EPFL – Fall 2022

F. Carocci, M. Cossarini

Exercise Series 9 - Covector fields, or 1-forms

2022 - 11 - 14

Exercise 9.1. Show that a covector field ξ on a smooth manifold M is smooth if and only if for any smooth vector field X on M the function $\langle \xi, X \rangle : M \to \mathbb{R}$ defined by $\langle \xi, X \rangle(p) = \xi_p(X_p)$ is smooth.

Exercise 9.2 (Properties of the differential). Let $f, g \in C^{\infty}(M, \mathbb{R})$.

- (a) Prove the formulas: d(af + bg) = a df + b dg (where a, b are constants), d(fg) = f dg + g df, $d\left(\frac{f}{g}\right) = \frac{g df f dg}{g^2}$ (on the set where $g \neq 0$)
- (b) If $h: \mathbb{R} \to \mathbb{R}$ is a smooth function then $d(h \circ f) = (h' \circ f) df$.
- (c) If $df \equiv 0$, then f is constant on each connected component of M.

Exercise 9.3 (Closed and exact 1-forms). Let M be a smooth manifold, $\omega \in \Omega^1(M)$.

- (a) Show that for every $p \in M$ there exists $f \in C^{\infty}(M)$ such that $\omega|_p = \mathrm{d}f|_p$. Note that this is only an equality of the covectors at one single point p.
- (b) Write $\xi = \sum_i \xi_i \, d\phi^i$ in some chart (U, ϕ) . Show that if ξ is exact, then

$$\frac{\partial}{\partial \phi^j} \xi_i = \frac{\partial}{\partial \phi^i} \xi_j \quad \text{on } U. \tag{1}$$

(c) Use the preceding fact to write down a 1-form which is not exact.

Remark: A 1-form that satisfies (1) for all charts (U, ϕ) is called **closed**. We have just proved that closedness is a necessary condition for exactness. However, it is not always sufficient. The topology of M comes into play: e.g. on a convex subset of \mathbb{R}^n any closed 1-form is exact. But on the punctured plane $\mathbb{R}^2 \setminus \{0\}$ we can construct a closed 1-form that is not exact.

Exercise 9.4 (A closed 1-form that is not exact). Let $M = \mathbb{R}^2 \setminus \{0\}$. Let $\omega \in \Omega^1(M)$ be given by

$$\omega = \frac{x \, \mathrm{d}y - y \, \mathrm{d}x}{x^2 + y^2}.$$

Compute the integral of ω along the curve

$$\gamma: [0, 2\pi] \to M: t \mapsto (\cos t, \sin t).$$

Conclude that ω is not exact.

Exercise 9.5. Let (x,y) be the standard coordinates on \mathbb{R}^2 and let (r,φ) be the polar coordinates.

- (a) Express dx and dy in terms of dr and $d\varphi$ (wherever the latter are defined).
- (b) Let $G: \mathbb{R}^2 \to \mathbb{R}$, $G(x,y) = x^2 + y^2$. Let t be the standard coordinate on \mathbb{R} . Compute $G^*(\mathrm{d}t)$.

Exercise 9.6 (Line integrals). .

- (a) Let M be a smooth manifold, $\gamma: I = [a, b] \to M$ a smooth curve and let $\xi \in \Omega^1(M)$. Denote by t the standard coordinate on \mathbb{R} . Show that $\int_{\mathbb{R}} \xi = \int_I \gamma^* \xi$.
- (b) (Change of variables for 1-forms) Show that if $\sigma: I \to J$ is a positive (i.e. order preserving) diffeo between two intervals I = [a, b], J = [c, d], then $\int_I \sigma^* \theta = \int_I \theta$ for any 1-form $\theta \in \Omega^1(J)$.

Hint: Compute the derivatives of the functions $F(s) = \int_a^s \sigma^* \theta$ and $G(t) = \int_c^t \theta$.

What happens if σ is a negative (i.e. order reversing) diffeo?

(c) (Reparametrization invariance of curve integrals) If two \mathcal{C}^1 curves $\gamma: J \to M$, $\beta: I \to M$ are equivalent as oriented curves, in the sense that β is a positive reparametrization of γ (i.e. $\beta = \gamma \circ \sigma$, where $\sigma: I \to J$ is a positive diffeo), then $\int_{\gamma} \xi = \int_{\beta} \xi$ for any 1-form $\xi \in \Omega^1(M)$. Prove this using the definition via pullback.