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The amount of details I write down is to be considered as sufficient to get full points.

Exercice 1. 1. Let k be a field. We consider the following subsets of the matrix ring Mat(k, 3) :

a 0 0 a a 0
I= b 0 0] |abceky, I= b v 0] |ab,cdbt,dek
c 00 c d 0

Clearly they are subgroups of Mat(k,3) (no justification needed here). There are also left-
ideals. This can be checked by an explicit calculation (which is needed) — or we can interpret
Mat(k,3) as the ring E := Endy (k®3) of k-linear endomorphisms of k%% written in the
standard basis (e1,ez,e3), and then I = {¢ € A | ¢(es) = 0} and J = {¢ € A | ¢(e2) =
¢(e3) = 0}. Left-multiplication corresponds to post-composition, and clearly the defining
properties of I and J are preserved by post-composition.

Now I'NJ =1, while

2. Let € = ev,—y2: Flx,y,2] = Fly,z][zr] — F[y,z] be the evaluation morphism given by
x + y2. By Exemple 1.4.10, it holds that ker¢ = (z — y?). Then we have the sequence of
isomorphisms

F[CC,y, Z] ~ F[I,y, Z]/(l’—y2) ~ F[yvz]

(-2 +2) T €)W
where the first isomorphism is given by the Quotient en deux temps (Proposition 1.4.41), the
second one by the First isomorphism theorem.

Exercice 2. 1. Since E is a field with ¢ elements, the multiplicative group E* = E \ {0} has
q — 1 elements. By Lagrange’s theorem in group theory, we obtain that

a?'=1 Vae EX.

Thus every element o of E* satisfies a? = «. Of course this is also verified if « = 0. Thus
every element of I is a root of 29 —x. It follows that f(z) := [[,cp(z — ) divides 29 —z. But
f and 27 — x have the same degree and are both monic, thus there are equal. In particular
x? — z splits completely in E. If E/ C E is a subfield where 27 — z also splits completely,
then by the UFD property of E[z] we would have 2 — « € E'[z] for every o € E’, and thus
E' = E. Hence FE is a splitting field of 27 — z.

2. Let E:={a € L | a? — a = 0} be the set of roots of ¢ — x in L. We claim that E is a
subfield. Indeed, for o, 8 € E :

(a) Clearly 0,1 € E. If ¢ is odd then (—1)¢ = —1 so (—1)? — (—1) = 0. If ¢ is even then
—1=1. Thus -1 € E.

(b) (aB) —af = a187 — af = a(87 — §) = 0 s0 aff € E.

(c) (a+p)—(a+p) =a?+ p?—a— F =0 since binomial coefficients divisible by p are
zero in E. Thus o+ 8 € E.

(d) —a=(-1)-a€E.

(e) If a # 0, then from ad = a we get ad" ! =1l andso ™! =42 € E.



Since L is a splitting field of 27 — x and 29 — x = [[ (2 — ) by definition of £, we must
have I, = E by minimality of L. The derivative of ¢ — x is —1, so by Corollaire 3.4.12 the
polynomial z? — x has ¢ distinct roots in L. Thus |L| = gq.

Exercice 3. 1. We have F(1) = 1 and F(a) = a? = a + 1, thus the matrix of F is

(0 1)

2. We have F/(1) =1, F(B) = % and F(B?) = B* = 8- B3 = 3% + B, so the matrix of F' is

OO =
= o O
_ =0

Exercice 4.

Fixons quelques notations. N'importe quel élément non-nul 0 # f € F[[t]] peut s’écrire f = t*(Ny £
ottus € F[[t]*. En effet, si f = 3", a;t’, on mettra en évidence t/ avec j = min{i | a; # 0}. L’entier
v(f) est uniquement déterminé : car si t%u = t**v avec k > 0 et u,v € F[[t]]X, on a

t%(u — thv) = 0

et comme F[[t]] est intégre, on obtient u = t*v, donc k = 0.

Notons que f est inversible si et seulement si v(f) = 0, et que v(fg) = v(f) + v(g).

On prétend que f est irréductible si et seulement si v(f) = 1. Si f est irréductible, alors f
n’est pas inversible, donc v(f) > 0. Si v(f) > 2, alors f =t - t”(f)_1Uf montre que f n’est pas
irréductible ; donc v(f) = 1. Inversément, si v(f) =1 et que f = zy, on a v(x) + v(y) = 1 et donc
I'un de v(x),v(y) est nul, et ainsi I'un de z,y est inversible.

Puisque ¢ est ainsi irréductible, Iécriture f = t*(Ny ¢ est une décomposition en facteurs irréduc-
tibles. Concernant I'unicité, supposons que l’on puisse écrire f =[], i, ot les g; sont irréductibles.
Alors on peut écrire g; = tu;, on les u; sont inversibles. On a alors f = ¢2-i % [L; ai. L’argument
qui montre que v(e) est bien défini, montre que ) . a; = v(f), et il s’ensuit que [[, u; = uy. Ceci
prouve l'unicité.

Exercice 5.
We verify that in F3[z] one has 222 +1 = —(x — 1)(z + 1). Let J; = (x — 1),Jo = (z + 1).
Then J; N Jo = JiJo = (222 + 1), while J; + Jo = F3[x] since it contains the invertible element
2=(z+1)—(z—1).

Hence by the Chinese Remainder theorem (Théoréme 1.4.50), the map

€= (evi,ev_1): A =TF3[z]/(222 + 1) — F3[z]/(z — 1) x F3[z]/(z + 1) = F3 x F3

is a ring isomorphism.
L &(@®+2) = (13+2,(=1)3+2) = (0,1) so &(x® +2) is not invertible. Hence the class of 23 + 2
is not invertible in A.

2. Since ¢ is a ring isomorphism we have A* 2 (F3 x F3)*. It is easy to see that
(Fg X Fg)x = F; X IF;
and |F| =2, so |[A*| =4.

Exercice 6.
Consider the subgroup H := ((123)) < A4. Then by the Galois correspondence we get an interme-
diate extension K C L C L such that [L : L] = |H| = 3. This implies that

[L: K] _]A4|_B

[LH:K]:[L:LH]_ \H| ~ 3

=4.




If o € L¥ then we can consider a as an element of L and thus M,k is separable over K, since the
extension K C L is separable (Proposition 3.6.10). Hence the extension K C L' is separable. It is
also finite, thus by the Primitive element theorem (Théoréme 3.5.10) there exists a € L¥ such that
LT = K(a).

We have degmg x = [K(a) : K| = 4. We claim that K(a) is not a splitting field of m, . If
it was, then by Théoréme 3.6.15 the extension K C K(a) would be Galois. By the Fundamental
theorem (Théoréme 3.6.18), we would obtain that H is a normal subgroup of A4. But it is not, for

(12)(34)(123)(12)(34) = (142) ¢ A,

Since mg, i splits over L (Proposition 3.6.10), it contains a splitting field of m, x over K, say
K C E C L. We have K(a) C L, and equality does not hold since K(a) is not the splitting field of
Mg - Therefore

3=[L:K(a)]=[L:E][E: K(a)]
>1

and we deduce that [L : E] = 1, which means L = E.
Therefore L is the splitting of the polynomial m,_ g, which has degree 4.



