The amount of details I write down is to be considered as sufficient to get full points.

Exercise 1. 1. Let k be a field. We consider the following subsets of the matrix ring Mat(k,3):

$$I = \left\{ \begin{pmatrix} a & 0 & 0 \\ b & 0 & 0 \\ c & 0 & 0 \end{pmatrix} \mid a, b, c \in k \right\}, \quad I = \left\{ \begin{pmatrix} a & a' & 0 \\ b & b' & 0 \\ c & c' & 0 \end{pmatrix} \mid a, b, c, a', b', c' \in k \right\}$$

Clearly they are subgroups of $\operatorname{Mat}(k,3)$ (no justification needed here). There are also left-ideals. This can be checked by an explicit calculation (which is needed) — or we can interpret $\operatorname{Mat}(k,3)$ as the ring $E := \operatorname{End}_k(k^{\oplus 3})$ of k-linear endomorphisms of $k^{\oplus 3}$ written in the standard basis (e_1, e_2, e_3) , and then $I = \{\phi \in A \mid \phi(e_3) = 0\}$ and $J = \{\phi \in A \mid \phi(e_2) = \phi(e_3) = 0\}$. Left-multiplication corresponds to post-composition, and clearly the defining properties of I and J are preserved by post-composition.

Now $I \cap J = I$, while

$$IJ \ni egin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot egin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = egin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
otin I.$$

2. Let $\xi := \text{ev}_{x=y^2} \colon F[x,y,z] = F[y,z][x] \to F[y,z]$ be the evaluation morphism given by $x \mapsto y^2$. By Exemple 1.4.10, it holds that $\ker \xi = (x-y^2)$. Then we have the sequence of isomorphisms

$$\frac{F[x,y,z]}{(x-y^2,y^3+z^4)} \cong \frac{F[x,y,z]/(x-y^2)}{(\xi(y^3+x^4))} \cong \frac{F[y,z]}{(y^3+z^4)}$$

where the first isomorphism is given by the Quotient en deux temps (Proposition 1.4.41), the second one by the First isomorphism theorem.

Exercice 2. 1. Since E is a field with q elements, the multiplicative group $E^{\times} = E \setminus \{0\}$ has q-1 elements. By Lagrange's theorem in group theory, we obtain that

$$\alpha^{q-1} = 1 \quad \forall \alpha \in E^{\times}.$$

Thus every element α of E^{\times} satisfies $\alpha^q = \alpha$. Of course this is also verified if $\alpha = 0$. Thus every element of E is a root of $x^q - x$. It follows that $f(x) := \prod_{\alpha \in E} (x - \alpha)$ divides $x^q - x$. But f and $x^q - x$ have the same degree and are both monic, thus there are equal. In particular $x^q - x$ splits completely in E. If $E' \subseteq E$ is a subfield where $x^q - x$ also splits completely, then by the UFD property of E[x] we would have $x - \alpha \in E'[x]$ for every $\alpha \in E'$, and thus E' = E. Hence E is a splitting field of $x^q - x$.

- 2. Let $E := \{ \alpha \in L \mid \alpha^q \alpha = 0 \}$ be the set of roots of $x^q x$ in L. We claim that E is a subfield. Indeed, for $\alpha, \beta \in E$:
 - (a) Clearly $0, 1 \in E$. If q is odd then $(-1)^q = -1$ so $(-1)^q (-1) = 0$. If q is even then -1 = 1. Thus $-1 \in E$.
 - (b) $(\alpha \beta)^q \alpha \beta = \alpha^q \beta^q \alpha \beta = \alpha(\beta^q \beta) = 0$ so $\alpha \beta \in E$.
 - (c) $(\alpha + \beta)^q (\alpha + \beta) = \alpha^q + \beta^q \alpha \beta = 0$ since binomial coefficients divisible by p are zero in E. Thus $\alpha + \beta \in E$.
 - (d) $-\alpha = (-1) \cdot \alpha \in E$.
 - (e) If $\alpha \neq 0$, then from $\alpha^q = \alpha$ we get $\alpha^{q-1} = 1$ and so $\alpha^{-1} = \alpha^{q-2} \in E$.

Since L is a splitting field of $x^q - x$ and $x^q - x = \prod_{\alpha \in E} (x - \alpha)$ by definition of E, we must have L = E by minimality of L. The derivative of $x^q - x$ is -1, so by Corollaire 3.4.12 the polynomial $x^q - x$ has q distinct roots in L. Thus |L| = q.

Exercice 3. 1. We have F(1) = 1 and $F(\alpha) = \alpha^2 = \alpha + 1$, thus the matrix of F is

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
.

2. We have F(1) = 1, $F(\beta) = \beta^2$ and $F(\beta^2) = \beta^4 = \beta \cdot \beta^3 = \beta^2 + \beta$, so the matrix of F is

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

Exercice 4.

Fixons quelques notations. N'importe quel élément non-nul $0 \neq f \in F[[t]]$ peut s'écrire $f = t^{\nu(f)}u_f$, où $u_f \in F[[t]]^{\times}$. En effet, si $f = \sum_i a_i t^i$, on mettra en évidence t^j avec $j = \min\{i \mid a_i \neq 0\}$. L'entier $\nu(f)$ est uniquement déterminé : car si $t^a u = t^{a+k}v$ avec $k \geq 0$ et $u, v \in F[[t]]^{\times}$, on a

$$t^a(u - t^k v) = 0$$

et comme F[[t]] est intègre, on obtient $u = t^k v$, donc k = 0.

Notons que f est inversible si et seulement si $\nu(f) = 0$, et que $\nu(fg) = \nu(f) + \nu(g)$.

On prétend que f est irréductible si et seulement si $\nu(f)=1$. Si f est irréductible, alors f n'est pas inversible, donc $\nu(f)>0$. Si $\nu(f)\geq 2$, alors $f=t\cdot t^{\nu(f)-1}u_f$ montre que f n'est pas irréductible; donc $\nu(f)=1$. Inversément, si $\nu(f)=1$ et que f=xy, on a $\nu(x)+\nu(y)=1$ et donc l'un de $\nu(x),\nu(y)$ est nul, et ainsi l'un de x,y est inversible.

Puisque t est ainsi irréductible, l'écriture $f = t^{\nu(f)}u_f$ est une décomposition en facteurs irréductibles. Concernant l'unicité, supposons que l'on puisse écrire $f = \prod_i g_i^{a_i}$, où les g_i sont irréductibles. Alors on peut écrire $g_i = tu_i$, où les u_i sont inversibles. On a alors $f = t^{\sum_i a_i} \prod_i a_i$. L'argument qui montre que $\nu(\bullet)$ est bien défini, montre que $\sum_i a_i = \nu(f)$, et il s'ensuit que $\prod_i u_i = u_f$. Ceci prouve l'unicité.

Exercice 5.

We verify that in $\mathbb{F}_3[x]$ one has $2x^2 + 1 = -(x - 1)(x + 1)$. Let $J_1 = (x - 1), J_2 = (x + 1)$. Then $J_1 \cap J_2 = J_1 J_2 = (2x^2 + 1)$, while $J_1 + J_2 = \mathbb{F}_3[x]$ since it contains the invertible element 2 = (x + 1) - (x - 1).

Hence by the Chinese Remainder theorem (Théorème 1.4.50), the map

$$\xi := (\operatorname{ev}_1, \operatorname{ev}_{-1}) \colon A = \mathbb{F}_3[x]/(2x^2+1) \longrightarrow \mathbb{F}_3[x]/(x-1) \times \mathbb{F}_3[x]/(x+1) \cong \mathbb{F}_3 \times \mathbb{F}_3$$

is a ring isomorphism.

- 1. $\xi(x^3+2) = (1^3+2, (-1)^3+2) = (0,1)$ so $\xi(x^3+2)$ is not invertible. Hence the class of x^3+2 is not invertible in A.
- 2. Since ξ is a ring isomorphism we have $A^{\times} \cong (\mathbb{F}_3 \times \mathbb{F}_3)^{\times}$. It is easy to see that

$$(\mathbb{F}_3 \times \mathbb{F}_3)^{\times} = \mathbb{F}_3^{\times} \times \mathbb{F}_3^{\times}$$

and
$$|\mathbb{F}_3^{\times}| = 2$$
, so $|A^{\times}| = 4$.

Exercice 6.

Consider the subgroup $H := \langle (123) \rangle \leq A_4$. Then by the Galois correspondence we get an intermediate extension $K \subset L^H \subset L$ such that $[L:L^H] = |H| = 3$. This implies that

$$[L^H:K] = \frac{[L:K]}{[L:L^H]} = \frac{|A_4|}{|H|} = \frac{12}{3} = 4.$$

If $\alpha \in L^H$ then we can consider α as an element of L and thus $m_{\alpha,K}$ is separable over K, since the extension $K \subset L$ is separable (Proposition 3.6.10). Hence the extension $K \subset L^H$ is separable. It is also finite, thus by the Primitive element theorem (Théorème 3.5.10) there exists $a \in L^H$ such that $L^H = K(a)$.

We have $\deg m_{a,K} = [K(a):K] = 4$. We claim that K(a) is not a splitting field of $m_{a,K}$. If it was, then by Théorème 3.6.15 the extension $K \subset K(a)$ would be Galois. By the Fundamental theorem (Théorème 3.6.18), we would obtain that H is a normal subgroup of A_4 . But it is not, for

$$(12)(34)(123)(12)(34) = (142) \notin A_4.$$

Since $m_{a,K}$ splits over L (Proposition 3.6.10), it contains a splitting field of $m_{a,K}$ over K, say $K \subset E \subset L$. We have $K(a) \subset L$, and equality does not hold since K(a) is not the splitting field of $m_{a,K}$. Therefore

$$3 = [L:K(a)] = [L:E] \underbrace{[E:K(a)]}_{>1}$$

and we deduce that [L:E]=1, which means L=E.

Therefore L is the splitting of the polynomial $m_{a,K}$, which has degree 4.