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Exercise H.1. Show that the projective space Pn, defined as the quotient of Rn+1\{0}
by the equivalence relation x ∼ y iff x = λ y for some λ ∈ R \ {0}, is a smooth n-manifold

with atlas A = {(Ui, φi)}i=0,...,n given by

Ui := {[x] ∈ Pn | xi ̸= 0}, φi([x]) =

(
x0
xi
, . . . ,

x̂i
xi
, . . . ,

xn
xi

)
,

where [x] ∈ Pn denotes the equivalence class of a point x = (x0, . . . , xn) ∈ Rn+1\{0}.

Solution. We will prove several facts

(a) The quotient map π : Rn+1
̸=0 → Pn is open. Let U ⊆ Rn+1

̸=0 be an open set. To see

that π(U) is open in the quotient topology, we verify that its preimage π−1(π(U)) =⋃
λ ̸=0 λU is open, being a union of open sets λU .

(b) Pn is second countable. Cleary Rn+1
̸=0 is second countable, being a subspace of

the countable space Rn+1. Let (Wj)j∈N be a countable topological basis for Rn+1
̸=0 .

Then (π(Wj))j∈N is a countable basis for Pn, being the image of a topological basis

by a surjective open map.

(c) Pn is locally homeomorphic to Rn. To see that Ui is open in the quotient topology,

we verify that its preimage π−1(Ui) is open in Rn+1
̸=0 . And indeed, its preimage is

the set

Vi = {x ∈ Rn+1
̸=0 : xi ̸= 0},

which is open. To see that φi is a bijection, let’s find its inverse function. A direct

calculation provides us with the formula

φ−1
i (x0, . . . , xn−1) = [x0, . . . , xi−1, 1, xi, . . . , xn].

This formula also shows that φ−1
i is continuous. Finally, to see that φi itself is

continuous, it suffices to note that the composite map

φ̃i = φi ◦ π|Ui
Vi

: Vi → Rn

is continuous. (Here we are using the universal property of the quotient. The map

π|Ui
Vi

is a quotient map because it is surjective and open.) And indeed, the map

φ̃i(x0, . . . , xn) =

(
x0
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
is continuous. Thus φi is a homeomorphism between the open set Ui ⊆ Pn and

Rn.

(d) Pn is Hausdorff. Let [x], [y] be two distinct points of Pn. We will show there

are disjoint open neighboorhoods U, V of x, y in Rn+1
̸=0 that are saturated by the

equivalence relation ∼. Then it follows that π(U), π(V ) are disjoint respective

neighorhoods of [x], [y] in Pn.

We consider two cases. The first case is when both points x, y have a nonzero

coordinate at the same place, i.e. xi, yi ̸= 0 for some i. Then the points [x], [y] are

contained in the open subset Ui, which is homeomorphic to Rn, hence Hausdorff.

Thus there are disjoint open neighborhoods V,W of [x], [y] in Ui, and these sets

are also open in Pn.

The remaining case is when there is no i such that xi, yi ̸= 0. In this case let

i, j such that xi ̸= 0 (hence yi = 0) and yj ̸= 0 (hence xj = 0). Then we have in

Rn+1
̸=0 the saturated open sets

V = {z ∈ Rn+1
̸=0 : |zi| > |zj |}

W = {z ∈ Rn+1
̸=0 : |zj | > |zi|}

which are disjoint neighborhoods of x and y respectively.
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Alternative way of showing that an open quotient is Hausdorff: Show that the

relation R ⊆ (Rn+1 \ {0})2 consisting of the pairs (z, λz) is closed...

(e) Smooth structure.

Convention: All indices i, j, k are in the set n′ = n+ 1 = {0, . . . , n}.
For each i we have a chart ϕi : Ui → Rn′\{k} ≡ Rn, given by

Ui = {[x] ∈ Pn : xi ̸= 0} ⊆ Pn,

ϕi : [x] 7→
(
xj
xi

)
j ̸=i

.

Its inverse is ϕ−1
i : (yj)j ̸=i 7→ [xj ]j where xj := yj if j ̸= i and xi := 1.

The nontrivial transition functions are ϕk ◦ ϕ−1
i , with k ̸= i, defined on

ϕi(Uk) = {x ∈ Rn′\{i}) : xk ̸= 0}

by the formula

ϕk ◦ ϕ−1
i : y 7→ (

xj

yk
)j ̸=k,

where the xj is defined as above: xj = yj if j ̸= i, xi = 1. The transition maps

are smooth, therefore the atlas is smooth.

□

Exercise H.2 (to hand in). Prove the following

(a) Let c :M → N the constant map between two smooth manifolds; c is smooth

(b) Every smooth chart φ : U → φ(U) of M is a diffeomorphism; here U and φ(U)

are given the open subspace smooth structure defined in Exercise 1.4.

(c) The composite g ◦ f of two smooth maps f :M → N , g : N → P is smooth map.

(d) Show that the quotient map π : Rn+1 \ 0 → RPn is a smooth map of manifolds

where on RPn we considered the smooth structure defined in Exercise 1.7.

Exercise H.3. (To hand in) Consider the inclusion ι : S2 → R3, where we endow

both spaces with the standard smooth structure. Let p ∈ S2. What is the image of

Dpι : TpS
2 → TpR3? (Identify TpR3 with R3 in the standard way, i.e. ei 7→ ∂

∂xi |p) So the

result should be the equation for a plane in R3.)

Solution. We will do the computations for a point p = (p0, p1, p2) ∈ S2 such that p2 > 0.

(The other cases are similar.)

This point p is contained in the open set U = U+
2 = {x ∈ S2 : x2 > 0}, which is the

domain of the chart φ = φ+
2 : (x0, x1, x2) 7→ (x0, x1).

The local expression of the inclusion map ι : S2 → R3 with respect to the charts φ and

id3R is the map ι̃ : (x0, x1) 7→ (x0, x1,
√

1− (x0)2 − (x1)2), whose Jacobian matrix at the

point x = (x0, x1) = ι−1(p) is

Jxι̃ =

 1 0

0 1
−x0√

1−(x0)2−(x1)2
−x1√

1−(x0)2−(x1)2

 =

 1 0

0 1
−p0

p3
−p1

p3

 .

This implies that the differential Dpι sends the vectors ∂
∂φ0

∣∣∣
p
, ∂

∂φ1

∣∣∣
p
(which constitute a

basis of TpS
2) to the vectors

Dpι

(
∂

∂φ0

∣∣∣∣
p

)
=

∂

∂x0

∣∣∣∣
p

− p0

p3
∂

∂x2

∣∣∣∣
p

∼=
(
1, 0,−p

0

p3

)∣∣∣∣
p

,

Dpι

(
∂

∂φ1

∣∣∣∣
p

)
=

∂

∂x1

∣∣∣∣
p

− p1

p3
∂

∂x2

∣∣∣∣
p

∼=
(
0, 1,−p

1

p3

)∣∣∣∣
p

,
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Therefore, the image of Dpι is the vector space spanned by these two image vectors, which

coincides with the orthogonal space of p,

S = p⊥|p = {v|p : v ∈ R3 such that ⟨p, v⟩ = 0}.

□

Exercise H.4 (To hand in). Let f : M → N be an injective immersion of smooth

manifolds. Show that there exists a closed embedding M → N × R.
Hint: Recall that there exists a proper map g : M → R (Exercise 3.2)

Solution. The map h : M → N × R : x 7→ (f(x), g(x)) is an immersion and is proper,

hence it is a closed embedding.

Proof that h is proper: Let K ⊆ N × R a compact set. Note that K is closed in N

since it’s a compact subset of a Hausdorff space. It follows that h−1(K) is closed. In

addition h−1(K) is contained in the compact set g−1(π1(K)), where π1 : N × R → R is

the projection. Therefore h−1(K) is compact. This proves that h is proper, hence closed.

Since in addition it is injective, it’s a closed topological embedding.

Proof that h is an immersion: for each nonzero vector v ∈ TpM , the vector Tph(v) =

(Tpf(v), Tpg(v)) is nonzero because its first component Tpf(v) is nonzero. □

Exercise H.5 (To hand in). Show that the following subgroups of GLn(R) are closed

submanifolds. Compute their dimension and their tangent space at the identity.

(a) The special linear group SLn(R), consisting of matrices with determinant equal to

1.

Solution. The determinant function det : Mn → R is continuous, which implies

that the preimage of a closed (resp. open) set is a closed (resp. open) set. We have

already used this to show that the general linear group GLn = det−1(R ̸=0) is open

inMn. And now we can use it to show that the special linear group SLn = det−1(1)

is a closed subset of Mn. (And since SLn is contained in GLn, it is also closed in

GLn).

To show that SLn is a submanifold we use the regular preimage theorem. We

apply the theorem to the determinant map det :Mn → R, which is a smooth map

(by a previous exercise).

To apply the theorem we have to show that 1 is a regular value of det. Thus we

have to show that the linear transformation

DA det : TAMn ≡ Rn2 −→ Tdet(A)R ≡ R

is surjective for all points A ∈ SLn. Since the codomain of this linear transfor-

mation has dimension 1, we have two possibilities: either the transformation is

surjective (if it has rank 1) or it is null (if it has rank 0). Thus it suffices to

show that the transformation DA det is not null. We have already computed the

differential

DA det(X) = det(A) tr(A−1X)

Putting X := A we get

DA det(X) = det(A) tr(In) = n

This implies that DA det is surjective for every A ∈ SLn. Therefore SLn =

det−1(1) is an embedded submanifold of Mn of dimension

dim(SLn) = dim(Mn)− dim(R) = n2 − 1.

Finally, the regular preimage theorem also tells us that the tangent space of

SLn at any point A ∈ SLn is

TA(SLn) = Ker(DA det) = {X ∈Mn | tr(A−1X) = 0}

In particular,

TIn(SLn) = {X ∈Mn | tr(X) = 0}.
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We have shown that the tangent space of an open subset is equal to the tangent of

the whole manifold which contains this open subset, so here TpGLn(R) = TpMn(R)
since GLn(R) = det−1(R ̸=0) is an open subset of Mn(R). This implies that

dim(SLn(R)) = dimGLn(R)− 1 = n2 − 1.

□

(b) The orthogonal group On(R), consiting of the orthogonal matrices A (which satisfy

A⊤A = In).

Hint: Consider the map f : Mn → Msym
n that sends A 7→ A⊤A, there Msym

n is the vector space

of symmetric n× n matrices.

Solution. Note that f−1(In) = On. To apply the regular preimage theorem we

have to verify that In is a regular value of f . Thus we have to show that for each

point A ∈ On, the linear transformation

DAf : TMn ≡Mn −→ TM sym
n ≡M sym

n

is surjective. Note that

DAf(X) = A⊤X +X⊤A

= A⊤X + (A⊤X)⊤.

Let Y ∈ M sym
n be an antisymmetric matrix. Let us find some X ∈ Mn such that

DAf(X) = Y . We can write Y = 1
2Y + 1

2Y
⊤, thus it suffices to find X ∈Mn such

that A⊤X = 1
2Y . We put simply X = (A⊤)−1 1

2Y = 1
2AY . This finishes the proof

that In is a regular value of f . Therefore, by the regular preimage theorem, the

set On = f−1(In) is a closed embedded submanifold of Mn of dimension

dim(On) = dim(Mn)− dim(M sym
n ) = n2 − n(n+ 1)

2
=
n(n− 1)

2
.

Its tangent space at any point A ∈ On is

DAOn = Ker DAf = {X ∈ TMn | A⊤X +X⊤A = 0}

In particular, its tangent space at the identity matrix is

DIn(On) = {X ∈Mn | X +X⊤ = 0},

that is, the space of antisymmetric matrices. □

Exercise H.6 (To hand in). (a) Show that the map f : P2 → R3 defined by

f([x, y, z]) =
1

x2 + y2 + z2
(yz, xz, xy).

is smooth, and has injective differential except at 6 points.

(b) Show that the map g : P2 → R4 defined by

g([x, y, z]) =
1

x2 + y2 + z2
(yz, xz, xy, x2 − z2)

is a smooth embedding.

Exercise H.7. Show that there is a smooth vector field on S2 which vanishes at exactly

one point.

Hint: Try using stereographic projection and consider one of the coordinate vector fields.

Solution. Recall that

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}

Let us denote (u, v) the stereographic coordinates relative to the projection from the north

pole N = (0, 0, 1), that is, the map

ϕ : S2 \ {N} → R2

(x, y, z) 7→ (u, v) =

(
x

1− z
,

y

1− z

)
.

4



Introduction to Differentiable Manifolds Solutions Series H

(Note that we use the letters u, v to denote real numbers but also to denote the component

functions ϕ0, ϕ1 of the chart ϕ, which are functions S2 → R.)
Similarly, denote (u, v) the stereographic coordinates relative to the projection from the

south pole S = (0, 0,−1), which is the map

ψ : S2 \ {S} → R2

(x, y, z) 7→ (ū, v̄) =

(
x

1 + z
,

y

1 + z

)
The transition function ψ ◦ ϕ−1(u, v) is obtained after some computation:

(u, v) =

(
u

u2 + v2
,

v

u2 + v2

)
For this we use the inverse of the north stereographic projection which is

x =
2u

1 + u2 + v2
y =

2v

1 + u2 + v2
z =

−1 + u2 + v2

1 + u2 + v2
.

Let X = ∂
∂ϕ0 = ∂

∂u be the first coordinate vector field of the chart ϕ. This vector field

X is a non-vanishing smooth vector field defined on S2 \ {N}. (Its component functions

w.r.t. ϕ are just the constant functions 1 and 0; therefore X is smooth.) The important

step is to show that X extends to a smooth vector field defined on the whole sphere.

For this we compute the component functions w.r.t. ψ on the intersection of the two

charts, i.e. on S2 \ {N,S}:

X =
∂ψ0

∂ϕ0
∂

∂ψ1
+
∂ψ1

∂ϕ0
∂

∂ψ1

=
∂u

∂u

∂

∂u
+
∂v

∂u

∂

∂v

=
v2 − u2

(u2 + v2)2
∂

∂u
+

−2uv

(u2 + v2)2
∂

∂v

= (v2 − u2)
∂

∂u
− 2uv

∂

∂v

From this we see that X can be extended to a smooth vector field X on the whole sphere

by setting its value on the north pole to zero., i.e.

X|p =

{
∂
∂u

∣∣
p

if p ∈ S2 \ {N}
0 if p = N .

Then on S2 \ {S}

X = (v2 − u2)
∂

∂ψ1
− 2uv

∂

∂ψ2
on S2 \ {S}

so the component functions w.r.t. ψ are smooth as functions on S2 \{S}. By construction

the component functions of X w.r.t. ϕ are smooth as functions on S2 \ {N}.
Remark: We could also have used the reverse of the north stereographic projection to the sphere

x =
2u

1 + u2 + v2
y =

2v

1 + u2 + v2
z =

−1 + u2 + v2

1 + u2 + v2

to express ∂
∂ϕ1 in cartesian coordinates (a priori the expression below is only defined for (x, y, z) ∈ S2\{N})

(φ−1
N )∗

∂

∂u
=

2(1− u2 + v2)

(1 + u2 + v2)2
∂

∂x
+

4uv

(1 + u2 + v2)2
∂

∂y
+

4u

(1 + u2 + v2)2
∂

∂z

= (1− z − x2)
∂

∂x
+ xy

∂

∂y
+ x(1− z)

∂

∂z

and argue that this extends to a smooth vector field on the sphere. □

Exercise H.8. (To hand in) Compute the flows of the following vector fields.

(a) On the plane R2, the “angular” vector field X = x ∂
∂y − y ∂

∂x .
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Solution. The integral curves are of the form γ(t) =

(
r cos(t− t0)

r sin(t− t0)

)
, with t0 ∈ R

and r ≥ 0. We can rewrite them as

γ(t) =

(
r cos(t− t0)

r sin(t− t0)

)
=

(
r cos(t) cos(t0) + r sin(t) sin(t0)

r sin(t) cos(t0)− r cos(t) sin(t0)

)
=

(
cos t − sin t

sin t cos t

)(
r cos(t0)

−r sin(t0)

)
=

(
cos t − sin t

sin t cos t

)(
x0
y0

)

where (x0, y0) = γ(0). Thus the flow is Φt
X

(
x0
y0

)
=

(
cos t − sin t

sin t cos t

)(
x0
y0

)
, defined

for all points (x0, y0) ∈ R2 and all t ∈ R. □

(b) A constant vector field X on the torus Tn. (What is a constant vector field on the

torus?)

Solution. Note first that we have an identification T[p]Tn ≡ Rn for all points

[p] = π(p) ∈ Tn, where p ∈ Rn and π : Rn → Tn is the quotient map. This

identification is the linear transformation Dpπ, which is an isomorphism from

DpRn ≡ Rn to T[p]Tn. This identification Dpπ : Rn → DpTn is independent

of which preimage we choose for [p], since if p′ is another preimage and τ is the

translation of Rn that maps p 7→ p′, then π(x) = π ◦ τ , and therefore

Dpπ = Tp′π ◦ Tpτ ≡ Tp′π

since Dpτ ≡ idRn .

Thus we can talk about a constant vector field X on Tn. This means that

X[p] = a for all p ∈ Rn

for some fixed a ∈ Rn.

Let X̂ = π∗X be the vector field on Rn given by the similar formula X̂p = a

for all p ∈ Rn. Note that X̂ is π-related to X, where π : Rn → Tn is the quotient

map. Therefore π ◦ γ is an integral curve of X if γ is an integral curve of X̂.

For any point p ∈ Rn, the maximal integral curve of X̂ starting at the point p

is γ
X̂,p

(t) = p+ at. Therefore the curve

γX,[p](t) := π(γ
X̂,p

(t)) = [p+ ta]

is an integral curve of X. It has initial condition γX,[p](0) = [p] and it is maximal

because it is defined for all t.

Therefore the flow ofX is Φt
X [p] = [p+ta], which is defined for all points [p] ∈ Tn

and all t ∈ R. □

Exercise H.9 (to hand in). Consider the following 1-form on M = R3:

ω =
−4z dx

(x2 + 1)2
+

2y dy

y2 + 1
+

2x dz

x2 + 1

(a) Set up and compute the line integral of ω along the line going from (0, 0, 0) to

(1, 1, 1)
6
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Solution. This line is parametrized by the curve γ : t ∈ [0, 1] 7→ γ(t) = (t, t, t).

The velocity vector of this curve is γ′(t) = (1, 1, 1). Therefore the pullback of∫
γ
ω =

∫
[0,1]

γ∗ω

=

∫ 1

0

(
−4t

(t2 + 1)2
+

2t

t2 + 1
+

2t

t2 + 1

)
dt

=

∫ 1

0

−4t+ 4t(t2 + 1)

(t2 + 1)2
dt

=

∫ 1

0

4t3

(t2 + 1)2
dt

=

[
2

(
1

t2 + 1
+ log(t2 + 1)

)]t=1

t=0

= log(4)− 1

□

(b) Consider the smooth map Ψ : W → R3 given by (r, φ, θ) ∈ W := R+ × (0, 2π) ×
(0, π):

Ψ(r, φ, θ) = (r cosφ sin θ, r sinφ sin θ, r cos θ) ∈ R3.

Compute Ψ∗ω.

Exercise H.10 (to hand in ). For a point p ∈ R3 and vectors v, w ∈ TpR3 ≡ R3 we

define ω|p(v, w) := det(p | v | w). Show that ω is a smooth differential 2-form on R3, and

express ω as a linear combination of the elementary alternating 2-forms determined by the

standard coordinate chart (x0, x1, x2).

Solution. For each point p ∈ R3, the function ω|p(v, w) = det(p | v | w) is linear on each

of its two variables v, w ∈ R3, and also alternating, therefore ω is a differential form. The

elementary covector fields are dx0, dx1, dx2, and the elementary 2-forms are dx0 ∧ dx1,

dx1 ∧ dx2 and dx2 ∧ dx0. The calculation

ω|p(v, w) = det

p0 v0 w0

p1 v1 w1

p2 v2 w2

 = p0(v1w2 − v2w1)

+ p1(v2w0 − v0w2)

+ p2(v0w1 − v1w0)

shows that

ω|p = p0 dx1 ∧ dx2

+ p1 dx2 ∧ dx0

+ p2 dx0 ∧ dx1.

Thus the component functions of ω are the functions p 7→ pi which are smooth. This

shows that ω is a smooth 2-form. □
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