Introduction to Differentiable Manifolds	
EPFL - Fall 2022	F. Carocci, M. Cossarini
Exercise Series 5-Submanifolds	$\mathbf{2 0 2 2 - 1 0 - 1 8}$

Exercise 5.1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)=x^{3}+y^{3}+1$.
(a) What are the regular values of f ? For which $c \in \mathbb{R}$ is the level set $f^{-1}(\{c\})$ an embedded submanifold of \mathbb{R}^{2} ?
(b) In the case where $S=f^{-1}(\{c\})$ is an embedded submanifold, $p \in S$, write down an equation for the tangent space $\iota_{*}\left(\mathrm{~T}_{p} S\right) \subset \mathrm{T}_{p} \mathbb{R}^{2}$ where as usual we identify $T_{p} \mathbb{R}^{2} \cong \mathbb{R}^{2}$ (i.e. you are expected to write down the equation for a line in \mathbb{R}^{2}).

Exercise 5.2. Let $S=F^{-1}(c)$ for c a regular value of a smooth function $F: M \rightarrow N$. Let us fix $p \in S$. Prove that $T_{p} S=\operatorname{Ker}\left(D_{p} F: T_{p} M \rightarrow T_{F}(p) N\right)$.

Hint: Use the Slice chart Lemma and the fact that $T_{p} M \cong T_{p} U \cong T_{\varphi(p)} \varphi(U)$ for every open neighbourhood U of p and for any smooth chart φ

Exercise 5.3. Show that the map $g: \mathbb{T}^{2} \rightarrow \mathbb{R}^{3}$ given by

$$
g([s, t])=((2+\cos s) \cos t,(2+\cos s) \sin t, \sin s)
$$

is a smooth embedding of the 2-torus in \mathbb{R}^{3}.
(In this case the torus is defined as $\mathbb{T}^{2}=\mathbb{R}^{2} / 2 \pi \mathbb{Z}^{2}$.)
Exercise 5.4 (To hand in). Show that the following subgroups of $G L_{n}(\mathbb{R})$ are closed submanifolds. Compute their dimension and their tangent space at the identity.
(a) The special linear group $\mathrm{SL}_{n}(\mathbb{R})$, consisting of matrices with determinant equal to 1.
(b) The orthogonal group $O_{n}(\mathbb{R})$, consiting of the orthogonal matrices A (which satisfy $A^{\top} A=I_{n}$).
Hint: Consider the map $f: M_{n} \rightarrow M_{n}^{s y m}$ that sends $A \mapsto A^{\top} A$, there $M_{n}^{s y m}$ is the vector space of symmetric $n \times n$ matrices.

Exercise 5.5. If S_{0}, S_{1} are smooth embedded submanifolds of M_{0}, M_{1} respectively, then $S_{0} \times S_{1}$ is a smooth embedded submanifold of $M_{0} \times M_{1}$.

Exercise 5.6. (a) Show that a subset $S \subseteq \mathbb{R}^{n}$ is a smooth-embedded k-submanifold if each point $x \in S$ has an open neighborhood W such that the set $S \cap W$ is the graph of a smooth function that expresses some $n-k$ coordinates in terms of the remaining k coordinates. (More precisely, the function is of the form $f: U \subseteq \mathbb{R}^{I} \rightarrow \mathbb{R}^{I^{\prime}}$, where I is a k-element subset of $n:=\{0, \ldots, n-1\}$, I^{\prime} is its complement, and $U \subseteq \mathbb{R}^{I}$ is an open set.)
(b) Let S be the set of real $m \times n$ matrices of rank k. Show that S is a smooth submanifold of $\mathbb{R}^{m \times n}$. What is its dimension?
Hint: A rank- k matrix $A \in \mathbb{R}^{m \times n}$ has an invertible $k \times k$ submatrix $\left.A\right|_{I \times J}$ (where $I \subseteq m$, $J \subseteq n$ are k-element sets). Show that the coefficients $A_{i^{\prime}, j^{\prime}}$ with $i^{\prime} \notin I$ and $j^{\prime} \notin J$ can be expressed as a smooth function of the other coefficients of A.

Exercise 5.7. If M is connected and $f: M \rightarrow M$ is an idempotent smooth map ("idempotent" means that $f \circ f=f$), then $f(M)$ is an embedded submanifold of M.
Hint: Show that f has constant rank. Use what you know about a linear projector $P: V \rightarrow V$ and the complementary projector id $_{V}-P$.

