Exercise 11.1. Let $T \in \operatorname{Ten}^{k}(V)$ be a tensor on a real vector space V, and let $T_{I}=T\left(E_{I}\right)$, defined for any multi-index $I=\left(i_{0}, \ldots, i_{k-1}\right)$ be the coefficients of T w.r.t. some base $\left(E_{i}\right)_{i}$ of V. Show that $(\sigma T)_{I}=T_{\sigma^{*} I}$ for any permutation $\sigma \in S_{k}$

Exercise 11.2. Let M be a smooth manifold and let ω be a differential k-form on M. We say that ω is smooth at some point $p \in M$ if the component functions of ω w.r.t. some chart φ (that is defined at p) are \mathcal{C}^{r} at p. Show that this does not depend on which chart φ we use.

Exercise 11.3. The goal of this exercise is to show that the wedge product of alternating covariant tensors in a real vector space V is associative.
(a) If a tensor $T \in \operatorname{Ten}^{k} V$ is alternating, show that $A(T)=k!T$.
(b) For two tensors $S \in \operatorname{Ten}^{k} V, T \in \operatorname{Ten}^{\ell} V$, show that

$$
\begin{aligned}
& A(A(S) \otimes T)=k!A(S \otimes T) \\
& A(S \otimes A(T))=\ell!A(S \otimes T)
\end{aligned}
$$

(c) Show that the wedge product of alternating tensors $S \in \operatorname{Alt}^{k} V, T \in \operatorname{Alt}^{\ell} V$, $R \in$ Alt $^{m} V$ is associative:

$$
S \wedge(T \wedge R)=S \wedge T \wedge R=(S \wedge T) \wedge R
$$

Exercise 11.4. Prove that for each k

$$
\bigwedge^{k} T^{*} M:=\coprod_{p \in M} \bigwedge^{k} T_{p}^{*} M
$$

are vector bundles over M of rank $\binom{n}{k}$.
Hint: Show that given a coordinate chart (U, φ) of M we have a trivialization of $\bigwedge^{k} T^{*} M$; given two such trivialization compute the transition function in terms of the change coordinates to conclude.
Exercise 11.5 (to hand in). For a point $p \in \mathbb{R}^{3}$ and vectors $v, w \in \mathrm{~T}_{p} \mathbb{R}^{3} \equiv \mathbb{R}^{3}$ we define $\left.\omega\right|_{p}(v, w):=\operatorname{det}(p|v| w)$. Show that ω is a smooth differential 2-form on \mathbb{R}^{3}, and express ω as a linear combination of the elementary alternating 2 -forms determined by the standard coordinate chart $\left(x^{0}, x^{1}, x^{2}\right)$.
Exercise 11.6 (Some properties of the pullback of differential forms). For $F: M \rightarrow$ N a smooth map between smooth manifolds, $\omega \in \Omega^{k}(N), \beta \in \Omega^{\ell}(N)$ we have:
(a) $F^{*}(\alpha \wedge \beta)=F^{*}(\alpha) \wedge F^{*}(\beta)$.
(b) In any coordinate chart y^{i} on N,

$$
F^{*}\left(\sum_{\substack{I=\left(i_{0}, \ldots, i_{k-1}\right) \\ 0 \leq i_{0}, \ldots, i_{k-1}<n}} \omega_{I} \mathrm{~d} y^{I}\right)=\sum_{\substack{I=\left(i_{0}, \ldots, i_{k-1}\right) \\ 0 \leq i_{0}, \ldots, i_{k-1}<n}}\left(\omega_{I} \circ F\right) \mathrm{d}\left(y^{i_{0}} \circ F\right) \wedge \cdots \wedge \mathrm{d}\left(y^{i_{k-1}} \circ F\right) .
$$

(c) $F^{*}(\omega) \in \Omega^{k}(M)$.

Exercise 11.7. Define a 2 -form ω on \mathbb{R}^{3} by

$$
\omega=x \mathrm{~d} y \wedge \mathrm{~d} z+y \mathrm{~d} z \wedge \mathrm{~d} x+z \mathrm{~d} x \wedge \mathrm{~d} y
$$

(a) Compute ω in spherical coordinates.
(b) Show that $\left.\omega\right|_{\mathbb{S}^{2}}$ is nowhere 0 .
(c) Compute the exterior derivative $\mathrm{d} \omega$.

