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Exercise 3.1: Models for the permittivity of metals (5-7 min) 
For metals, the permittivity is generally a complex quantity (𝜖𝑀 = 𝜖′ + 𝑖𝜖′′). A very simple model can 

be obtained from the fourth Maxwell-equation, the modified Ampere-law and assuming that the 

relation between �⃗⃗�  and �⃗�  is described by the permittivity 𝜖: 

∇ × �⃗⃗� = 𝑗 + 𝜖𝜖0 ⋅ 𝜕�⃗� /𝜕𝑡 

a) Get rid of the time-derivative by assuming a harmonic time dependence of the form 

exp(−𝑖𝜔𝑡) and express current density with the conductivity by 𝑗 = 𝜎�⃗� . Identify the 

following relations: 

𝜖′ = 𝜖 

𝜖′′ =
𝜎

𝜔𝜖0
 

Drude described the conductivity in metals by free electrons that can follow variations of the electric 

field only up to a certain limiting frequency. Thus, the permittivity is determined by a relaxation time 

𝜏 and the plasma frequency 𝜔𝑝. 

𝜖𝑀 = 1 −
𝜔𝑝

2

𝜔(𝜔 + 𝑖/𝜏)   
 

The plasma frequency depends on the density of conduction-electrons  𝑁, their effective mass is 𝑚∗ 

and their charge 𝑒 by means of 𝜔𝑝 = √𝑒2𝑁/𝑚∗𝜖0. 

b) Separate 𝜖𝑀 into real and imaginary parts and compare the high- and low-frequency limits of 

your result for the imaginary part with the result of the quasi-static case.  

c) Find a data for a typical metal such as silver or aluminium, plot on a convenient scale and 

identify the transition between the models.  

Task: Show only the key points of the derivation, minimise the use of formulae. Focus on the 

discussion of the data.  
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Exercise 3.2: Selective emitter (5-7 min) 
In the development of c-Si solar cells, much of effort was devoted to the front contact. Highly 

diffused emitters like the phosphorous diffusion profiles shown in the course were already very early 

replaced by passivated emitters, and eventually further improved on by the introducing selective 

emitters.  

a) Design a sketch of the front region of a c-Si solar cell, showing the pn-junction between 

wafer and the diffused region, the local contacts to the silver finger metallisation, and the 

passivated region between the fingers.  

b) Using the diagram below,1 explain the working principle of a passivated emitter. Discuss 

what motivated the development of passivated emitters.  

 
c) Assume a passivated emitter with reduced surface concentration of 𝑁𝐷 = 1019 cm−3. 

Project the 𝑗0 by using an area weighted sum of 𝑗0,𝑚𝑒𝑡 and 𝑗0,𝑝𝑎𝑠𝑠, assuming that the silver 

fingers cover an area of 10%.  

d) Explain the working principle of a selective emitter that combines highly doped regions 

below the fingers and lowly doped regions with passivation. Point out the additional 

improvement that is possible.  

  

 
1 The symbols refer to experimental data digitized from King, TED (1980) and from Kerr, JAP (2001). The lines 
refer to a simple model with the geometry factor 𝐺𝐹, assuming constant donor density 𝑁𝐷 equal to the surface 
concentration. 

1017 1018 1019 1020 1021
100

101

102

103

104

105

106

S=105

S=104

S=1000

S=100

S=0

S
a
tu

ra
ti
o
n
 c

u
rr

e
n
t 
d
e
n
s
it
y
 (

fA
/c

m
2
)

P surface concentration (cm-3)

S= infinte

 S=0

 S=infinte

 passivated

 metallised



Modern Photovoltaic Technologies (PHYS 609),  Spring 2022 
Haug, Heier, Romanyuk 

Exercise 3.3: Efficiency limit of crystalline silicon (3 people, 15-20 min) 
In this group exercise for three people, you will derive the upper limit for crystalline silicon. The 

derivation splits into three tasks which you have to combine.  

Basic idea: For high efficiency we have to create a high photocurrent, but this requires a large device 

thickness because silicon is a weak absorber. Consequently, the generation would spread over a 

large volume, resulting in a low injection level and thus a low 𝑉𝑜𝑐. A thinner cell will generate a lower 

photocurrent, but it may have a higher 𝑉𝑜𝑐. Construct a (shared) spreadsheet that finds the optimum 

of this trade-off. For the presentation, focus on explaining your reasoning and show a only minimum 

of formulae.  

a) Determine the maximum photocurrent for a given cell thickness.  

Calculate the absorption with the multipass formula of Deckman, APL (1983) with the 

absorption coefficient tabulated in Green, SolMat (2008), assuming zero reflection at the 

front and zero absorption at the rear. Convolute the result with the AM1.5 spectrum 

https://rredc.nrel.gov/solar//spectra/am1.5/ASTMG173/ASTMG173.html and integrate in 

the relevant wavelength range for silicon. Repeat for different thicknesses, your result 

should look like the Lambertian shown in the course. Approximate the generation rate by a 

constant average through 𝐺 = 𝑗𝑝ℎ/𝑑. 

Task: Create a table of cell thickness 𝒅 vs. 𝑮 for your colleague working on b). 

b) Find a relation between the generation rate 𝐺 and the injection level Δ𝑛.  

Assume you receive a table in which one column contains 𝐺. Using p-type material that is 

doped with 𝑁𝐴 = 1016 cm−3, consult Richter, PRB (2012) for a parametrisation of radiative 

and Auger recombination mechanisms, e.g. their eq. (22). Noting that the generation rate is 

given by 𝐺 = Δ𝑛/𝜏(Δ𝑛) and thus essentially a function of Δ𝑛, define a procedure to find the 

inverse function Δ𝑛 = Δ𝑛(𝐺). To do so analytically, find the dominating recombination 

process and use a convenient approximation (hint: radiative and Auger processes transit 

from a constant value at low Δ𝑛 into branches proportional to Δ𝑛−1 and Δ𝑛−2 at high Δ𝑛, 

respectively.). Alternatively, if you prefer working with the general description, you may 

define a look-up table.  

Task: Extend the table with a column that contains 𝚫𝒏(𝑮) for your colleague working on 

c).  

c) Find the limiting efficiency. 

Assume you receive a table in which one column contains Δ𝑛. Find the implied 𝑉𝑜𝑐 which is 

equal to the quasi-Fermi level splitting 𝑖𝑉𝑜𝑐 =  Δ𝑄𝐹𝐿 = 𝑘𝑇/𝑞 ln(𝑛𝑝/𝑛𝑖
2). Use the relations 

𝑛 = 𝑛0 + Δ𝑛 = 𝑛𝑖
2/𝑁𝐴 and 𝑝 = 𝑝0 + Δ𝑛 = 𝑁𝐴 + Δ𝑛 with the doping concentration 𝑁𝐴 given 

in part b). Next, consult Green, Solar Energy (1982) to relates the fill factor to the 𝑉𝑜𝑐. In line 

with finding an upper limit for the efficiency, you may assume zero series-resistance and 

infinite parallel-resistance.  

Task: Extend the table by three more columns, containing 𝒊𝑽𝒐𝒄, the fill factor, and finally 

the projection of the efficiency given by 𝜼 = 𝒋𝒑𝒉 ⋅ 𝑽𝒐𝒄 ⋅ 𝑭𝑭𝟎. 

All: Plot the efficiency 𝜂 vs. the device thickness 𝑑 and discuss the result.  

  

https://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html
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Exercise 3.4: Schottky barrier (5-7 min) 
The front contact in hetero-junction solar-cells is established between a highly n-doped ITO layer 

and a p-doped layer. In the depletion approximation, we assume that mobile charges recombine 

across the interface, leaving behind ionized cores. The depletion-regions are thus charged positively 

in the n-type ITO and negatively in the p-doped layer.  

 

In the p-doped layer, we assume that the depletion zone extends over a width 𝑑 that is less than the 

film thickness. Throughout this depleted region, we may assume a negative charge density equal to 

the acceptor concentration 𝑁𝐴. Since the ITO is highly doped, its depletion zone is very narrow and 

can be treated like a surface charge. The result is a one-sided p-n junction, similar to a Schottky-

junction. 

a) Applying the 1D Poission-equation 𝑑2𝜙/ 𝑑𝑥2 = 𝑞𝑁𝐴/𝜖𝜖0, you can find a relation for the 

electric field 𝐸 by recognizing that 𝑑Φ/𝑑𝑥 = −𝐸. Integrate once and evaluate the boundary 

condition that the field vanishes at the edge of the depletion zone (𝐸(𝑑) = 0).  

b) Find the electrostatic potential by carrying out a second integration. Determine the width of 

the depletion layer for a known height of the potential barrier 𝑉𝑏.  

c) Find experimental data for barrier heights between metals and silicon, e.g. Schroder, TED 

(1984). Compare with theoretical values based on the work function.  

Task: Show only the key results of the derivation with a minimum of formulae 
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