Introduction to Differentiable Manifolds	
$\mathrm{EPFL}-\mathrm{Fall}\ 2022$	F. Carocci, M. Cossarini
Exercise Series E - Exam training	2022 - 12 - 20

Notes: the following rules will apply during the exam

- You are not allowed to use any electronic devices during the exam.
- You can have a single one-sided handwritten sheet of paper with your notes.
- All questions are worth the same number of points.
- Incomplete solutions may be awarded some points.

Exercise E.1. (a) Define the notion of a smooth map between two smooth manifolds.

- (b) State the constant rank theorem.
- (c) Explain what are immersions, embeddings and submersions.
- (d) Give an example of an immersion which is not an embedding (justify your answer).
- (e) Prove that all submersions are open maps.

Exercise E.2. Let M be a topological n-manifold with two smooth atlases \mathcal{A}_0 , \mathcal{A}_1 , defining two smooth manifolds $M_i = (M, \overline{\mathcal{A}_i})$. Show that the atlases \mathcal{A}_0 , \mathcal{A}_1 are equivalent if and only if the following condition holds: for every smooth manifold N and every continuous function $f : M \to N$, the function f is smooth as a function $M_0 \to N$ if and only if it is smooth as a function $M_1 \to N$.

Hint: Consider first the case where each atlas \mathcal{A}_i consists of a single chart.

Exercise E.3. For which values of $a \in \mathbb{R}$ is the set

$$M_a = \{(x, y) \in \mathbb{R}^2 \mid y^2 = x(x - 1)(x - a)\}$$

a smooth embedded curve ? For which values is M_a an immersed curve ? Note: A smooth embedded (resp. immersed) curve in \mathbb{R}^2 is the image of a smooth embedding (resp. immersion) $N \to \mathbb{R}^2$, where N is a smooth 1-manifold. *Hint:* At some moment the curve $\gamma(t) = (t^2, t(t^2 - 1))$ may be useful.

Exercise E.4. Show that every smooth submersion $f: M \to N$ between manifolds without boundary is an open map, i.e. for every open set $U \subseteq M$, the image f(U) is an open subset of N.

Exercise E.5. If X is a vector field on a manifold M, for each differentiable function $h: M \to \mathbb{R}$ we denote X(h) the function $M \to \mathbb{R}$ that maps $p \mapsto X|_p(h)$, where $X|_p$ acts on h as a derivation.

- (a) Show that if X is and h are smooth, then X(h) is smooth.
- (b) Show that if X and Y are smooth vector fields on M, then there exists a unique vector field Z such that

$$Z(h) = X(Y(h)) - Y(X(h)) \quad \forall h \in \mathcal{C}^{\infty}(M, \mathbb{R}).$$

Hint: Consider first the case where M is covered by a single chart.

(c) Show that if X, Y are smooth, then so Z.

Exercise E.6. Consider the 1-form $\theta = x \, dy - y \, dx$ on the circle $\mathbb{S}^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. Show that every smooth 1-form α on \mathbb{S}^1 is a smooth multiple of θ . That is, $\alpha = h \theta$ for some smooth function $h : \mathbb{S}^1 \to \mathbb{R}$.

Exercise E.7. Let M be a smooth n-manifold. Show that its tangent bundle TM, with its natural smooth structure, is an orientable smooth 2n-manifold.