Introduction to Differentiable Manifolds	
EPFL – Fall 2022	F. Carocci, M. Cossarini
Exercise Series 7 - Vector bundles	2022 - 11 - 01

Exercise 7.1. Show that the Moëbious bundle as defined in the lecture is a smooth vector bundle on S^1 (Exhibit local trivialization and compute the transition functions.)

Exercise 7.2. Show that the tangent bundle TS^1 is trivial.

Exercise 7.3 (Properties of smooth vector fields). Let M be a smooth manifold and let $X: M \to TM$ be a vector field. Show that the following are equivalent:

- (a) X is a smooth vector field.
- (b) The component functions of X are smooth with respect to all charts of one particular smooth atlas of M.
- (c) For any smooth function $f: U \to \mathbb{R}$ on an open set $U \subset M$, the function $Xf: U \to \mathbb{R}$ defined by $Xf(p) := X_p(f)$ is smooth.

Exercise 7.4. (To hand in) Show that there is a smooth vector field on S^2 which vanishes at exactly one point.

Hint: Try using stereographic projection and consider one of the coordinate vector fields.

Exercise 7.5 (Transition functions and vector bundles). (a) Let $E \xrightarrow{\pi} M$ be a smooth vector bundle of rank k. Suppose that $\{U_{\alpha}\}_{\alpha \in A}$ is an open cover of M; and for each α we are given a smooth local trivialization

$$\Phi_{\alpha} \colon \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^k.$$

For each α, β , let

$$\tau_{\alpha\beta} \colon U_{\alpha} \cap U_{\beta} \to \mathrm{GL}(k,\mathbb{R})$$

¹ be the transition function defined by $\Phi_{\alpha} \circ \Phi_{\beta}^{-1}$. Show that the following identity is satisfied for all α, β, γ

$$\tau_{\alpha\beta} \circ \tau_{\beta\gamma} = \tau_{\alpha\gamma}$$

(The juxtaposition on the left-hand side represents matrix multiplication.)

(b) Suppose that $\{U_{\alpha}\}_{\alpha \in A}$ is an open cover of a smooth manifold M and that for each α, β , we are given smooth maps $\tau_{\alpha\beta} \colon U_{\alpha} \cap U_{\beta} \to \operatorname{GL}(k, \mathbb{R})$ satisfying the identity above. Then there exists a smooth vector bundle $E \xrightarrow{\pi} M$ with local trivializations $\Phi_{\alpha} \colon \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{k}$ and transition functions $\tau_{\alpha\beta}$

¹for each point $p \tau_{\alpha\beta}(p)$ is a matrix