Real Time Embedded Systems

"System On Programmable Chip"

NIOSII Architecture & Interrupt services
Some Avalon Peripherals

René Beuchat

Laboratoire d'Architecture des Processeurs

rene.beuchat@epfl.ch

03/2007-02/2020 5

EPFL/LAP/RB -E2020

http://moodle.msengineering.ch/course/view.php?id=12

NIOS I

 General Features
ded system NIOSII/Avalon Architecture

* Embec
e NIOS I
e NIOS I

Core Architecture

Memory Architecture

* Programming Model Reqgisters
* Exceptions Model

* |nstructions

* Custom Instructions

03/2007-02/2020

3
EPFL/LAP/RB -E2020

[—

PrL

NIOS I

 Some Avalon Peripherals:
»>PIO
»Timer
»Performance Counter

03/2007-02/2020 4

EPFL/LAP/RB -E2020

[—

PrL

NIOS Il - General Features

The Nios Il processor is a general-purpose RISC processor

core, providing:

Full 32-bit instruction set, data path, and address space
32 general-purpose registers

32 external interrupt sources

Single-instruction 32 x 32 multiply and divide producing
a 32-bit result

Dedicated instructions for computing 64-bit and 128-bit
products of multiplication

Floating-point instructions for single-precision floating-
point operations

Single-instruction barrel shifter

03/2007-02/2020

; EPFL

EPFL/LAP/RB -E2020

NIOS Il - General Features

« Access to a variety of on-chip peripherals, and interfaces
to off-chip memories and peripherals

« Hardware-assisted debug module enabling processor

start, stop, step and trace under integrated development
environment (IDE) control

« Software development environment based on the GNU
C/C++ tool chain and Eclipse IDE

 Integration with Altera's SignalTap® Il logic analyzer,
enabling real-time analysis of instructions and data long
with other signals in the FPGA design

* Instruction set architecture (ISA) compatible across all
Nios Il processor systems

03/2007-02/2020

° cPrL

EPFL/LAP/RB -E2020

NIOS Il - General Features

A Nios Il processor system Is equivalent to a
microcontroller or “computer on a chip” that
iIncludes a CPU and a combination of
peripherals and memory on a single chip.

* The term “Nios Il processor system” refers to a
Nios Il processor core, a set of on-chip
peripherals, on chip memory, and interfaces to
off-chip memory, all implemented on a single
Altera® chip.

* Like a microcontroller family, all Nios I |
processor systems use a consistent instruction
set and programming model.

03/2007-02/2020 . ———
= P ' L

EPFL/LAP/RB -E2020

NIOS Il -

Embedded system NIOSII/Avalon Architecture

JTAG connection
to software debugger

o=
| O
JTAG
— Debug Module Vi
Dhta 4 p TXD
() . ol «— RXD
Nios Il
Processor Core Ikt
= Timer1
soraM || \L
Memory .
= (= Timer2
SDRAM) 3 b
> » T
Controller -
= =P LCD Display Driver |«mp» et
(% Screen
=
On-Chip ROM =g ©
Flash § 4=p General-Purpose /O (- LEBHOH?’
Memory o Btle
Tristate bridge to Ethernet
= . ok <=9 Ethernet Intefface |y MAC/PHY
SRAM
CompactFlash Compact
Memory j Interface =" Flash
. >
N

03/2007-02/2020 3
cPrL

EPFL/LAP/RB -E2020

NIOS Il -

Embedded system NIOSII/Avalon Architecture

Implementation variables generally fit
one of three trade-off patterns:

*more-or-less of a feature;

*Inclusion-or-exclusion of a feature;

Hardware implementation or software
emulation of a feature.

03/2007-02/2020 9

EPFL/LAP/RB -E2020

[—

PrL

NIOS Il -

Embedded system NIOSII/Avalon Architecture

An example of each trade-off follows:

* More or less of a feature —For example, to fine-tune performance,
you can increase or decrease the amount of instruction cache
memory. A larger cache increases execution speed of large
programs, while a smaller cache conserves on-chip memory
resources.

* Inclusion or exclusion of a feature —For example, to reduce cost,
you can choose to omit the JTAG debug module. This decision
conserves onchip logic and memory resources, but it eliminates the
ability to use a software debugger to debug applications.

« Hardware implementation or software emulation —For example,
In control applications that rarely perform complex arithmetic, you can
choose for the division instruction to be emulated in software.
Removing the divide hardware conserves on-chip resources but
Increases the execution time of division operations.

03/2007-02/2020
10

EPFL/LAP/RB -E2020

mnm
v
r

NIOS Il — core Architecture

Nios Il Processor Core

Tightly Coupled
Instruction Memory

Tightly Coupled
Instruction Memory

reset
clock > Program
cpu_resetrequest Congoller General
cpu_resettaken Purpose
< Addre?fs Reaqisters
: JTAG Sl e el 0 to r31 Instruction
interface JTAG Carhe
to software - Debug Module
debugger Exception
Controller
Control
irg[31..0] Interrupt Registers
Controller ctl0 to ctls
Custom Custom Arithmetic Data
O | Instruction Logic Unit Cache
Signals Logic

i |nstruction Bus

il Diata Bus

Tightly Coupled
Data Memory

Tightly Coupled
Data Memory

03/2007-02/2020

EPFL/LAP/RB -E2020

m

NIOS Il — core Architecture

The Nios Il architecture defines the following user-visible
functional units:

» Register file, r0..r31, ctlO..ctl5

» Arithmetic logic unit

» Interface to custom instruction logic

» NO FLAGS (N, Z, V, C) available

» Exception controller

» Interrupt controller

» Instruction bus

» Data bus

» Instruction and data cache memories

» Tightly coupled memory interfaces for instructions and data

» JTAG debug module

03/2007-02/2020 12 -
=
EPFL/LAP/RB -E2020

NIOS Il -

Programming Model Registers

Register | Name Function Register Name Function
r0 Zero 0x00000000 rlé
rl at Assembler Temporary rl7
r2 Return Value rl8
r3 Return Value rl9
r4 Register Arguments r20
r5 Register Arguments r2l
ré Register Arguments r22
r7 Register Arguments r23
r8 Caller-Saved Register r24 et Exception Temporary
r9 Caller-Saved Register r25 bt Breakpoint Temporary (1)
rl0 Caller-Saved Register r26 gp Global Pointer
ril Caller-Saved Register r27 sp Stack Pointer
rl2 Caller-Saved Register r28 fp Frame Pointer
rl3 Caller-Saved Register r29 ea Exception Return Address
rl4 Caller-Saved Register r30 ba Breakpoint Return Address (7)
rls Caller-Saved Register r3l ra Return Address
Notes to Table 3-1:
(1) This register is used exclusively by the JTAG debug module.

03/2007-02/2020

13

EPFL/LAP/RB -E2020

m
1

NIOS Il -

Programming Model Registers : ctl0..5

Control registers are accessed differently than the
general-purpose registers. The special instructions
rdctl and wrctl provide the only means to read
and write to the control registers.

Register Name 31...1 0
ctlo status Reserved PIE
ctll estatus Reserved EPIE
ctl2 bstatus Reserved BPIE
ctl3 ienable Interrupt-enable bits
ctld ipending Pending-interrupt bits
ctls cpuid Unique processor identifier

03/2007-02/2020

14 EB‘I

EPFL/LAP/RB -E2020

NIOS Il — Interruptions (hardware) at processor level

Relationship Between ienable, ipending, PIE, and
Interrupt Generation

31 0
(ienable Register >
\/

m m m m

= = = =

= = g =

x 2 2B

m m m m

External hardware @ na - o
interrupt request — — — _
inputs irq[31..0] -32 < o g

o

g -g9u9.

Gpending Hegisteﬁ

\/

FEONIAN3dI
CONIONAdI
L1ONION3dI

0 —Ge>

>

Inter. .- .. break
»
ctll ct|2

03/2007-02/2020

Generate
Hardware
Interrupt

15 EPFL/LAP/RB -E2020

0ONIAN3dI

ctl3

ctl4

m
1

NIOS Il -

Programming Model Registers : ctlO

status (ctl0)

» The value in the status register controls the state
of the Nios Il processor. All status bits are cleared

after processor reset.
» PIE: Processor Interrupt Enable bit

PIE bit

Description

PIE is the processor interrupt-enable bit. When PIE is 0, external interrupts are ignored. When
PIE is 1, external interrupts can be taken, depending on the value of the ienalble register.

03/2007-02/2020

16
EPFL/LAP/RB -E2020

=L

NIOS Il -

Programming Model Registers : ctll

estatus (ctll)

» The estatus register holds a saved copy of the
status register during exception processing. One bit
Is defined: EPIE. This is the saved values of PIE.

» The exception handler can examine estatus to
determine the preexception status of the
processor. When returning from an interrupt, the
eret instruction causes the processor to copy
estatus back to status, restoring the pre-exception
value of status.

03/2007-02/2020 .
- e
= BI- L

EPFL/LAP/RB -E2020

NIOS Il -

Programming Model Registers : ctl2

bstatus (ctl2)

» The bstatus register holds a saved copy of the
status register during debug break processing.
One bit is defined: BPIE. This is the saved value of
PIE.

» When a break occurs, the value of the status
register is copied into bstatus. Using bstatus, the
status register can be restored to the value it had
prior to the break.

EPFL/LAP/RB -E2020

NIOS Il -

Programming Model Registers : ctl3

lenable (ctl3)

» The ienable register controls the handling of
external hardware interrupts.

» Each bit of the ienable register corresponds to one
of the interrupt inputs, irq0 through irg31.

» A bit value of 1 means that the corresponding
Interrupt is enabled; 0 = interrupt is disabled.

L

EPFL/LAP/RB -E2020

NIOS Il -

Programming Model Registers : ctl4

Ipending (ctl4)
» The value of the ipending register indicates which
Interrupts are pending.

» A value of 1 in bit n means that the corresponding
Irgn input is asserted, and that the corresponding
Interrupt is enabled in the ienable register.

» The effect of writing a value to the ipending
register is undefined.

03/2007-02/2020
20 - B)l: L
= I=Yi

EPFL/LAP/RB -E2020

NIOS Il -

Programming Model Registers : ctl5

cpuid (ctl5)
» The cpuid register holds a static value that

uniquely identifies the processor in a multi-
processor system.

» The cpuid value is determined at system
generation time.

» Writing to the cpuid register has no effect.

03/2007-02/2020
21

EPFL/LAP/RB -E2020

[—

Pi-L

NIOS Il — Exceptions Model

Exception Controller

 The Nios Il architecture provides a simple, non-
vectored exception

 controller to handle all exception types. All
exceptions, including hardware interrupts, cause
the processor to transfer execution to a single
exception address. The exception handler at
this address determines the cause of the
exception and dispatches an appropriate
exception routine.

* The exception address Is specified at system
generation time.

03/2007-02/2020

= cPrL

EPFL/LAP/RB -E2020

NIOS Il — Exceptions Model

Exception Types

* Nios Il exceptions fall into the following
categories:
m Hardware interrupt
m Software trap
m Unimplemented instruction
m Other

03/2007-02/2020
23

EPFL/LAP/RB -E2020

[—

PrL

NIOS Il — Interruptions (hardware)

Integral Interrupt Controller

* The Nios Il architecture supports 32 external
hardware interrupts.

* The processor core has 32 level-sensitive
Interrupt request (IRQ) inputs, irg0 through
Irg31, providing a unigue input for each interrupt
source.

* |IRQ priority is determined by software. The
architecture supports nested interrupts.

03/2007-02/2020

= cPrL

EPFL/LAP/RB -E2020

NIOS Il — Interruptions (hardware)

* The software can enable and disable any interrupt
source individually through the ienable control register,
which contains an interrupt-enable bit for each of the
IRQ inputs.

« Software can enable and disable interrupts globally
using the PIE bit of the status control register.

« A hardware interrupt is generated if and only if all three
of these conditions are true:
» The PIE bit of the status register (ctl0) is 1
» An interrupt-request input, irg<n>, is asserted
» The corresponding bit n of the ienable register (ctl3) is 1

« The interrupt handler has to read the ipendig (ctl4)
register to determine the interrupting source

03/2007-02/2020

= cPrL

EPFL/LAP/RB -E2020

NIOS Il — Interruptions (hardware)

Interrupt Vector Custom Instruction
—->0ODbsolete,
->now VIC (Vector Interrupt Controller)

* The Nios Il processor core offers an
Interrupt vector custom instruction which
accelerates interrupt vector dispatch.

* Include this custom instruction to reduce
program'’s interrupt latency.

03/2007-02/2020

= cPrL

EPFL/LAP/RB -E2020

NIOS Il — Interruptions (hardware)

* The interrupt vector custom instruction is based
on a priority encoder with one input for each
iInterrupt connected to the Nios Il processor.

* The cost of the interrupt vector custom
Instruction depends on the number of interrupts
connected to the Nios Il processor.

* The worse case is a system with 32 interrupts. In
this case, the interrupt vector custom instruction
consumes about 50 logic elements (LES).

03/2007-02/2020
21 = P = L
=

EPFL/LAP/RB -E2020

NIOS Il — Interruptions (hardware), ISR

« A software exception routine determines which
of the pending interrupts has the highest priority,
and then transfers control to the appropriate
Interrupt Service Routine (ISR).

* The ISR must stop the interrupt from being
visible (either by clearing it at the source or

masking it using ienable) before returning and/or
before re-enabling PIE.

 The ISR must also save estatus (ctll) and ea
(exception return address, r29) before re-
enabling PIE.

03/2007-02/2020

= cPrL

EPFL/LAP/RB -E2020

NIOS Il — Exceptions

* Interrupts can be re-enabled by writing 1

to the PIE bit, thereby allowing the current
ISR to be interrupted.

 Typically, the exception routine adjusts
lenable so that IRQs of equal or lower

priority are disabled before reenabling
Interrupts.

03/2007-02/2020
29

EPFL/LAP/RB -E2020

M
T

1

NIOS Il — Exceptions

Software Trap

* When a program issues the trap
Instruction, It generates a software trap
exception. A program typically issues a
software trap when the program requires
servicing by the operating system.

* The exception handler for the operating
system determines the reason for the trap
and responds appropriately.

03/2007-02/2020
30

EPFL/LAP/RB -E2020

mnm
v
r

NIOS Il — Exceptions

Unimplemented Instruction

* When the processor issues a valid instruction
that is not implemented in hardware, an
unimplemented instruction exception is
generated.

* The exception handler determines which
Instruction generated the exception.

* If the Instruction is not implemented in hardware,
control Is passed to an exception routine that
emulates the operation in software.

03/2007-02/2020

> cPrL

EPFL/LAP/RB -E2020

NIOS Il — Exceptions

Other Exceptions

« The previous sections describe all of the exception types
defined by the Nios Il architecture at the time of
publishing. However, some processor implementations
might generate exceptions that do not fall into the above
categories.

* For example, a future implementation might provide a
memory management unit (MMU) that generates access
violation exceptions. Therefore, a robust exception
handler should provide a safe response (such as issuing
a warning) in the event that it cannot exactly identify the
cause of an exception.

03/2007-02/2020
32 = P = L
=

EPFL/LAP/RB -E2020

NIOS Il — Exceptions

Determining the Cause of Exceptions
* The exception handler must determine the

cause

of each exception and then transfer

control to an appropriate exception
routine.

 Remember: There is only one address for

Interru
NIOS

ots handler for all exceptions for the
| processor - often the case for

RISC

DIOCESSOIS.

03/2007-02/2020

33
EPFL/LAP/RB -E2020

mnm
v
r

Enter
Exception Handler

Process hardware
interrupt

Process
software trap

Process
unimplemented
instuction

Other exception

03/2007-02/2020

> =PrL

EPFL/LAP/RB -E2020

NIOS Il — Exceptions handling

« If the EPIE bit of the estatus register (ctll) is 1 and the value of

the ipending regqister (ctl4) is non-zero, the exception was caused
by an external hardware interrupt.

« Otherwise, the exception might be caused by a software trap or
an unimplemented instruction. To distinguish between software
traps and unimplemented instructions, read the instruction at
address ea—4 (the Nios Il data master must have access to the
code memory to read this address). If the instruction is trap, the
exception is a software trap. If the instruction at address ea-4 is
one of the instructions that can be implemented in software, the
exception was caused by an unimplemented instruction.

* If none of the above conditions apply, the exception type is
unrecognized, and the exception handler should report the
condition.

03/2007-02/2020

> =L

EPFL/LAP/RB -E2020

NIOS Il — Exceptions handling

Nested Exceptions

« EXxception routines must take special
precautions before:

» Issuing a trap instruction
» Issuing an unimplemented instruction

» Re-enabling hardware interrupts

« Before allowing any of these actions, the
exception routine must save estatus (ctll) and
ea (r29), so that they can be restored properly
before returning.

03/2007-02/2020 -
ol ~ Lo
cB-L

EPFL/LAP/RB -E2020

NIOS Il — Exceptions handling

Returning from an Exception

« The eret instruction is used to resume execution from
the pre-exception address. Except for the et register
(r24), the exception routine must restore any registers
modified during exception processing before returning.

« When executing the eret instruction, the processor:
« 1. Copies the contents of estatus (ctll) to status (ctlO)

« 2. Transfers program execution to the address in the
ea register (r29)

03/2007-02/2020

> =L

EPFL/LAP/RB -E2020

NIOS Il — Exceptions handling

Return Address

« The return address requires some consideration when returning
from exception processing routines. After an exception occurs, ea
contains the address of the instruction after the point where the
exception was generated.

* When returning from software trap and unimplemented instruction
exceptions, execution must resume from the instruction following
the software trap or unimplemented instruction. Therefore, ea
contains the correct return address.

« On the other hand, hardware interrupt exceptions must resume
execution from the interrupted instruction itself. In this case, the
exception handler must subtract 4 from ea to point to the
Interrupted instruction.

03/2007-02/2020

> ckRa-L

EPFL/LAP/RB -E2020

NIOSII — ISR Interrupt Service Routine performances

« Performance related to ISR (Interrupt Service Routine)
processing. The following three key metrics determine
ISR performance:

 Interrupt latency —the time from when an interrupt is
first generated to when the processor runs the first
Instruction at the exception address.

* Interrupt response time —the time from when an
Interrupt is first generated to when the processor runs
the first instruction in the ISR.

* Interrupt recovery time —the time taken from the last
Instruction in the ISR to return to normal processing.

03/2007-02/2020
39 = P = L
=

EPFL/LAP/RB -E2020

NIOSII - Performance for ISRs

« Because the Nios Il processor is highly configurable,
there is no single typical number for each metric.

« This section provides data points for each of the Nios Il
cores under the following assumptions:

« All code and data are stored in on-chip memory.
* The ISR code does not reside in the instruction cache.

« The software under test is based on the Altera-provided
HAL exception handler system.

* The code is compiled using compiler optimization level
"—03", or higher optimization.

03/2007-02/2020

0 cPrL

EPFL/LAP/RB -E2020

NIOS Il -

Embedded system NIOSII/Avalon Architecture

JTAG connection
to software debugger

o=
| O
JTAG
— Debug Module Vi
Dhta 4 p TXD
() . ol «— RXD
Nios Il
Processor Core Ikt
= Timer1
soraM || \L
Memory .
= (= Timer2
SDRAM) 3 b
> » T
Controller -
= =P LCD Display Driver |«mp» et
(% Screen
=
On-Chip ROM =g ©
Flash § 4=p General-Purpose /O (- LEBHOH?’
Memory o Btle
Tristate bridge to Ethernet
= . ok <=9 Ethernet Intefface |y MAC/PHY
SRAM
CompactFlash Compact
Memory j Interface =" Flash
. >
N

03/2007-02/2020

41
cPrL
EPFL/LAP/RB -E2020

NIOS Il — core Architecture

reset

Nios Il Processor Core

clock

cpu_resetrequest

< cpu_resettaken

JTAG
interface
to software

-

debugger

Tightly Coupled
Instruction Memory

Tightly Coupled
Instruction Memory

Custom

R
Signals

> Program
Congoller Cararil
Purpose
Addre?fs Reaqisters
JTAG Generalion r0 to r31 Instruction
Debug Module Cache
Exception
Controller
Control
) Interrupt Registers
Controller ctl0 to ctls
Custom Arithmetic Data
Instruction Logic Unit Cache
Logic

i |nstruction Bus

il Diata Bus

Tightly Coupled
Data Memory

Tightly Coupled
Data Memory

03/2007-02/2020

EPFL/LAP/RB -E2020

NIOS Il — Interruptions (hardware) at processor level

Relationship Between ienable, ipending, PIE, and
Interrupt Generation

31 0
(ienable Register >
\/

m m m m

= = = =

= = g =

x 2 2B

m m m m

External hardware @ na - o
interrupt request — — — _
inputs irq[31..0] -32 < o g

o

g -g9u9.

Gpending Hegisteﬁ

\/

FEONIAN3dI
CONIONAdI
L1ONION3dI

0 —Ge>

>

Inter. .- .. break
»
ctll ct|2

03/2007-02/2020

Generate
Hardware
Interrupt

43 EPFL/LAP/RB -E2020

0ONIAN3dI

ctl3

ctl4

m
1

Enter
Exception Handler

Process hardware
interrupt

Process
software trap

Process
unimplemented
instuction

Other exception

03/2007-02/2020

44 =PrL

EPFL/LAP/RB -E2020

NIOSII - Performance for ISRs

Running progr.

Running progr.

/
Main ISR (— \
N W—
ISR _n — -
Nb Clk
Core Latency Response Time Recovery Time
Nios 11/f 10 105 62
Nios Il/s 10 128 130
Nios Il/e 15 485 222
03/206+62/2626

45
EPFL/LAP/RB -E2020

NIOSII - HAL API for ISRs (Legacy call)

H ad
H ad
H ad
H ad
H ad
H ad
H A
H A

t iro
t iro
t iro
t iro
t iro
t iro
t iro

t iro

_register()
_disable()
_enable()
_disable_all()
_enable_all()
_Interruptible()
__non_interruptible()
_enabled()

03/2007-02/2020

46
EPFL/LAP/RB -E2020

[—

PrL

NIOSII - ISRs

An ISR has to be provided for every interrupt source
enabled

The prototype for the ISR function is:

void isr (void* context, alt u32 id);

It will be saved in an array of ISR with the associated
context, at id index

context is a pointer to something useful for the
associated ISR (pointer on a struct)

Id is the irg number

03/2007-02/2020

47
EPFL/LAP/RB -E2020

[—

PrL

NIOSII - HAL API for ISRs

* ISRs run in a restricted environment. A large number of
the HAL API calls are not available from ISRs. For
example, accesses to the HAL file system are not
permitted.

« As a general rule, when writing your own ISR, never
iInclude function calls that can block waiting for an
Interrupt.

 In particular, do not call printf() from within an ISR
unless you are certain that stdout is mapped to a non-
Interrupt-based device driver. Otherwise, printf() can
deadlock the system, waiting for an interrupt that never
occurs because interrupts are disabled.

03/2007-02/2020 i
-ree
= P ' L

EPFL/LAP/RB -E2020

NIOSII - ISRs

* ISr Is a pointer to the function that is called in response to
IRQ number id. The two input arguments provided to this
function are the context pointer and id. Registering a null
pointer for isr results in the interrupt being disabled.

 The HAL registers the ISR by the storing the function
pointer, isr, in a lookup table. The return code from
alt_irq_regqister() is zero if the function succeeded, and
nonzero If it failed.

 If the HAL registers the ISR successfully, the associated
Nios Il interrupt (as defined by id) is locally enabled on
return from alt_irg_register().

« Hardware-specific initialization might also be required.

* When a specific IRQ occurs, the HAL looks up the IRQ in
the lookup table and dispatches the registered ISR.

03/2007-02/2020
49 = P = L
=

EPFL/LAP/RB -E2020

NIOSI| — ISRs (alt_irg_table.h)

From the IRQ_n, the main ISR

dispatcher has to founpl the partigglar | d *h an d | er *C on text
ISR to run and to provide a specific
context pointer.
This information is initialize in an N N
array of structure: O IS R_O COnteXt_O
struct ALT_IRQ_HANDLER { A A
void (*handler)(void*, alt_u32); 1 ISR_]— ConteXt_l
void *context;
} alt_irq[ALT_NIRQ]; A A
2 ISR 2 context 2
Handler is a pointer to the function to
call by the main ISR handler
The corresponding ISR will receive N SR_ . \CO nteXt_. .
context and id value
ALT_NIRQ-1 | "SR _n | “context_n
03/2007-02/2020 50 R
= B)l'

EPFL/LAP/RB -E2020

NIOSII — Registering an ISR

Before the software can use an ISR, it must be registered it by calling

int alt_irq_register (
alt_u32 id,
void* context,
void (*isr)(void*, alt_u32));

The prototype has the following parameters:

m id is the hardware interrupt number for the device, as defined Iin
system.h. Interrupt priority corresponds inversely to the IRQ
number. Therefore, IRQO represents the highest priority interrupt
and IRQ31 is the lowest.

m context is a pointer used to pass context-specific information to the
ISR, and can point to any ISR-specific information. The context
value is opaque to the HAL; it is provided entirely for the benefit of
the user-defined ISR.

03/2007-02/2020
51

EPFL/LAP/RB -E2020

mnm
v
r

NIOSII - Registering an ISR (source code)

int alt_irq_register (alt_u32 id,
void* context,
void (*handler)(void*, alt_u32)){
int rc = -EINVAL;
alt_irg_context status;

if (id < ALT_NIRQ) {

/* interrupts are disabled while the handler tables are updated to ensure that an
interrupt doesn't occur while the tables are in an inconsistent state.

*/
status = alt_irq_disable_all ();

alt_irg[id].handler = handler;
alt_irg[id].context = context;

rc = (handler) ? alt_irg_enable (id): alt_irq_disable (id);
alt_irg_enable_all(status);

}

return rc;

}

03/2007-02/2020
52

EPFL/LAP/RB -E2020

m
1

NIOSII — Enable/disable interrupts

 The HAL provides functions to allow a program to disable interrupts
for certain sections of code, and re-enable them later.

- alt_irq_disable() and alt_irq_enable() allow to disable and enable
iIndividual interrupts.

- alt_irq_disable_all() disables all interrupts, and returns a context
value. To re-enable interrupts, call alt_irg_enable_all() and pass in
the context parameter. In this way, interrupts are returned to their
state prior to the call to alt_irg_disable_all().

- alt_irq_enabled() returns nonzero if interrupts are enabled, allowing
a program to check on the status of interrupts.

« Disable interrupts for as short atime as possible.
Maximum interrupt latency increases with the
amount of time interrupts are disabled.

03/2007-02/2020
53

EPFL/LAP/RB -E2020

mnm
T
r

NIOSII — Enable/disable interrupts

« Intalt irg_disable (alt_u32 id),
 Intalt_irg_enable (alt_ u32 id);
» 1d: individual IRQ.
» The return value is zero.

 Intalt _irg_enabled (void)

» Returns zero If interrupts are disabled, and non-zero
otherwise.

03/2007-02/2020
54 -

[
EPFL/LAP/RB -E2020

PrL

NIOSII — Enable/disable interrupts

 alt_irg_context alt_irq_disable_all (void);
« void alt_irq_enable_all (alt_irg_context context);

» The alt_irq_enable_all() function enables all interrupts
that were previously disabled by alt_irq_disable all().

» The input argument, context, is the value returned by
a previous call to alt_irg_disable all(). Using context
allows nested calls to alt_irg_disable_all() and
alt_irg_enable_all().

» As a result, alt_irg_enable_all() does not necessarily
enable all interrupts such as interrupts explicitly
disabled by alt_irq_disable().

03/2007-02/2020
55 = P = L
=

EPFL/LAP/RB -E2020

NIOSII — ISR work

Yes

03/2007-02/2020

Hardware
inferrupts
pending?

enter

l

Save context

Hardware

interrupts
enabled?

4

Handle

hardware interrupts

Y

Handle
software exception

ISR

ISR 4

ISR 34

56

>

Restore context

i

exit

EPFL/LAP/RB -E2020

cB-L

enter

Yes

exit

03/2007-02/2020

57
EPFL/LAP/RB -E2020

=Pl

NIOSI| — main Hardware Interrupt Handler

active = alt_irq_pending ();
do {
| = 0;
mask = 1; /* Test each bit in turn looking for an active interrupt. Once

one is found, the interrupt handler asigned by a call to alt_irq_register() is
called to clear the interrupt condition. */

do {
if (active & mask) {
alt_irq[i].handler(alt_irq[i].context, i);
break;
}
mask <<= 1;
|++:
} while (1);
active = alt_irq_pending ();
} while (active);

03/2007-02/2020 53 -
= By
EPFL/LAP/RB -E2020

NIOSI| — Software Exception Handler

: Optional i
| Unimplemented

I Instruction

[
[
[
[
I Logic . '
[Exception at [
' unimplemented '
: instruction? :
[[
: Emulate :
[unimplemented P [
| instruction |
[[
o o o] L _
e R I
Optional
trap logic

Exception
at trap
instruction

Infinite
loop

e e e

03/2007-02/2020 59
=Bl

EPFL/LAP/RB -E2020

NIOSI| — Software Exception Handler

* An exception routine must never execute an
unimplemented instruction. The HAL exception

handling system does not support nested
software exceptions.

03/2007-02/2020
60

EPFL/LAP/RB -E2020

= et

NIOSII — Software Exception Handler

Source files:

Version Quartus Il 12.0:
C:\altera\10.1\ip\altera\nios2_ip\altera_nios2\HAL\src
C:\altera\12.0\ip\altera\nios2_ip\altera_nios2\HAL\src

03/2007-02/2020
61

EPFL/LAP/RB -E2020

m
1

NIOSII — Software Exception Handler

Source files (depend on the system version and Interrupt Controller
used (lIC: Internal, EIC: External)):

« alt_exception_entry.S

« alt exception_muldiv.S

« alt_exception_trap.S

« alt irg_entry.S

« alt irg_handler.c

« alt_software_exception.S

« alt irg_vars.c

« alt _irg_register.c

« alt iic.c

« alt_instruction_exception_entry.c

03/2007-02/2020
62

EPFL/LAP/RB -E2020

m
1

NIOSII — Software Exception Handler

Header files:

alt_irg.h
alt_irgq_entry.h

Assembly files:

alt_irq_entry.S
alt_exception_trap.S
alt_exception_entry.S
alt_exception_muldiv.S

Are written in NIOSII assembly language, as they have to

manipulate ctl registers and save explicitly registers on/from the

stack
Provide eret instruction
Call alt_irg_handler.c written in C

03/2007-02/2020

63
EPFL/LAP/RB -E2020

m
1

NIOSII| — Performance

« At laboratory, design a system allowing to measure the latency from Timer IRQ
to ISR entry

To access io interface, use the macro IORD(), IOWR() provided in
C:\altera\10.1\ip\nios2_ip\altera_nios2\HAL\inc\io.h

#define __10_CALC_ADDRESS_NATIVE(BASE, REGNUM) \
((void *)(((alt_u8*)BASE) + ((REGNUM) * (SYSTEM_BUS_WIDTH/8))))

#define IORD(BASE, REGNUM) \
__builtin_ldwio (__10_CALC_ADDRESS_NATIVE ((BASE), (REGNUM)))

#define IOWR(BASE, REGNUM, DATA) \
__builtin_stwio (__10_CALC_ADDRESS_NATIVE ((BASE), (REGNUM)), DATA))

03/2007-02/2020
64

EPFL/LAP/RB -E2020

mnm
v
r

NIOS Il - Instructions

 Load and store instructions

Instruction Description
1dw The 1dw and stw instructions load and store 32-bit data words from/to memory. The effective
stw address is the sum of a register's contents and a signed immediate value contained in the

instruction. Memory transfers can be cached or buffered to improve program performance. This
caching and buffering might cause memory cycles to occur out of order, and caching might
suppress some cycles entirely.

Data transfers for I/O peripherals should use 1dwio and stwio.

ldwio ldwio and stwio instructions load and store 32-bit data words from/to peripherals without
stwio caching and buffering. Access cycles for 1ldwio and stwio instructions are guaranteed to occur
in instruction order and are never suppressed.

03/2007-02/2020
65 - E_)I: L
= 1°°0

EPFL/LAP/RB -E2020

NIOS Il - Instructions

* Load and store instructions, byte, half-word
« Zero (unsigned) or sign extend data = 32 bits

Instruction Description

1db 1db, 1dbu, 1dh and 1dhu load a byte or half-word from memory to a register. 1db and 1dh
ldbu sign-extend the value to 32 bits, and 1dbu and 1dhu zero-extend the value to 32 bits.

stb stb and sth store byte and half-word values, respectively.

1dh Memory accesses can be cached or buffered to improve performance. To transfer data to 1/O
1dhu peripherals, use the “io” versions of the instructions, described below.

sth

ldbio These operations load/store byte and half-word data from/to peripherals without caching or
ldbuio buffering.

stbio

ldhio

ldhuio

sthio

03/2007-02/2020 66 -
= et
EPFL/LAP/RB -E2020

NIOS Il - Instructions

 ALU Instructions

Instruction Description
and These are the standard 32-bit logical operations. These operations take two register values and
or combine them bit-wise to form a result for a third register.
XOr
nor
andi These operations are immediate versions of the and, or, and xor instructions. The 16-bit
ori immediate value is zero-extended to 32 bits, and then combined with a register value to form the
xori result.
andhi In these versions of and, or, and xor, the 16-bit immediate value is shifted logically left by 16
orhi bits to form a 32-bit operand. Zeroes are shifted in from the right.
xorhi
add These are the standard 32-bit arithmetic operations. These operations take two registers as input
sub and store the result in a third register.
mul
diwv
diwvu
addi These instructions are immediate versions of the add, sub, and mul instructions. The
subi instruction word includes a 16-bit signed value.
muli
mulxss These instructions provide access to the upper 32 bits of a 32x32 multiplication operation. Choose
mulxuu the appropriate instruction depending on whether the operands should be treated as signed or

unsigned values. It is not necessary to precede these instructions with a mul.

mulxsu This instruction is used in computing a 128-bit result of a 64x64 signed multiplication.

03/2007-02/2020

67
EPFL/LAP/RB -E2020

m

NIOS Il - Instructions

 MOVE instructions register - register
* Immediate value = register

Instruction Description
mov mov copies the value of one register to another register. movi moves a 16-bit signed immediate
movhi value to a register, and sign-extends the value to 32 bits. movui and movhi move an immediate
movi 16-bit value into the lower or upper 16-bits of a register, inserting zeros in the remaining bit
movui positions. Use movia to load a register with an address.
movia

03/2007-02/2020

> ==L

EPFL/LAP/RB -E2020

NIOS Il - Instructions

Comparison instructions
« Warning: there is NO flags register
« The result of comparison is 0 or 1 and is write to the destination register

Instruction Description
cmpedq =
cmpne =
cmpge signed >=
cmpgeu unsigned ==
cmpgt signed >
cmpgtu unsigned >
cmple unsigned <=
cmpleu unsigned <=
cmplt signed <
03/2007-02/2020 o -

EPFL/LAP/RB -E2020

NIOS Il - Instructions

« All of these compare two registers or a register and an
Immediate value, and write either 1 (if true) or O to the
result register. These instructions perform all the equality
and relational operators of the C programming language.

Instruction Description
cmpltu unsigned <
cmpeqi These instructions are immediate versions of the comparison
cmpnei operations. They compare the value of a register and a 16-bit
cmpgei immediate value. Signed operations sign-extend the
cmpgeui in:rmeFiiate value to 32-bits. Unsigned operations fill the upper
cmpgt i bits with zero.
cmpgtul
cmplel
cmpleul
cmplti
cmpltul

03/2007-02/2020

© =Pl

EPFL/LAP/RB -E2020

NIOS I

- |Instructions

e Shift and rotate

Instruction Description
rol The rol and roli instructions provide left bit-rotation. rol i uses an immediate value to
ror specify the number of bits to rotate. The ror instructions provides right bit-rotation.
roli There i1s no immediate version of ror, because roli can be used to implement the equivalent

operation.

sll These shift instructions implement the << and == operators of the C programming language. The
s11i 211,=111,=srl, srli instructions provide left and right logical bit-shifting operations, inserting
sra zeros. The sra and srai instructions provide arithmetic right bit-shifting, duplicating the sign bit
srl in the most significant bit. 8111, srli and srai use an immediate value to specify the number
srail of bits to shift.
srli

03/2007-02/2020

" =Pl

EPFL/LAP/RB -E2020

NIOS Il - Instructions

* Program Control instruction

Instruction Description

call This instruction calls a subroutine using an immediate value as the subroutine's absolute address,
and stores the return address in register ra.

callr This instruction calls a subroutine at the absolute address contained in a register, and stores the
return address in register ra. This instruction serves the roll of dereferencing a C function pointer.

ret The ret instruction is used to return from subroutines called by call or callr. ret loads and
executes the instruction specified by the address in register ra.

Jjmp The jmp instruction jumps to an absolute address contained in a register. jmp is used to
implement switch statements of the C programming language.

br Branch relative to the current instruction. A signed immediate value gives the offset of the next
instruction to execute.

03/2007-02/2020

72 = ﬂ':
EPFL/LAP/RB -E2020

NIOS Il - Instructions

« Conditional Program Control instruction

Instruction

Description

bge
bgeu
bgt
bgtu
ble
bleu
blt
bltu
beq
bne

These instructions provide relative branches that compare
two register values and branch if the expression is true.
See “Comparison Instructions” on page 317 for a
description of the relational operations implemented.

03/2007-02/2020

73 -
=P
EPFL/LAP/RB -E2020

NIOS Il - Instructions

 Others Control instructions

Instruction

Description

trap
eret

The trap and eret instructions generate and return from exceptions. These instructions are
similar to the call/ret pair, but are used for exceptions. trap saves the status register in
the egtatus register, saves the return address in the 2a register, and then transfers execution
to the exception handler. eret returns from exception processing by restoring status from
estatus, and executing the instruction specified by the address in ea.

break
bret

The break and bret instructions generate and return from breaks. break and bret are
used exclusively by software debugging tools. Programmers never use these instructions in
application code.

rdctl
wrctl

These instructions read and write control registers, such as the status register. The value is
read from or stored to a general-purpose register.

flushd
flushi
initd
initi

These instructions are used to manage the data and instruction cache memories.

flushp

This instruction flushes all pre-fetched instructions from the pipeline. This is necessary before
jumping to recently-modified instruction memory.

sync

This instruction ensures that all previously-issued operations have completed before allowing
execution of subsequent load and store operations.

03/2007-02/2020

74
EPFL/LAP/RB -E2020

Memory, and Other Logic

Optional FIFO,

Nios || Embedded Processor

cPrL

75
EPFL/LAP/RB -E2020

03/2007-02/2020

NIOS Il — Memory - 1/0 access

A Nios Il core uses one or more of the following to provide memory and I/O access:

» Instruction master port - An Avalon master port that
connects to instruction memory via Avalon switch
fabric

» Instruction cache - Fast cache memory internal to
the Nios Il core

» Data master port - An Avalon master port that
connects to data memory and peripherals via Avalon
switch fabric

» Data cache - Fast cache memory internal to the Nios
Il core

» Tightly coupled instruction or data memory port -
Interface to fast memory outside the Nios Il core

03/2007-02/2020
76 = P = L
=

EPFL/LAP/RB -E2020

NIOS Il = Memory = 1/0 access

NIOS” _ Da-ta Path Nios Il Processor Core

*The instruction master port L

always retrieves 32 bits of : e

data. The instruction etncon _———

master port relies on Scecor netmtin

dynamic bus-sizing logic Program

contained in the Avalon i Frptiy

switch fabric. nsrucon [Ty i PN

*By virtue of dynamic bus

sizing, every instruction =1 .
fetch returns a full . Cache M ﬂ 5] e
instruction word, regardless Puposs
of the width of the target Fie e -
memory. Logi P
*Consequently, programs : —
do not need to be aware of s
the widths of memory in the e
Nios Il processor system.

[M] Avalon Master Port

Avalon Slave Port

03/2007-02/2020
77 - BI:
[—= |

EPFL/LAP/RB -E2020

NIOS Il = Memory = 1/0 access

Cache Bypass Method

e The Nios Il architecture provides load and store I/O
Instructions such as Idio and stio that bypass the data
cache and force an Avalon data transfer to a specified
address.

« Additional cache bypass methods might be provided,
depending on the processor core implementation.

« Some Nios Il processor cores support a mechanism called
bit-31 cache bypass to bypass the cache depending on
the value of the most-significant bit of the address.

03/2007-02/2020

78 =L

EPFL/LAP/RB -E2020

NIOS Il — Tightly Coupled Memory

« Tightly coupled memory provides guaranteed low-latency memory
access for performance-critical applications. Compared to cache
memory, tightly coupled memory provides the following benefits:

» Performance similar to cache memory

» Software can guarantee that performance-critical code or data is located
in tightly coupled memory

» No real-time caching overhead, such as loading, invalidating, or flushing
memory

* Physically, a tightly coupled memory port is a separate master port on
the Nios Il processor core, similar to the instruction or data master
port. A Nios Il core can have zero, one, or multiple tightly coupled
memories.

« The Nios Il architecture supports tightly coupled memories for both
Instruction and data access. Each tightly coupled memory port
connects directly to exactly one memory with guaranteed low, fixed
latency. The memory is external to the Nios Il core and is usually
located on chip.

03/2007-02/2020

79 -
=
EPFL/LAP/RB -E2020

N|OS || — JTAG interface

« The Nios Il architecture supports a JTAG debug module that provides
onchip emulation features to control the processor remotely from a
host PC.

« PC-based software debugging tools communicate with the JTAG
debug module and provide facilities, such as:
» Downloading programs to memory
» Starting and stopping execution
» Setting breakpoints and watchpoints
» Analyzing registers and memory
» Collecting real-time execution trace data

« The debug module connects to the JTAG circuitry in an Altera®
FPGA.

« External debugging probes can then access the processor via the
standard JTAG interface on the FPGA. On the processor side, the
debug module connects to signals inside the processor core.

03/2007-02/2020

> ==L

EPFL/LAP/RB -E2020

NIOS |l - Some Avalon Peripherals

PI1O

« Modes of configuration :

» Bidirectional
> Input
» Output

» Input and Output
 Interrupt Request capability

Setting

Bidirectional (tristate) ports

Description

In this mode, each PIO bit shares one device pin for driving and capturing data.

The direction of each pin is individually selectable. To tristate an FPGA I/O pin, set
the direction to input.

Input ports only

In this mode the PIO ports can capture input only.

Output ports only

In this mode the PIO ports can drive output only.

Both input and output ports

In this mode, the input and output ports buses are separate, unidirectional buses
of n bits wide.

03/2007-02/2020

81 -
EPFL/LAP/RB -E2020

NIOS Il - Some Avalon Peripherals
PIO

- 32
e 04| siiasty e
to on-chi < ata | =

_ P lcr.:rn ro |

logic
\
interruptmask
< IRQ

edgecapture

* In/Out Mode
* Interrupt request

03/2007-02/2020

> ckL

EPFL/LAP/RB -E2020

NIOS |l - Some Avalon Peripherals
PIO

Avalon-MM| _address l i
interface data data
' ¢ — out
to on-chip | g control |
logic |
direction

 Bidirectional mode

03/2007-02/2020
83

EPFL/LAP/RB -E2020

NIOS |l - Some Avalon Peripherals
PIO

« 4 registers to control the PIO
« Some features available as SOPC instantiation :

Edge/level to interrupt request

Offset Register Name R/'W | (n-1) 2 1 0
0 data |read access R Data value currently on PIO inputs
write access W New value to drive on P1O outputs
1 direction (1) R/W | Individual direction control for each I/O port. A value of O
sets the direction to input; 1 sets the direction to output.
2 interruptmask (1) R/W | IRQ enable/disable for each input port. Setting a bit to 1
enables interrupts for the corresponding port.
3 edgecapture (1), (2) R/W | Edge detection for each input port.

(1) This register may not exist, depending on the hardware configuration. If a register is not present, reading the
register returns an undefined value, and writing the register has no effect.
(2) Writing any value to edgecapture clears all bits to 0.

03/2007-02/2020
84

EPFL/LAP/RB -E2020

NIOS |l - Some Avalon Peripherals

Timer

Register File
status
trol
Address, data, conre
etc. periodl
periodh
Avalon-MM Counter
slave snapl
interface snaph
to on-chip
logic
< IRQ Control timeout_pulse
resetrequest Logic
(watchdog)

 Timeout_pulse

. IRQ

« Watchdog - Reset request

03/2007-02/2020

85
EPFL/LAP/RB -E2020

NIOS |l - Some Avalon Peripherals

Timer

* 6 registers for status - control — configuration

« Generate a TimeOut when the decrementing
Timer counter reach 0, programmed by
Periodh-PeriodL

Description of Bits
Ofiset Name R/W
15 4 3 2 1 0
0 tatus RW (1) RUN TO
1 control RW (1) STOP START CONT ITO
2 eriodl RW Timeout Period —1 (bits 15..0)
3 ericdh RW Timeout Period — 1 (bits 31..16)
4 napl RW Counter Snapshot (bits 15..0)
5 naph RW Counter Snapshot (31..16)

03/2007-02/2020

86

EPFL/LAP/RB -E2020

-l

NIOS |l - Some Avalon Peripherals
Timer

6 registers for status - control — configuration

Write to one of Snapshot register generate the
transfer of the current counter's value to
SnapshotH-SnapshotL registers

* Mode can by single or continue (CONT =1)

An interrupt can by generated at TimeOut if
ITO=1

03/2007-02/2020
87 -

[
EPFL/LAP/RB -E2020

Pi-L

NIOS |l - Some Avalon Peripherals

Timer

« Status register

Read/
Bit Name Write/ Description
Clear
0 TO RC The TO (timeout) bit is set to 1 when the internal counter reaches zero. Once
set by a timeout event, the TO bit stays set until explicitly cleared by a master
peripheral. Write zero to the status register to clear the TO bit.
1 RUN R The RUN bit reads as 1 when the internal counter is running; otherwise this bit
reads as 0. The RUN bit is not changed by a write operation to the status
register.

03/2007-02/2020

88 - &I:
EPFL/LAP/RB -E2020

NIOS |l - Some Avalon Peripherals

Timer

« Control register

Read/
Bit Name Write/ Description
Clear

0 ITO RW If the ITO bit is 1, the timer core generates an IRQ when the status
register’s TO bit is 1. When the ITO bit is 0, the timer does not generate
IRQs.

1 CONT RW The CONT (continuous) bit determines how the internal counter behaves
when it reaches zero. If the CONT bitis 1, the counter runs continuously until
it is stopped by the STOP hit. If CONT is 0, the counter stops after it reaches
zero. When the counter reaches zero, it reloads with the 32-bit value stored
inthe periodl and periodh registers, regardless of the CONT bit.

2 START (1) W Writing a 1 to the START bit starts the internal counter running {(counting
down). The START bit is an event bit that enables the counter when a write
operation is performed. If the timer is stopped, writing a 1 to the START bit
causes the timer to restart counting from the number currently held in its
counter. If the timer is already running, writing a 1 to START has no effect.
Writing 0 to the START bit has no effect.

3 STOP (1) W Writing a 1 to the STOP bit stops the internal counter. The STOP bit is an

event bit that causes the counter to stop when a write operation is
performed. If the timer is already stopped, writing a 1 to STOP has no effect.
Writing a 0 to the stop bit has no effect. Writing 0 to the STOP bit has no
effect.

If the timer hardware is configured with the Start/Stop control bits option
turned off, writing the STOP bit has no effect.

03/2007-02/2020

89
EPFL/LAP/RB -E2020

m
11

NIOS Il - Some Avalon Peripherals
Timer

Interrupt Behavior

» The timer core generates an IRQ whenever the
Internal counter reaches zero and the ITO bit of the
control register is set to 1.

Acknowledge the IRQ in one of two ways:

» Clear the TO bit of the status register
» Disable interrupts by clearing the ITO bit of the control
register
» Failure to acknowledge the IRQ produces an
undefined result.

03/2007-02/2020
90 = P = L
=

EPFL/LAP/RB -E2020

NIOS |l - Some Avalon Peripherals
Performance Counter

* Profiling is often necessary to validate the

timing of task, process, interrupt
latency/response, software performance, etc...

¢ Some methods exists to do this task :

» Software only as GNU profiler, gprof

» Mostly Hardware module as performance counter
core

» Hardware/software Interval timer peripheral

L

EPFL/LAP/RB -E2020

NIOS |l - Some Avalon Peripherals
Performance Counter

« The main benefit of using the performance counter core is the
accuracy of the profiling results. The performance counter core is
unobtrusive, requiring only a single instruction to start and stop
profiling, and no RAM. It is appropriate for high-precision
measurements of narrowly targeted sections of code.

 GNU profiler, gprof - gprof provides broad low-precision timing
Information about the entire software system. It uses a substantial
amount of RAM, and degrades the real-time performance. For
many embedded applications, gprof distorts real-time behavior too
much to be useful. Change cache memory capability.

* Interval timer peripheral -The interval timer is less intrusive than
gprof. It can provide good results for narrowly targeted sections of
code. However, the granularity of the results is milliseconds, which
IS too coarse for many embedded applications.

03/2007-02/2020
92 -

EPFL/LAP/RB -E2020

NIOS |l - Some Avalon Peripherals
Performance Counter

« The core contains two counters for every section:
» Time: A 64-bit clock cycle counter.
» Events: A 32-bit event counter.

« Section Counters

» Each 64-bit time counter records the aggregate number of clock
cycles spent in a section of code.

> The 32-bit event counter records the number of times the
section executes.

» The performance counter core can have up to seven section
counters.
« Global Counter

» The global counter controls all section counters. The section
counters are enabled only when the global counter is running.

L

EPFL/LAP/RB -E2020

NIOS Il - Some Avalon Peripherals

Performance Counter

Bit Description

Oftset Register Name Read Write
31...0 31 ... 0
0 T[0] global clock cycle counter [31: 0] (1) 0=STOP
1 =RESET

1 T[0]4s global clock cycle counter [63:32] (1) 0 = START

2 Ev([0] global event counter (1) (1)

3 — (1) (1) (1)

4 T[1]1s section 1 clock cycle counter [31: 0] (1) 0=STOP

5 T[1]ns section 1 clock cycle counter [63:32] (1) 0= START

6 Ev[1] section 1 event counter (1) (1)

7 - (1) (1) (1)

8 T[2]1o section 2 clock cycle counter [31: 0] (1) 0=STOP

9 T[2]n: section 2 clock cycle counter [63:32] (1) 0 = START

10 Ev[2] section 2 event counter (1) (1)

1 - (1) (1) (1)
4n+0 Tinli, section n clock cycle counter [31: 0] (1) 0=STOP
4n+1 Tinluni section n clock cycle counter [63:32] (1) 0 = START
4n+ 2 Ev([n] section n event counter (1) (1)
4n+3 — (1) (1) (1)

(1) Reserved. Read values are undeftined. When writing, set reserved bits to zero.

L

03/2007-02/2020

94
EPFL/LAP/RB -E2020

cPrL

Performance cou

NIOS Il - Some Avalon Peripherals
Performance Counter

nter functions and Macro

Name

PERE RESET ()

Summary

Stops and disables all counters, resetting them to 0.

PERF START MEASURING ()

Starts the global counter and enables section counters.

PERF STOP MEASURING ()

Stops the global counter and disables section counters.

PERE BEGIN ()

Starts timing a code section.

PERF END ()

Stops timing a code section.

perf print formatted report()

Sends a formatted summary of the profiling results to stdout.

perf get total time ()

Returns the aggregate global profiling time in clock cycles.

perf get section time ()

Returns the aggregate time for one section in clock cycles.

perf get num starts()

Returns the number of counter events.

alt get cpu freq()

Returns the CPU frequency in Hz.

03/2007-02/2020

95
EPFL/LAP/RB -E2020

m

NIOS |l - Some Avalon Peripherals
Performance Counter

* Need the full library (not small C library in NIOS
IDE) as floating printing Is used.

perf print formatted report

(void *)PERFORMANCE COUNTER BASE, // Peripheral's HW base address
alt get cpu freq(), B // defined in "system.h"

3, // How many sections to print
"lst checksum test", // Display-names of sections

"pc overhead",
"ts overhead");

The preceding example creates a table similar to this:

--Performance Counter Report--

Total Time: 2.07711 seconds (103855534 clock-cycles)

e tm—— e o e +
| Section | 3 | Time (sec)| Time (clocks) |OQOccurrences|
tm—————————— t————— t———_———— e ————————— tm——— +
| 1st checksum test| 50 | 1.03800 | 51899750 | 1]
+——————— e t—————— ————— +—— +
| pc overhead |1.73e-05] 0.00000 | 18 | 1
e e e e e +
| ts overhead |4.24e-05] 0.00000 | 44 | 1]
e tm— e o e +

03/2007-02/2020
96 [

EPFL/LAP/RB -E2020

NIOS |l - Some Avalon Peripherals
Performance Counter

* If an interrupt occurs during the measured
function execution, this time to execute interrupt
routine is counted.

h I

EPFL/LAP/RB -E2020

Références

Cyclone2, NIOSII, Altera, www.altera.com
http://www.altera.com/literature/lit-nio2.|sp

http://www.altera.com/literature/tt/tt nios2 system architect.pdf

http://www.altera.com/literature/tt/tt gsys intro.pdf

http://www.altera.com/literature/hb/nios2/n2sw nii52006.pdf

http://www.altera.com/literature/ug/ug embedded ip.pdf

http://www.altera.com/literature/an/AN595.pdf

n2sw_niiSv2.pdf
n2cpu_nii5vl.pdf
n2cpu_nii5v3.pdf

03/2007-02/2020

> cPrL

EPFL/LAP/RB -E2020

http://www.altera.com/
http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/tt/tt_nios2_system_architect.pdf
http://www.altera.com/literature/tt/tt_qsys_intro.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/literature/an/AN595.pdf

NIOS Il — A specific Avalon Peripherals
Counter as exercise

* From this description and code, It Iis very
easy to add others features as:

* Output Compare function
* Interrupt at specific time
* Reload counter

» Efc...

03/2007-02/2020
116 -

[
EPFL/LAP/RB -E2020

PrL

