments in time (an 

independent Poisson process).

The amplitude of the single pulse is such that it does not reach the switching amplitude of the memristive

material. But if two pulses coincide, then it reaches the threshold and increases the weight (decreases the 

resistance).

Thus we have a proposition to implement a local (two-factor) Hebbian learning rule in hardware. And, 

unexpectedly, we need spike coding for this implementation scheme!



Gokman and Vlasov, Acceleration of Deep Neural 

Networks with Resistive Cross-Point Devices

Frontiers in Neuroscience, 2016
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This is a copy of the relevant section of the original publication



The device challenge

• RR
AM

75

Courtesy E. Vianello

- Create breakdown

(‘mild shortcut)

- Make size of breakdown tunable

w=1/R
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Here The  material in yellow  is an electrical  insulator (dielectric material). However, with a first strong 

voltage pulse one can create an initial breakdown (blue channel) in the material. 

The question now is the following: Can we SMOOTHLY TUNE 

sith several additional medium-sized positive voltage pulse (red),  or  negative voltage pulse (blue), one 

can return to the initial configuration (lower left).
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 Vreset= 2.2V, Vset= 1.9V

      #200 pulses up/down 

      Fixed pulse duration 500ns

D34_12um

Understanding the mechanism

Changes induced by 200 pulses up (and down) 

 change the weights of ANN by appropriate pulses

HfO2 baseline

IBM MO3+HfO2

Woo et al. IEEE Electr. Dev. Lett. 38, 9 (2017)

Abrupt switching

Continuous & 

symmetric 

change of G

Experimental demonstration of symmetric and continuous change of G
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Experimental test with the material at the bottom shows that smooth tuning is possible (blue dots)



5/30/2022
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1. Negative sweep to put it in Low-Resistance State

2. Read at 0.2V constantly for 1000s

3. Negative + positive cycle to put it in

increasing High-Resistance State (HRS)

4. Read at 0.2V constantly for 1000s for

each HRS

Intermediate states show no drift up to 1000 s

We can change values of resistance

New resistance is reliable over time

We can change again

‘Online Learning’

Valeria Bragaglia Email: vbr@zurich.ibm.com79

Retention of the Resistance Values over time (intermediate values)
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Moreover, after tuning the resistance remains constant



IBM Research

IBM Confidential © 2019 IBM Corporation8

• Analog AI Cores

• For the synaptic processing 
function

• Apply memristive devices: 
Ohms law & Kirchhoff’s law

• Parallel forward inference & 
backward and weight update

compute performance

efficiency
Analog synaptic processing

New memristive

devices required

Inference Training
Resistance 1-100 MW 1-100 MW

# Levels 100 1000

Weight set / update To desired level Symmetric

AI Technology roadmap
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The road map shows several aspects:

- Traditional scaling has increased not only the compute power, but also reduced the Watt per Flop.

- Traditional scaling expected to come to an end (or may continue, red dots)

- Staying digital, but allowing for approximate computing might give an extra jump in performance

- Going analog would yield a further jump.



Analog crossbar arrays: Update for BackProp

Electrical crossbar array: 

 𝑥

 𝛿

 𝑥

𝑊  𝑥

Forward 
propagati
on:

 𝛿

𝑊𝑇  𝛿

Backward 
propagati
on:

Weight 
update:

Weight update: proportional to signals 
on row and column

–Symmetric increase and decrease of 
weight

–~1000 analog levels required

Physical challenge: Identify material 
systems that meet these requirements

Training cycle

R
es

is
ta

n
ce

target
non-ideal

Δ𝑤𝑖𝑗 = −𝜂 𝑥𝑖 𝛿𝑗
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To have an impact, local Hebbian rules are not enough.

But one can also extend these ideas to local implementations of BackPROP.



Neuromorphic – local learning rules in hardware

 Extension from two-factor to three-factor rules possible O(1)!

 Extension to (approximative) Backprop possible O(N)!



Literature of ferroelectrics in AI hardware

• FTJ • FeFET

Group Name / DOC ID / 

Month XX, 2019 / © 2019 

86

Ferroelectric
• 2011: discovery of a ferroelectric phase in HfO2.

• 2017: FeFET integrated in a 28nm HKMG 

technology (Mulaosmanovic et al., VLSI 2017)

• 2018: IBM: crystallization of HfZrO4 in the FE 

phase below 400°C (O’Connor et al., APL 

Mater. 6, 121103 (2018))

• 2020: this work: first demonstration of a BEOL, 

CMOS FeFET



Summary

• Silicon technology remains the basis for computing devices

• Leverage existing processes, infrastructure and know-how

• Continuous extending of materials and function

• New computing paradigms – Neuromorphic computing  -
provides a path to handle unstructured data

• Analog signal processing in crossbar arrays

• Parallel processing of key algorithms in neural networks

• Electrical and optical implementations

 Extension to three-factor rule possible!
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Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks and RL : Lecture 14

from brain-computing to neuromorphic computing

1. Review: Local Learning rules

2. Detour:  Spiking Neural Networks 

3. Loihi chip (INTEL)

4. Memristor chips (IBM research)

5. The problem of energy consumption



brain algorithms

non-von-Neumann

computing &hardware

Learning Rules 



Energy consumption of the brain

• Sedentary humans eat and use 2500 kCal per day

• Translate to Joule  10 000 kJ

• Brain facts: 20 percent of energy consumption of human at 
rest goes into the brain

• Most of it goes into synaptic signaling

• Brain uses 24 – 30 Watt   (5 modern light bulbs)

https://www.brainfacts.org/Brain-Anatomy-and-Function/Anatomy/2019/How-Much-Energy-Does-the-Brain-Use-020119

https://biology.stackexchange.com/questions/16316/what-is-the-energy-consumption-of-the-brain

The power consumption of the brain is relatively low!

 10h of hard thinking = 0.3kWh

https://www.brainfacts.org/Brain-Anatomy-and-Function/Anatomy/2019/How-Much-Energy-Does-the-Brain-Use-020119
https://biology.stackexchange.com/questions/16316/what-is-the-energy-consumption-of-the-brain


Previous slide. 

Claim the power consumption of the brain (30W) is relatively low.

Low compared to what?

- Compare with GPU

= Compare with household power consumption.



Compare: Energy consumption of one GPU

• 300 W (RX 6800/6900 XT)

• 350 W (RTX 3080/3090) 

https://www.tomshardware.com/features/graphics-card-power-consumption-tested

https://www.tomshardware.com/features/graphics-card-power-consumption-tested
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Energy consumption of one GPU

• 300 W (RX 6800/6900 XT)

• 350 W (RTX 3080/3090)

1 day of training an ANN on 1 GPU = 8000Wh   = 8 kWh

4 months GPU usage  1000 kWh

12 months GPU usage  3000 kWh

https://www.tomshardware.com/features/graphics-card-power-consumption-tested

 10h of training an ANN on 1 GPU = 3.5 kWh

https://www.tomshardware.com/features/graphics-card-power-consumption-tested
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Electrical household energy consumption

Typical Swiss uses in household (fridge, TV, light)

 about 1000 kWh per year and person.

• 2 persons sharing apartment = 2200kWh per year

• 4 persons sharing house = 4000kWh per year

Heating/warm water with heat pump 

4 persons sharing house   6000kWh per year 

 1500 kWh per year and person

https://pubdb.bfe.admin.ch/de/publication/download/10559

https://pubdb.bfe.admin.ch/de/publication/download/10559
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Comparison

• Brain 30W                 260 kWh per year and person

• Living in Switzerland  2500 kWh per year and person

• GPU                          3000 kWh per year and GPU

Problem!!!!

Solution? – use your machine carefully!

- think about better computer architecture!
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The neural network size explosion

• Source: 
NVIDIA
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The compute explosion
Source: 
Openai.com
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The power and carbon emission explosion

• Source: E. Strubell et al.,  
arXiv:1906.02243

oil/gasoline: 1liter = 10kWh = 2.5 kg CO2



Previous slide:



Energy consumption problem will further 
increase over time!

Solution? – use your machine carefully!

- think more, simulate less! 

- invent better computer architecture!

Global warming is a reality! 
 Big migration waves to be expected

Solution? – tax on CO2
- reliable and predictable increase from 10cent

to 10 dollars over 25 years.
- few countries start, others will follow
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Thanks!

The END



Exam:
- written exam: date fixed by SAC EPFL

- sample exams of previous years online

- miniproject counts 30 percent towards final grade

For written exam:
-bring 1 sheet A5 of own notes/summary

-HANDWRITTEN!

-no calculator, no textbook



1. Intro and Perceptrons

2. RL1: Reinforcement Learning and SARSA

3. RL2: TD learning, continuous space, eligibility traces

4. RL3: Policy gradient algorithms

5. DL1: BackProp and Regularization

6. DL2: Tricks of the Trade

7. DL3: Loss Landscape and optimization methods

8. DL4: Statistical Classification by Neural Networks

9. DL5: Convolutional Networks and NoFreeLunch

10. Deep RL1: DeepQ, Actor-Critic, 

Eligibility traces from Policy gradient, Model-based RL

11. Deep RL2: Discrete Games, Replay Buffer, and Continuous control

12. Deep RL3: Model-based Deep RL

13. Deep RL4: Biology and RL, three-factor rules

14. Deep RL5: Hardware

- Exam based on exercises 

and Quizzes.

- Clear questions/answers

- BackProp + RL



Feedback 

Evaluation

Improvements



EPFL feedback by students: Overall I think this course is good

Thanks!

2018

Response rate:

32 Percent

(45/144)

Old



EPFL feedback by students: Overall I think this course is good

Thanks!

2022

Response rate:

50 Percent

(94/197)

This year



Main points:

- Overlap with other courses?

- Center even more on RL?

- Workload?

- Applied vs Formal Theory?

- More practical exercises?

- Support: Textbook, Slides, Video

What can be improved next year ?



Workload:

Lectures with integrated exercises take 120 min per week (=2h).

If I include everything (Lectures, exercises, miniproject, 

private reading), I have worked 

PER WEEK (including the weeks of easter, ascension)

[ ] 5hours or less      (< 3 hours in addition to lectures)

[ ] 5.5 - 8 hours        ( < 6 hours in addition to lectures)

[ ] > 8 hours             (> 6 hours in addition  to lectures)

What can be improved next year ?



- workload for a 5 credit course: 7.5 h p. week, for 18 weeks

(includes 4 weeks of exam preparation time)

[ 1 credit = 27 hours work total = 1.5 h p. week, for 18 weeks] 

Student in 2018

‘If I evaluate my worktime for this course I would say 

1h minproject + 2h exercice + 2h lecture per week 

which normally correspond to 5 ECTS credits and not 4.’ 

What can be improved next year ?



Support of Class: Textbook 

How much time have you spent during the term with 

the textbook REINFORCEMENT LEARNING 

[ ] 2 hours or less

[ ] 2-6 hours

[ ] more than  6 hours 



IC evaluation 2018:

Question 4 – supporting material



‘The slides are not as good as in other courses, 

they should be improved.’

Agree – not sure - disagree

B) When I sit in the course on Friday, the slides are useful

A) When I look at the slides 4 weeks after the lecture, 

the slides are useful

‘The slides do not contain enough text, just sketches’

What can be improved next year ?



Overlap with ‘Deep Learning’.

Should we recommend that students take both classes:

[ ] Yes, very complementary    

[ ] not sure 

[ ] too much overlap, advice students against taking both

‘I also took the Deep Learning course 

and the two are very complementary 

despite the overlaps’

What can be improved next year ?



Overlap with ‘Unsupervised and Reinforcement Learning’.

Should we recommend that students take both classes:

[ ] Yes, very complementary (not more than 3 sessions overlap)    

[ ] not sure 

[ ] too much overlap, advice students against taking both

‘Overlap with Unsupervised and 

Reinforcement Learning’

What can be improved next year ?



‘The blackboard parts break the 

rhythm of the lecture.’

‘The lecture hall is bad for 

reading the blackboard’

‘The blackboard parts should be handed out’

Blackboard part:

Like it – not sure – hate it

Blackboard part, but done on tablet:

Like it – not sure – hate it

What can be improved next year ?



‘The in-class exercises are a 

waste of time’’

In-class exercises:

Like it – not sure – hate it

What can be improved next year ?



1. Intro and Perceptrons

2. RL1: Reinforcement Learning and SARSA

3. RL2: TD learning, continuous space, eligibility traces

4. RL3: Policy gradient algorithms

5. DL1: BackProp and Regularization

6. DL2: Tricks of the Trade

7. DL3: Loss Landscape and optimization methods

8. DL4: Statistical Classification by Neural Networks

9. DL5: Convolutional Networks and NoFreeLunch

10. Deep RL1: DeepQ, Actor-Critic, 

Eligibility traces from Policy gradient, Model-based RL

11. Deep RL2: Discrete Games, Replay Buffer, and Continuous control

12. Deep RL3: Model-based Deep RL

13. Deep RL4: Biology and RL, three-factor rules

14. Deep RL5: Hardware

15. Deep RL6: Exploration by Novelty/Surprise/InformationGain


