Introduction to Differentiable Manifolds	
EPFL - Fall 2022	F. Carocci, M. Cossarini
Exercise Series 1 - Topological and smooth man	nifolds 2022–09–20

Convention: We understand a subset/product/quotient of topological space(s) to be automatically endowed with the subspace/product/quotient topology unless we state otherwise.

Exercise 1.1. Which of the following spaces are locally Euclidean? Which are (globally) homeomorphic to some Euclidean space?

- (a) an open ball in \mathbb{R}^n
- (b) the closed interval $[0,1] \subset \mathbb{R}$
- (c) the circle $\mathbb{S}^1 \subset \mathbb{R}^2$
- (d) the zero set of the function $f : \mathbb{R}^2 \to \mathbb{R}, f(x, y) = xy$
- (e) the "bent line" $\{(x, y) \in \mathbb{R}^2 \mid x, y \ge 0, xy = 0\}.$

Exercise 1.2. If a space M is locally Euclidean of dimension n at some point p, show that p has an open neighborhood that is homeomorphic to the whole space \mathbb{R}^n , or to a open ball $B_r(x)$.

Deduce the equivalent definitions of topological n-manifold.

Exercise 1.3. The **line with two origins** is the space M obtained as quotient of the space $X = \{\pm 1\} \times \mathbb{R}$ by the equivalence relation $(i, x) \sim (j, y)$ iff $x = y \neq 0$.

- (a) Show that M is locally Euclidean and second countable, but not Hausdorff.
- (b) Find a sequence of points in M that converges to two different points, and show that this cannot happen in a Hausdorff space.

Exercise 1.4. Let N be an open subset of a topological n-manifold M.

- (a) Show that N is a topological n-manifold.
- (b) Show that any smooth structure \mathcal{A} on M determines a smooth structure \mathcal{B} on N, consisting of the charts $(U, \varphi) \in \mathcal{A}$ such that $U \subseteq N$.

Exercise 1.5. Show that the product of two topological manifolds is a topological manifold. What is its dimension?

Exercise 1.6. We have seen in the lecture that \mathbb{S}^n is a topological *n*-manifold. Show that the charts $(U_i^{+,-}, \varphi^{+,-})_{i=1,\dots,n}$ form a smooth atlas for \mathbb{S}^n .

Exercise 1.7 (To hand in). Show that the **projective space** \mathbb{P}^n , defined as the quotient of $\mathbb{R}^{n+1}\setminus\{0\}$ by the equivalence relation $x \sim y$ iff $x = \lambda y$ for some $\lambda \in \mathbb{R}\setminus\{0\}$, is a smooth *n*-manifold with atlas $\mathcal{A} = \{(U_i, \varphi_i)\}_{i=0,...,n}$ given by

$$U_i := \{ [x] \in \mathbb{P}^n \mid x_i \neq 0 \}, \qquad \varphi_i([x]) = \left(\frac{x_0}{x_i}, \dots, \frac{\widehat{x_i}}{x_i}, \dots, \frac{x_n}{x_i} \right),$$

where $[x] \in \mathbb{P}^n$ denotes the equivalence class of a point $x = (x_0, \ldots, x_n) \in \mathbb{R}^{n+1} \setminus \{0\}$.

Exercise 1.8. Show that the *n*-torus $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$, defined as the quotient of \mathbb{R}^n by the equivalence relation $x \sim y$ iff $y - x \in \mathbb{Z}^n$, is a topological *n*-manifold.

Exercise 1.9. Show that $(\mathbb{R}, \mathrm{id}_{\mathbb{R}})$ and $(\mathbb{R}, \psi : x \mapsto x^3)$ define to different smooth structures on the real line.