
Decentralized Search
CS-438: Decentralized Systems Engineering

(slide credits: Cristina Basescu)

Decentralized search in systems around us

● Techniques discussed here frequently appear as a sub-system
○ Dynamo (Amazon’s key value store) uses DHTs
○ Akamai’s content delivery network (CDN) uses consistent hashing

● Sometimes they a a user-facing system
○ File sharing through torrents

2

● Peers collectively store data & collaborate to retrieve data on request
● Main challenge: find who stores a file

3

Find homework1.pdf

Distributed system

● Scalable
○ Cheap to accommodate load variance

● Fault-tolerant
● Dynamic

○ Peers come and go (churn)

● Self-organizing and adaptive
○ Data replication, data locality, routes to find data

● Resistant to censorship 4

vs

Peer-to-peer vs centralized storage

● Easy to implement
● More difficult to scale

○ overprovisioning

● Single point of failure

Peer-to-peer storage classification
● Data organization: which node stores a particular file

○ Structured: predetermined mapping between nodes and files
○ Unstructured: mapping fully flexible, nodes may dynamically become specialized

● Degree of decentralization
○ Fully decentralized: all nodes have the same capabilities
○ Partially centralized: some nodes have more capabilities than others

5

Unstructured Structured

Partially centralized Napster

Fully decentralized Gnutella, Freenet, BubbleStorm DIstributed Hash Tables

Roadmap
● Structured Search: DHTs

○ Place data cleverly to make it easier to find
○ CAN, Chord

● Unstructured search
○ Napster, Gnutella (brief), Freenet, BubbleStorm

6

Distributed Hash Tables

● Same API as a hash table, but running on multiple peers
○ Insert (key, item)
○ Item = lookup(id)
○ The item can be a file, data object, document, etc

● Goals
○ Existing item is always found
○ Scales to many nodes
○ Handles churn well

● Many proposals, we’ll look at two basic ones
○ Content Addressable Network (CAN)
○ Chord

7

Content Addressable Network (CAN)
● Each peer gets an identifier in a d-dimensional Cartesian space

○ N peers
○ Peers are responsible for part of the space

● Item gets an identifier in the same d-dimensional space
○ Item stored on closest peer in space

● Property
○ Item retrieval in at most d * N 1/d steps
○ Routing table at each peer is O(d)

8

CAN Example: 2-dim space
● All peers cover the entire space

○ Each covers either a square or a rectangle, depending on other peers’ ids

● Example
○ N1 (1,2) joins: covers the entire space
○ Then N2 (4,2) joins: space divided between them
○ Then N3 (3,5), N4 (5,5), N5 (6,6)

9

CAN Example (cont)
● Items

○ f1 (2,3), f2 (5,1), f3 (2,1), f4 (7,5)

10

CAN Routing
● Each node knows its immediate neighbors in d-space

○ Here it’s 2-dim space
○ n1 for example knows n2 and n3
○ What peers does n4 know?
○ What about n5?

● Lookup example
○ n1 queries f4
○ Can route around some failures

11

n2, n3 and n5
n4 and n2

CAN joins and departures
● Joins

○ New peer A picks random id (x,y)
○ Bootstrap: A gets to know one peer in CAN, e,g, n3
○ n3 routes to peer that owns the point (x,y), here n2
○ n2 splits its space and offloads corresponding data to A

● Departures
○ Peer B leaves
○ B gives its data to neighbor peer with same space size
○ The neighbor peer thus doubles its space

● Failures
○ How to avoid data loss?

12

(x,y)

○ Replicate data on neighboring peers

Chord
● Different mapping of peers to item space

○ N peers
○ Chord uses a ring, instead of a Cartesian space
○ Each peer gets an id in a uni-dimensional space 0..2m-1
○ Each item also gets such an id
○ A peer stores items with ids between the id of its

predecessor peer and its own id, e,g, peer 8 stores
items [5,..,8]

● Properties
○ Routing table at each node of size O(log N)
○ Guarantees an existing item found in O(log N) steps

13

Chord: correctness
● Key design decision

○ Decouple correctness from efficiency

● Let’s first look at correctness
● Routing

○ Each peer stores a link to its ring successor

● Lookup of item with idX
○ Start at any node
○ Follow the successor link until encountering the first

successor node whose id ≥ idX

● Eg: lookup item 25
○ Starting at node 58
○ Stop at node 32: this node should store item 25
○ How do we know the item does not exist?

14

start

returns 32

Chord: node join (1)
● Node with idA joins

○ Bootstrap: needs to know at least one node idK
○ Send to idK join(idA)
○ idK performs a lookup idS ← lookup(idA)
○ idS becomes the successor of idA

● Eg node 37 joins, knows node 15
○ Note that pred44 and succ35 do not change yet

● Succ not up-to-date, what can go wrong?
○ Everything still works correctly, as if 37 is not part of

the system

15

44

join(37)

37

pred=nil
succ=44

pred=32
succ=44

pred=35
succ=58

Chord: node join (2)
● Periodically nodes perform stabilize()

○ A sends stabilize() to its succ C
○ C returns B ← predC to A in a notify(B) message
○ C updates its predC← A if B < A
○ If B is between A and C, then A updates succA ← B

● Whose stabilize() corrects the val in eg?

16

join(37)

37

pred=nil
succ=44

pred=32
succ=44

pred=35
succ=58

○ 37 sends stabilize() to its succ 44
○ 44 sends notify(35) back, updates its pred44 ← 37
○ 35 sends stabilize() to its succ 44
○ 44 sends notify(37) back
○ 35 updates its succ35 ← 37

37

○ 35 sends stabilize() to its succ 37
○ 37 sends notify(nil) back, updates its pred37 ← 35

37

● Order or updates crucial for correctness!
35

Chord efficiency: finger tables
● Routing table of size O(log N)
● Item lookup of size O(log N)

17

Chord: robustness
● Each node maintains k immediate successors, instead of just 1

○ Why?
○ stabilize() and notify() change accordingly for k successors

18

If successor of new node dies, new node needs to restart join

CAN / Chord optimizations
● Reduce latency

○ Route through next peer that reduces time to reach destination
○ Choose as successor the closest node from range [N+2i-1, N+2i)

● Accommodate heterogeneous systems
○ Systems with different storage / bandwidth
○ Multiple virtual nodes per physical node

19

Roadmap
● Structured Search: DHTs

○ CAN, Chord

● Unstructured search
○ Place data somewhere, find it later somehow
○ Napster, Gnutella (brief), Freenet, BubbleStorm

20

Napster: Overview
● That’s how it started

○ Free music over the internet 1999-2001, peaked at 1.5 million users

● Peers (home users) store files
○ Each peer announces its local files to a centralized directory

● Simple centralized directory
○ Stores mapping between peers and files they store
○ Centralized means the only Napster.com has the directory, but Napster.com itself can store

the directory on multiple servers

21

Napster.com Directory
Server 1

Directory
Server 2

Directory
Server 3

I have homework1.pdf,
LinkinPark album

I have homework1sol

Napster: Architecture

2222

Napster.com Directory
Server 1

Directory
Server 2

Directory
Server 3

Who has homework1

● File retrieval
○ Ask directory for peers that stores files matching a pattern (ideally nearby / less loaded peers)
○ Contact the peers directly for file transfer - transfer is peer to peer

● Peers implicitly share storage & bandwidth

A has homework1.pdf, B has homework1sol

A
B

transfer

Napster: Analysis

2323

● Single-level filesystem
○ Flat naming

● Centralized directory
○ Advantage: easy to build sophisticated search engines on top of index system
○ Disadvantage: potential bottleneck (scaling problem) & single point of failure

● What if peers fail / go offline?
○ Keepalive mechanism - directory servers ping them periodically
○ Any issues with keepalive? Packetstorms

● Social, not technical
○ Successful due to building an online community
○ Ethics built-in: tit for tat

Gnutella: main idea
● No centralized component

○ Ad-hoc network

● Find a file by recursively flooding request to neighbors
○ Nr of hops bounded using TTL

24

Find homework1.pdf

Gnutella: Analysis

2525

● Advantages
○ Decentralized
○ Robust

● Diasadvantages
○ A single request can flood part of the network
○ No guarantee on actually finding the file (depends on TTL, start point and file location)

Freenet: Principles
● Distributed filesystem

○ Peers insert in the system files they want to share (origin peers)
○ Origin peer does not necessarily store the files he inserts

● Peers dynamically become specialized in storing certain files
○ Specialization by file name
○ They are not “born specialized” as in DHTs
○ Specialization driven by routing

● Anonymity component
○ Files have pseudonyms
○ Peers cannot know - and cannot be held accountable for - what they store
○ File source anonymized to some extent

26

Freenet: File Search
● Each peer maintains a routing table

○ Maps routing keys to destination peers (more on routing keys soon)
○ Request for file ad082om34pwu: send to destination peer whose routing key is

lexicographically closest match to searched key (without sending back)
○ IP routing underneath: match peer to next hop

● Response includes peer that stored the file
● Search can fail

○ Hops-to-live limit. Why?
○ Retry by backtracking at each step, retry with bigger hops-to-live limit

27

Find ad082om34pwu
Hops-to-live 5

Freenet: Routing table (RT)
● Routing tables lead to node specialization

○ A peer P likely receives search requests for keys similar to the ones his neighbors have in
their RT tables for P

○ Thus P becomes specialized in such keys
○ Failed requests should lead to adjusting RTs

● Peers along return path following a search replicate searched file
○ Eviction strategy: LRU
○ Consequence of replication?

28

Replicate files close to source. Popular files have more replicas.

Find ad082om34pwu
Hops-to-live 5

Freenet: Storing data
● Store file with name xyz

○ Perform file search for xyz
○ If found, try with different file name
○ If not found, store file along forward search path
○ Peers along path associate fille origin peer with the file name

● No file lifetime guarantee
○ Peer can erase own routing table entries
○ Peers can erase data they store

29

Freenet: Node join
● Peers that join get a routing key

○ Routing key used in routing tables
○ For routing consistency & key clustering: routing key for a node the same in all routing tables
○ Each new peer could pick its own routing key and announce presence
○ But adversary could change it in the announcement and defeat routing table consistency

● Routing key decided by all nodes on the announcement path
○ Init peer picks rnd seed1, computes commitment c1 ← H(seed1), sends <addr, c1> to rnd node
○ Receiving node picks rnd seed2, computes c2 ← H(seed2 XOR c1), sends to rnd node from RT etc
○ Nodes reveal seeds, routing_key ← seed1 XOR seed2 etc, each node can check commitment

30

Freenet: Peer anonymity w.r.t files
● Peers can replace peer addresses in inserts / replies with their own

○ Adversary controlling single peer cannot know the real source
○ What if adversary controls multiple peers?

● Anonymized filenames

31

Traffic correlation

Freenet: Anonymized Filenames (1)
● Keyword-signed key (KSK)

○ S = String that describes the file
○ Deterministic fct F, K_Pub,K_Priv ← F(S)
○ File_key ← Hash(K_Pub)
○ File signed with K_Priv, encrypted using S as encryption key. Issues?
○ Peer published S on public bulletin board
○ Keys form a flat global namespace. Issues?

● Signed-subspace key (SSK)
○ User creates own namespace and associates K_Pub, K_Priv
○ File_key ← Hash (Hash(K_Pub) XOR Hash(S))
○ File signed with K_Priv, encrypted using S as encryption key
○ Peer publishes S together with K_Pub on public bulletin board
○ Can an attacker insert files to someone else’s namespace?

32

Attacker inserts junk files using popular name

No, because he cannot sign them

Freenet: Anonymized Filenames (1)
● Content-hashed key (CHK)

○ Used to implement file updates and for splitting files in chunks
○ File_key ← Hash(File)
○ Generate K_Pub,K_Priv
○ File encrypted with K_priv
○ Peer publishes File_key, K_Pub

● File update
○ Indirection mechanism: store CHK File_Key in a namespace using an SSK name
○ Update contents of File and replace contents of SSK name
○ SSK name stays the same!

● File splitting
○ Useful for large files
○ Create several chunks each with its own CHK file_kley and store these keys under a single

SSK name

33

BubbleStorm: Intuition
● Replicate both queries and data on random nodes

○ copies each
○ Higher bandwidth peers naturally receive more traffic
○ Maintain replication factor in face of churn

● Data and queries intersect on some nodes
○ Due to birthday paradox
○ Nodes evaluate queries on all their stored data

34

BubbleStorm: Replication on random nodes
● Arrange peers in a random graph overlay

○ Exploring an edge leads to randomly-sampled peer
○ Creation of random subset (bubble) is cheap

● Node degree chosen proportional to bandwidth
○ Random walks follow edges with equal probability
○ Utilization balanced for heterogeneity

● Topology modified only when nodes join / leave
○ Neighbors’ degree remains unchanged

35

BubbleStorm: Node joins and leaves
● Node join: inserts itself on random edge

○ Random walk from bootstrap peer
○ Pick random edge to split and insert in between

● Node leave
○ Splices neighboring peers together

36

BubbleStorm: Fast replication (1)

● Low latency
● Reliable
● Imprecise #replicas
● Unbalanced link load

37

Flooding Random walkBubbleCast
● High latency
● Unreliable
● Precise #replicas
● Balanced link load

● Low latency
● Reliable
● Precise #replicas
● Balanced link load

Node counter instead of hop counter Branch at every step

BubbleStorm: Fast Replication (2)
● Counter specifies #replicas to create

a. Create replicate
b. Split updated counter equally between neighbors

● Replication depth between branches differs by at most 1
a. Logarithmic routing depth

38

Unstructured vs structured search
● Unstructured search: support any selective query

○ Peers simply deploy a query language locally

● DHTs: Perform multiple lookups
○ Must transform query into multiple key-value parts
○ Higher latency due to executing each part separately

39

Conclusions
● Search in peer-to-peer systems

○ Churn
○ Replication
○ Routing

● Structured search: DHTs
○ Key-value store primitive
○ Peers and items given random id in id space
○ Predefined mapping of keys to values
○ CAN, Chord

● Unstructured search
○ Support more variate query primitives
○ Freenet: Dynamic specialization of peers
○ BubbleStorm: random replication of data and queries, probabilistic intersection on same node

40

