Algèbre linéaire avancée II printemps 2022

Série 13 – Corrigé

L'exercice marqué d'un (+) sert d'introduction à la série, tandis que celui marqué d'une (*) est plus difficile. Tous les exercices sauf celui marqué d'une (*) seront corrigés. La correction sera postée sur Moodle 2 semaines après. Les solutions des exercices (*) et (+) seront discutées dans les séances d'exercices du mardi d'après et d'avant respectivement. Un des exercices (*) sera une question ouverte de l'examen final.

Exercice 1. (+) Soit $A \in \mathbb{C}^{n \times n}$. Montrer qu'il existe un polynôme $m_A(x) \in \mathbb{C}[x] \setminus \{0\}$ de degré minimal et dont le coefficient du monôme dominant est 1 tel que $m_A(A) = 0$. De plus, montrer que $m_A(x)$ est unique. Le polynôme $m_A(x)$ est appelé le polynôme $minimal\ de\ A$.

Solution. Comme $p_A(A)=0$ pour le polynôme caractéristique, on obtient l'existence. Soit $p(x)=\sum_{i=0}^{\deg(m_A)}\alpha_ix^i$ un autre polynôme tel que p(A)=0, $\deg(p)=\deg(m_A)$ et le coefficient du monôme dominant de p est 1. Alors on peut écrire $p(x)=q(x)m_A(x)+r(x)$, où r(x) est un autre polynôme avec $\deg(r)<\deg(m_A)$ et $q(x)\in\mathbb{C}[x]$. Comme $p(A)=m_A(A)=0$, on doit avoir r(A)=0. Comme m_A est choisi de degré minimal, on doit avoir r=0.

Ainsi, $p(x) = q(x)m_A(x)$. Comme p(x) et $m_A(x)$ ont le même degré, q(x) est constant et comme p(x) et $m_A(x)$ ont le même coefficient dominant, $p(x) = m_A(x)$. Ceci conclut la preuve de l'unicité.

Exercice 2. Soit $U \in \mathbb{Z}^{n \times n}$ une matrice unimodulaire.

- i) Montrer que U^{-1} est aussi unimodulaire.
- ii) Montrer que $\mathbb{Z}^n=\{Uz\mid z\in\mathbb{Z}^n\}$, c'est-à-dire que U est un automorphisme sur $\mathbb{Z}^n.$

Solution.

i) On sait que $U^{-1}=\frac{\operatorname{ad}(U)}{\det(U)}$, où $\operatorname{ad}(U)$ est la matrice adjointe de U. On se rappelle que $(\operatorname{ad}(U))_{ij}=(-1)^{i+j}\det(U_{ji})$ où $U_{ji}\in\mathbb{Z}^{(n-1)\times(n-1)}$ est la matrice qu'on obtient de U en supprimant la j-ème ligne et i-ème colonne. Comme $\det(U)\in\{\pm 1\}$, $U^{-1}\in\mathbb{Z}^{n\times n}$. De plus, $\det(U)\det(U^{-1})=1$ implique que $\det(U^{-1})\in\{\pm 1\}$.

ii) Comme $U \in \mathbb{Z}^n$, $Uz \in \mathbb{Z}^n$ si $z \in \mathbb{Z}^n$ et on peut définir l'endomorphisme $g: \mathbb{Z}^n \to \mathbb{Z}^n$, $z \mapsto Uz$. Comme U est de rang plein, g est injective. Par la partie i), pour $z \in Z^n$, on a aussi $U^{-1}z \in \mathbb{Z}^n$, et alors $g(U^{-1}z) = z$. Donc, g est aussi surjective.

Exercice 3. Soit $U \in \mathbb{Z}^{n \times n}$ une matrice unimodulaire. Montrer qu'il existe un $m \in \mathbb{N}_{\geq 0}$ et des matrices E_i , $i \in \{1, \ldots, m\}$ tels que

- i) chaque E_i représente une opération élémentaire unimodulaire (cf. définition 6.4),
- ii) on a $U=E_1\cdot E_2\cdots E_m$.

Solution. Par le Corollaire 6.7 du cours, il existe des matrices $E_1, \cdots E_m$ telles que $U \cdot E_1 E_2 \cdots E_m = L$, où L est triangulaire inférieure. On montre que quitte à multiplier L à droite par d'autres opérations élémentaires unimodulaires, on peut supposer $L = I_n$. En effet, comme $\det(U) \in \{\pm 1\}$, on a $L_{i,i} \in \pm 1$ pour tout i. Quitte à multiplier certaines colonnes par -1, on peut supposer que $L_{i,i} = 1$. En additionnant $-L_{2,1}$ fois la 2-ème colonne de L à la 1-ère colonne de L, on peut supposer $L_{2,1} = 0$. En additionnant, $-L_{3,1}$ fois la 3-ème colonne de L à la 1-ère colonne de L, on peut supposer $L_{3,1} = 0$. En continuant ainsi pour les colonnes j = 4, 5, ..., n, on peut supposer $L = I_n$.

On remplace U par $U':=U^{-1}$. En appliquant le résultat ci-dessus à U', on obtient

$$egin{array}{ll} U' \cdot E_1 E_2 \cdots E_m &= I_n \ \Rightarrow & U U' \cdot E_1 E_2 \cdots E_m &= U \ \Rightarrow & E_1 E_2 \cdots E_m &= U. \end{array}$$

Exercice 4. Montrer que le système Ax = 0 a une solution $0 \neq z^* \in \mathbb{Z}^n$ pour chaque matrice $A \in \mathbb{Z}^{m \times n}$ avec m < n.

Solution. Par le Théorème 6.8 du cours, on sait qu'il existe une matrice U unimodulaire tel que $AU = [H \mid 0]$ est la forme normale d'Hermite. Comme m < n, il y a au moins une colonne dans la partie 0 à droite. Alors, $AUe_n = 0$, où $e_n = (0, \ldots, 0, 1)^\intercal \in \mathbb{Z}^n$. Soit u_n la dernière colonne (i.e. la n-ième colonne) de U. Comme $U \in \mathbb{Z}^{n \times n}$, on a $u_n \in \mathbb{Z}^n$ et comme U est inversible, on a $u_n \neq 0$. De plus, $0 = AUe_n = Au_n$.

Exercice 5. Trouver toutes les solutions entières de

$$Ax=b_1$$
, où $A=egin{pmatrix} 5&1&3\4&10&2 \end{pmatrix}$, $x\in\mathbb{Z}^3$ et $b_1=egin{pmatrix} 1\2 \end{pmatrix}$

et de

$$Bx=b_2$$
, où $B=egin{pmatrix} 8&-7&-10\-6&15&12 \end{pmatrix}$, $x\in\mathbb{Z}^3$ et $b_2=egin{pmatrix} 4\6 \end{pmatrix}$.

Solution. On va trouver la forme normale de Hermite des matrices A et B afin de résoudre ces systèmes.

On a que la forme normale de Hermite de A est

$$H_A=egin{pmatrix}1&0&0\0&2&0\end{pmatrix}$$

avec matrice de passage unimodulaire $U_A=egin{pmatrix} -1&3&-14\ 0&0&1\ 2&-5&23 \end{pmatrix}$. Ainsi, on a :

$$AU_A=H_A.$$

On trouve d'abord les solutions de $H_Ay = b_1$ qui sont

$$Y_A = igg\{egin{pmatrix} 1 \ 1 \ 0 \end{pmatrix} + z egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix} \mid z \in \mathbb{Z} igg\}.$$

On a donc que les solutions entières de (1) sont

$$\{U_Ay \mid y \in Y_A\} = igg\{egin{pmatrix} 2 \ 0 \ -3 \end{pmatrix} + z egin{pmatrix} -14 \ 1 \ 23 \end{pmatrix} \mid z \in \mathbb{Z}igg\}.$$

De la même manière on a que la forme normale de Hermite de B est

$$H_B=egin{pmatrix} 1 & 0 & 0 \ 3 & 6 & 0 \end{pmatrix}$$

avec matrice de passage unimodulaire $U_B=egin{pmatrix} 3 & -2 & 11 \ -1 & 2 & -6 \ 3 & -3 & 13 \end{pmatrix}$. Ainsi, on a :

$$BU_B = H_B$$
.

On trouve d'abord les solutions de $H_By=b_2$ qui sont

$$Y_B = igg\{egin{pmatrix} 4 \ -1 \ 0 \end{pmatrix} + z egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix} \mid z \in \mathbb{Z} igg\}.$$

On a donc que les solutions entières de (2) sont

$$\{U_By\mid y\in Y_B\}=igg\{egin{pmatrix}14\-6\15\end{pmatrix}+zigg(egin{pmatrix}11\-6\13\end{pmatrix}\mid z\in\mathbb{Z}igg\}.$$

Exercice 6. Montrer que d dans le lemme 6.6 est le gcd de la première ligne de A. En d'autres mots, montrer le lemme suivant.

<u>Lemme.</u> Soit $A \in \mathbb{Z}^{m \times n}$ une matrice en nombres entiers de plein ligne rang, alors il existe une matrice unimodulaire $U \in \mathbb{Z}^{n \times n}$, tel que la première ligne de AU est de la forme $(d,0,\ldots,0)$ où $d=\gcd(a_{1,1},a_{1,2},\ldots,a_{1,n})$.

Solution. Nous allons montrer que $gcd(a_{1,1},\ldots,a_{1,n})$ est invariant sous opérations élémentaires unimodulaires. L'échange de deux colonnes ne change pas le gcd. Ajouter $\lambda \in \mathbb{Z}$ fois une colonne j dans une autre colonne k, $j \neq k$, change a_k en $a'_k = a_k + \lambda a_j$. On a

$$egin{aligned} \gcd(a_{1,1},a_{1,2},\ldots,a_{1,n}) \ &= \gcd(\gcd(a_k,a_j),a_{1,1},a_{1,2},\ldots,a_{1,n}) \ &= \gcd(\gcd(a_k+\lambda a_j,a_j),a_{1,1},a_{1,2},\ldots,a_{1,n}) \ &= \gcd(a_{1,1},a_{1,2},\ldots,a_k',\ldots,a_{1,n}). \end{aligned}$$

Donc, les opérations élémentaires unimodulaires ne changent pas le gcd d'une ligne. Comme $gcd(d,0,\ldots,0)=d$, on conclut.

Exercice 7. (*) Soit $G=\begin{pmatrix} a & b \\ b & c \end{pmatrix} \in \mathbb{Z}^{2\times 2}$ un matrice symétrique, unimodulaire, et définie positive. Montrer qu'il existe une matrice unimodulaire U telle que $G=U^\intercal U$.

Indication: Regarder ac. Si $ac \geq 2$, est-ce qu'il y a une matrice unimodulaire U t.q. $U^{\intercal}GU = \begin{pmatrix} a' & b' \\ b' & c' \end{pmatrix}$ avec $0 \leq b' < b$?

Solution.