Manifolds with boundary

Exercise 10.1. Let M be a smooth n-dimensional manifold with boundary, prove that $T_{p} M$ is an n-dimensional real vector space:
(a) First prove that $T_{a} \mathbb{H}^{n} \xrightarrow{d \iota} T_{a} \mathbb{R}^{n}$ is an isomorphism (using the fact that if f is a smooth function on \mathbb{H}^{n} then there exists an extension \widetilde{f} to a smooth function on all \mathbb{R}^{n}; look back at Exercise sheet 2 and 3)
(b) As we did in the case of smooth manifolds without boundary, prove that $T_{p} U \cong T_{p} M$ for each open U again using the Extension Lemma and then use smooth charts (Here, once again, remember what a smooth chart means in the case of a manifold with boundary)

Line integrals

Exercise 10.2. Let $M=\mathbb{R}^{2} \backslash 0$ consider the 1 -form

$$
\omega=\frac{x d y-y d x}{x^{2}+y^{2}}
$$

Let $\gamma:[0,2 \pi] \rightarrow M$ the smooth curve defined by $t \mapsto($ cost, $\sin t)$.
(a) Compute the integral of ω along γ
(b) Prove that omega is not exact, i.e. is not of the form $d h$ for $h \in C^{\infty}(M)$

Exercise 10.3 (to hand in). Consider the following 1-form on $M=\mathbb{R}^{3}$:

$$
\omega=\frac{-4 z d x}{\left(x^{2}+1\right)^{2}}+\frac{2 y d y}{y^{2}+1}+\frac{2 x d z}{x^{2}+1}
$$

(a) Set up and compute the line integral of ω along the line going from $(0,0,0)$ to $(1,1,1)$
(b) Consider the smooth map Ψ : $W \rightarrow \mathbb{R}^{3}$ given by $(r, \varphi, \theta) \in W:=\mathbb{R}^{+} \times(0,2 \pi) \times$ $(0, \pi)$:

$$
\Psi(r, \varphi, \theta)=(r \cos \varphi \sin \theta, r \sin \varphi \sin \theta, r \cos \theta) \in \mathbb{R}^{3} .
$$

Compute $\Psi^{*} \omega$
Exercise 10.4. On the plane \mathbb{R}^{2} with the standard coordinates (x, y) consider the 1 -form $\theta=x \mathrm{~d} y$. Compute the integral of θ along each side of the square $[1,2] \times[3,4]$, with each of the two orientations. (There are 8 numbers to compute.)

Tensors

Exercise 10.5. Let $\mathcal{B}=\left(E_{i}\right)_{i}$ and $\widetilde{\mathcal{B}}=\left(\widetilde{E}_{j}\right)_{j}$ be two bases of a vector space $V \simeq \mathbb{R}^{n}$, and let $\mathcal{B}^{*}=\left(\varepsilon^{i}\right)_{i}$ and $\widetilde{\mathcal{B}}^{*}=\left(\widetilde{\varepsilon}^{j}\right)_{j}$ be the respective dual bases. Note that a tensor $T \in \operatorname{Ten}^{k} V$ can be written as
$T=\sum_{i_{0}, \ldots, i_{k-1}} T_{i_{0}, \ldots, i_{k-1}} \varepsilon^{i_{0}} \otimes \cdots \otimes \varepsilon^{i_{k-1}} \quad$ or as $\quad T=\sum_{j_{0}, \ldots, j_{k-1}} \widetilde{T}_{j_{0}, \ldots, j_{k-1}} \widetilde{\varepsilon}^{j_{0}} \otimes \cdots \otimes \widetilde{\varepsilon}^{j_{k-1}}$.
Find the transformation law that expresses the coefficients $\widetilde{T}_{j_{0}, \ldots, j_{k-1}}$ in terms of the coefficients $T_{i_{0}, \ldots, i_{k-1}}$.

Exercise 10.6 (Alternating covariant tensors). Let V be a finite-dimensional real vector space. Let $T \in \operatorname{Ten}^{k} V$. Suppose that with respect to some basis ε^{i} of V^{*}

$$
T=\sum_{1 \leq i_{1}, \ldots, i_{k}<n} T_{i_{1} \cdots i_{k}} \varepsilon^{i_{1}} \otimes \cdots \otimes \varepsilon^{i_{k}} .
$$

Show that T is alternating iff:
(a) for all $\sigma \in S_{k}: T_{i_{\sigma(1)} \cdots i_{\sigma(k)}}=\operatorname{sgn}(\sigma) T_{i_{1} \cdots i_{k}}$.
(b) $T\left(\ldots, X_{s}, \ldots, X_{t}, \ldots\right)=-T\left(\ldots, X_{s}, \ldots, X_{t}, \ldots\right)$

