Exercise H.1. Show that the projective space \mathbb{P}^{n}, defined as the quotient of $\mathbb{R}^{n+1} \backslash\{0\}$ by the equivalence relation $x \sim y$ iff $x=\lambda y$ for some $\lambda \in \mathbb{R} \backslash\{0\}$, is a smooth n-manifold with atlas $\mathcal{A}=\left\{\left(U_{i}, \varphi_{i}\right)\right\}_{i=0, \ldots, n}$ given by

$$
U_{i}:=\left\{[x] \in \mathbb{P}^{n} \mid x_{i} \neq 0\right\}, \quad \varphi_{i}([x])=\left(\frac{x_{0}}{x_{i}}, \ldots, \frac{\widehat{x_{i}}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}\right)
$$

where $[x] \in \mathbb{P}^{n}$ denotes the equivalence class of a point $x=\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1} \backslash\{0\}$.
Solution. We will prove several facts
(a) The quotient map $\pi: \mathbb{R}_{\neq 0}^{n+1} \rightarrow \mathbb{P}^{n}$ is open. Let $U \subseteq \mathbb{R}_{\neq 0}^{n+1}$ be an open set. To see that $\pi(U)$ is open in the quotient topology, we verify that its preimage $\pi^{-1}(\pi(U))=$ $\bigcup_{\lambda \neq 0} \lambda U$ is open, being a union of open sets λU.
(b) \mathbb{P}^{n} is second countable. Cleary $\mathbb{R}_{\neq 0}^{n+1}$ is second countable, being a subspace of the countable space \mathbb{R}^{n+1}. Let $\left(W_{j}\right)_{j \in \mathbb{N}}$ be a countable topological basis for $\mathbb{R}_{\neq 0}^{n+1}$. Then $\left(\pi\left(W_{j}\right)\right)_{j \in \mathbb{N}}$ is a countable basis for \mathbb{P}^{n}, being the image of a topological basis by a surjective open map.
(c) \mathbb{P}^{n} is locally homeomorphic to \mathbb{R}^{n}. To see that U_{i} is open in the quotient topology, we verify that its preimage $\pi^{-1}\left(U_{i}\right)$ is open in $\mathbb{R}_{\neq 0}^{n+1}$. And indeed, its preimage is the set

$$
V_{i}=\left\{x \in \mathbb{R}_{\neq 0}^{n+1}: x_{i} \neq 0\right\},
$$

which is open. To see that φ_{i} is a bijection, let's find its inverse function. A direct calculation provides us with the formula

$$
\varphi_{i}^{-1}\left(x_{0}, \ldots, x_{n-1}\right)=\left[x_{0}, \ldots, x_{i-1}, 1, x_{i}, \ldots, x_{n}\right] .
$$

This formula also shows that φ_{i}^{-1} is continuous. Finally, to see that φ_{i} itself is continuous, it suffices to note that the composite map

$$
\widetilde{\varphi}_{i}=\left.\varphi_{i} \circ \pi\right|_{V_{i}} ^{U_{i}}: V_{i} \rightarrow \mathbb{R}^{n}
$$

is continuous. (Here we are using the universal property of the quotient. The map $\left.\pi\right|_{V_{i}} ^{U_{i}}$ is a quotient map because it is surjective and open.) And indeed, the map

$$
\widetilde{\varphi}_{i}\left(x_{0}, \ldots, x_{n}\right)=\left(\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{i-1}}{x_{i}}, \frac{x_{i+1}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}\right)
$$

is continuous. Thus φ_{i} is a homeomorphism between the open set $U_{i} \subseteq \mathbb{P}^{n}$ and \mathbb{R}^{n}.
(d) \mathbb{P}^{n} is Hausdorff. Let $[x],[y]$ be two distinct points of \mathbb{P}^{n}. We will show there are disjoint open neighboorhoods U, V of x, y in $\mathbb{R}_{\neq 0}^{n+1}$ that are saturated by the equivalence relation \sim. Then it follows that $\pi(U), \pi(V)$ are disjoint respective neighorhoods of $[x],[y]$ in \mathbb{P}^{n}.

We consider two cases. The first case is when both points x, y have a nonzero coordinate at the same place, i.e. $x_{i}, y_{i} \neq 0$ for some i. Then the points $[x],[y]$ are contained in the open subset U_{i}, which is homeomorphic to \mathbb{R}^{n}, hence Hausdorff. Thus there are disjoint open neighborhoods V, W of $[x],[y]$ in U_{i}, and these sets are also open in \mathbb{P}^{n}.

The remaining case is when there is no i such that $x_{i}, y_{i} \neq 0$. In this case let i, j such that $x_{i} \neq 0$ (hence $y_{i}=0$) and $y_{j} \neq 0$ (hence $x_{j}=0$). Then we have in $\mathbb{R}_{\neq 0}^{n+1}$ the saturated open sets

$$
\begin{aligned}
V & =\left\{z \in \mathbb{R}_{\neq 0}^{n+1}:\left|z_{i}\right|>\left|z_{j}\right|\right\} \\
W & =\left\{z \in \mathbb{R}_{\neq 0}^{n+1}:\left|z_{j}\right|>\left|z_{i}\right|\right\}
\end{aligned}
$$

which are disjoint neighborhoods of x and y respectively.

Alternative way of showing that an open quotient is Hausdorff: Show that the relation $R \subseteq\left(\mathbb{R}^{n+1} \backslash\{0\}\right)^{2}$ consisting of the pairs ($z, \lambda z$) is closed...
(e) Smooth structure.

Convention: All indices i, j, k are in the set $n^{\prime}=n+1=\{0, \ldots, n\}$.
For each i we have a chart $\phi_{i}: U_{i} \rightarrow \mathbb{R}^{n^{\prime} \backslash\{k\}} \equiv \mathbb{R}^{n}$, given by

$$
\begin{aligned}
U_{i}= & \left\{[x] \in \mathbb{P}^{n}: x^{i} \neq 0\right\} \subseteq \mathbb{P}^{n}, \\
& \phi_{i}:[x] \mapsto\left(\frac{x_{j}}{x_{i}}\right)_{j \neq i} .
\end{aligned}
$$

Its inverse is $\phi_{i}^{-1}:\left(y^{j}\right)_{j \neq i} \mapsto\left[x^{j}\right]_{j}$ where $x^{j}:=y^{j}$ if $j \neq i$ and $x^{i}:=1$.
The nontrivial transition functions are $\phi_{k} \circ \phi_{i}^{-1}$, with $k \neq i$, defined on

$$
\phi_{i}\left(U_{k}\right)=\left\{x \in \mathbb{R}^{\left.n^{\prime} \backslash\{i\}\right)}: x_{k} \neq 0\right\}
$$

by the formula

$$
\phi_{k} \circ \phi_{i}^{-1}: y \mapsto\left(\frac{x^{j}}{y_{k}}\right)_{j \neq k},
$$

where the x^{j} is defined as above: $x^{j}=y^{j}$ if $j \neq i, x^{i}=1$. The transition maps are smooth, therefore the atlas is smooth.

Exercise H. 2 (to hand in). Prove the following
(a) Let $c: M \rightarrow N$ the constant map between two smooth manifolds; c is smooth
(b) Every smooth chart $\varphi: U \rightarrow \varphi(U)$ of M is a diffeomorphism; here U and $\varphi(U)$ are given the open subspace smooth structure defined in Exercise 1.4.
(c) The composite $g \circ f$ of two smooth maps $f: M \rightarrow N, g: N \rightarrow P$ is smooth map.
(d) Show that the quotient map $\pi: \mathbb{R}^{n+1} \backslash 0 \rightarrow \mathbb{R}^{p}$ is a smooth map of manifolds where on $R \mathbb{P}^{n}$ we considered the smooth structure defined in Exercise 1.7.

Exercise H.3. (To hand in) Consider the inclusion $\iota: S^{2} \rightarrow \mathbb{R}^{3}$, where we endow both spaces with the standard smooth structure. Let $p \in S^{2}$. What is the image of $D_{p} \iota: T_{p} S^{2} \rightarrow T_{p} \mathbb{R}^{3}$? (Identify $T_{p} \mathbb{R}^{3}$ with \mathbb{R}^{3} in the standard way, i.e. $\left.e_{i} \mapsto \frac{\partial}{\partial x^{2}}\right|_{p}$) So the result should be the equation for a plane in \mathbb{R}^{3}.)

Solution. We will do the computations for a point $p=\left(p^{0}, p^{1}, p^{2}\right) \in S^{2}$ such that $p^{2}>0$. (The other cases are similar.)
This point p is contained in the open set $U=U_{2}^{+}=\left\{x \in S^{2}: x^{2}>0\right\}$, which is the domain of the chart $\varphi=\varphi_{2}^{+}:\left(x^{0}, x^{1}, x^{2}\right) \mapsto\left(x^{0}, x^{1}\right)$.

The local expression of the inclusion map $\iota: S^{2} \rightarrow \mathbb{R}^{3}$ with respect to the charts φ and $\operatorname{id}_{\mathbb{R}}^{3}$ is the map $\widetilde{\iota}:\left(x^{0}, x^{1}\right) \mapsto\left(x^{0}, x^{1}, \sqrt{1-\left(x^{0}\right)^{2}-\left(x^{1}\right)^{2}}\right)$, whose Jacobian matrix at the point $x=\left(x_{0}, x_{1}\right)=\iota^{-1}(p)$ is

$$
J_{x} \widetilde{\imath}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\frac{-x^{0}}{\sqrt{1-\left(x^{0}\right)^{2}-\left(x^{1}\right)^{2}}} & \frac{-x^{1}}{\sqrt{1-\left(x^{0}\right)^{2}-\left(x^{1}\right)^{2}}}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\frac{-p^{0}}{p^{3}} & \frac{-p^{1}}{p^{3}}
\end{array}\right) .
$$

This implies that the differential $\mathrm{D}_{p} \iota$ sends the vectors $\left.\frac{\partial}{\partial \varphi^{0}}\right|_{p},\left.\frac{\partial}{\partial \varphi^{1}}\right|_{p}$ (which constitute a basis of $T_{p} S^{2}$) to the vectors

$$
\begin{aligned}
& \mathrm{D}_{p} \iota\left(\left.\frac{\partial}{\partial \varphi^{0}}\right|_{p}\right)=\left.\frac{\partial}{\partial x^{0}}\right|_{p}-\left.\left.\frac{p^{0}}{p^{3}} \frac{\partial}{\partial x^{2}}\right|_{p} \cong\left(1,0,-\frac{p^{0}}{p^{3}}\right)\right|_{p}, \\
& \mathrm{D}_{p} \iota\left(\left.\frac{\partial}{\partial \varphi^{1}}\right|_{p}\right)=\left.\frac{\partial}{\partial x^{1}}\right|_{p}-\left.\left.\frac{p^{1}}{p^{3}} \frac{\partial}{\partial x^{2}}\right|_{p} \cong\left(0,1,-\frac{p^{1}}{p^{3}}\right)\right|_{p}
\end{aligned}
$$

Therefore, the image of $D_{p} \iota$ is the vector space spanned by these two image vectors, which coincides with the orthogonal space of p,

$$
S=\left.p^{\perp}\right|_{p}=\left\{\left.v\right|_{p}: v \in \mathbb{R}^{3} \text { such that }\langle p, v\rangle=0\right\} .
$$

Exercise H. 4 (To hand in). Let $f: M \rightarrow N$ be an injective immersion of smooth manifolds. Show that there exists a closed embedding $M \rightarrow N \times \mathbb{R}$.
Hint: Recall that there exists a proper map $g: M \rightarrow \mathbb{R}$ (Exercise 3.2)
Solution. The map $h: M \rightarrow N \times \mathbb{R}: x \mapsto(f(x), g(x))$ is an immersion and is proper, hence it is a closed embedding.

Proof that h is proper: Let $K \subseteq N \times \mathbb{R}$ a compact set. Note that K is closed in N since it's a compact subset of a Hausdorff space. It follows that $h^{-1}(K)$ is closed. In addition $h^{-1}(K)$ is contained in the compact set $g^{-1}\left(\pi_{1}(K)\right)$, where $\pi_{1}: N \times \mathbb{R} \rightarrow \mathbb{R}$ is the projection. Therefore $h^{-1}(K)$ is compact. This proves that h is proper, hence closed. Since in addition it is injective, it's a closed topological embedding.

Proof that h is an immersion: for each nonzero vector $v \in \mathrm{~T}_{p} M$, the vector $\mathrm{T}_{p} h(v)=$ ($\mathrm{T}_{p} f(v), \mathrm{T}_{p} g(v)$) is nonzero because its first component $\mathrm{T}_{p} f(v)$ is nonzero.
Exercise H. 5 (To hand in). Show that the following subgroups of $G L_{n}(\mathbb{R})$ are closed submanifolds. Compute their dimension and their tangent space at the identity.
(a) The special linear group $\mathrm{SL}_{n}(\mathbb{R})$, consisting of matrices with determinant equal to 1.

Solution. The determinant function det : $M_{n} \rightarrow \mathbb{R}$ is continuous, which implies that the preimage of a closed (resp. open) set is a closed (resp. open) set. We have already used this to show that the general linear group $G L_{n}=\operatorname{det}^{-1}\left(\mathbb{R}_{\neq 0}\right)$ is open in M_{n}. And now we can use it to show that the special linear group $S L_{n}=\operatorname{det}^{-1}(1)$ is a closed subset of M_{n}. (And since $S L_{n}$ is contained in $G L_{n}$, it is also closed in $G L_{n}$).

To show that $S L_{n}$ is a submanifold we use the regular preimage theorem. We apply the theorem to the determinant map det : $M_{n} \rightarrow \mathbb{R}$, which is a smooth map (by a previous exercise).

To apply the theorem we have to show that 1 is a regular value of det. Thus we have to show that the linear transformation

$$
\mathrm{D}_{A} \operatorname{det}: \mathrm{T}_{A} M_{n} \equiv \mathbb{R}^{n^{2}} \longrightarrow \mathrm{~T}_{\operatorname{det}(A)} \mathbb{R} \equiv \mathbb{R}
$$

is surjective for all points $A \in S L_{n}$. Since the codomain of this linear transformation has dimension 1, we have two possibilities: either the transformation is surjective (if it has rank 1) or it is null (if it has rank 0). Thus it suffices to show that the transformation D_{A} det is not null. We have already computed the differential

$$
\mathrm{D}_{A} \operatorname{det}(X)=\operatorname{det}(A) \operatorname{tr}\left(A^{-1} X\right)
$$

Putting $X:=A$ we get

$$
\mathrm{D}_{A} \operatorname{det}(X)=\operatorname{det}(A) \operatorname{tr}\left(I_{n}\right)=n
$$

This implies that D_{A} det is surjective for every $A \in S L_{n}$. Therefore $S L_{n}=$ $\operatorname{det}^{-1}(1)$ is an embedded submanifold of M_{n} of dimension

$$
\operatorname{dim}\left(S L_{n}\right)=\operatorname{dim}\left(M_{n}\right)-\operatorname{dim}(\mathbb{R})=n^{2}-1
$$

Finally, the regular preimage theorem also tells us that the tangent space of $S L_{n}$ at any point $A \in S L_{n}$ is

$$
\mathrm{T}_{A}\left(S L_{n}\right)=\operatorname{Ker}\left(\mathrm{D}_{A} \operatorname{det}\right)=\left\{X \in M_{n} \mid \operatorname{tr}\left(A^{-1} X\right)=0\right\}
$$

In particular,

$$
\mathrm{T}_{I_{n}}\left(S L_{n}\right)=\underset{3}{\left\{X \in M_{n} \mid \operatorname{tr}(X)=0\right\} .}
$$

We have shown that the tangent space of an open subset is equal to the tangent of the whole manifold which contains this open subset, so here $T_{p} G L_{n}(\mathbb{R})=T_{p} M_{n}(\mathbb{R})$ since $G L_{n}(\mathbb{R})=\operatorname{det}^{-1}\left(\mathbb{R}_{\neq 0}\right)$ is an open subset of $M_{n}(\mathbb{R})$. This implies that

$$
\operatorname{dim}\left(S L_{n}(\mathbb{R})\right)=\operatorname{dim} G L_{n}(\mathbb{R})-1=n^{2}-1
$$

(b) The orthogonal group $O_{n}(\mathbb{R})$, consiting of the orthogonal matrices A (which satisfy $A^{\top} A=I_{n}$.
Hint: Consider the map $f: M_{n} \rightarrow M_{n}^{s y m}$ that sends $A \mapsto A^{\top} A$, there $M_{n}^{s y m}$ is the vector space of symmetric $n \times n$ matrices.
Solution. Note that $f^{-1}\left(I_{n}\right)=O_{n}$. To apply the regular preimage theorem we have to verify that I_{n} is a regular value of f. Thus we have to show that for each point $A \in O_{n}$, the linear transformation

$$
\mathrm{D}_{A} f: \mathrm{T} M_{n} \equiv M_{n} \longrightarrow \mathrm{~T} M_{n}^{s y m} \equiv M_{n}^{s y m}
$$

is surjective. Note that

$$
\begin{aligned}
\mathrm{D}_{A} f(X) & =A^{\top} X+X^{\top} A \\
& =A^{\top} X+\left(A^{\top} X\right)^{\top} .
\end{aligned}
$$

Let $Y \in M_{n}^{\text {sym }}$ be an antisymmetric matrix. Let us find some $X \in M_{n}$ such that $\mathrm{D}_{A} f(X)=Y$. We can write $Y=\frac{1}{2} Y+\frac{1}{2} Y^{\top}$, thus it suffices to find $X \in M_{n}$ such that $A^{\top} X=\frac{1}{2} Y$. We put simply $X=\left(A^{\top}\right)^{-1} \frac{1}{2} Y=\frac{1}{2} A Y$. This finishes the proof that I_{n} is a regular value of f. Therefore, by the regular preimage theorem, the set $O_{n}=f^{-1}\left(I_{n}\right)$ is a closed embedded submanifold of M_{n} of dimension

$$
\operatorname{dim}\left(O_{n}\right)=\operatorname{dim}\left(M_{n}\right)-\operatorname{dim}\left(M_{n}^{s y m}\right)=n^{2}-\frac{n(n+1)}{2}=\frac{n(n-1)}{2} .
$$

Its tangent space at any point $A \in O_{n}$ is

$$
D_{A} O_{n}=\operatorname{Ker} \mathrm{D}_{A} f=\left\{X \in \mathrm{~T} M_{n} \mid A^{\top} X+X^{\top} A=0\right\}
$$

In particular, its tangent space at the identity matrix is

$$
D_{I_{n}}\left(O_{n}\right)=\left\{X \in M_{n} \mid X+X^{\top}=0\right\},
$$

that is, the space of antisymmetric matrices.
Exercise H. 6 (To hand in). (a) Show that the map $f: \mathbb{P}^{2} \rightarrow \mathbb{R}^{3}$ defined by

$$
f([x, y, z])=\frac{1}{x^{2}+y^{2}+z^{2}}(y z, x z, x y) .
$$

is smooth, and has injective differential except at 6 points.
(b) Show that the map $g: \mathbb{P}^{2} \rightarrow \mathbb{R}^{4}$ defined by

$$
g([x, y, z])=\frac{1}{x^{2}+y^{2}+z^{2}}\left(y z, x z, x y, x^{2}-z^{2}\right)
$$

is a smooth embedding.
Exercise H.7. Show that there is a smooth vector field on S^{2} which vanishes at exactly one point.
Hint: Try using stereographic projection and consider one of the coordinate vector fields.
Solution. Recall that

$$
\mathbb{S}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}
$$

Let us denote (u, v) the stereographic coordinates relative to the projection from the north pole $N=(0,0,1)$, that is, the map

$$
\begin{aligned}
\phi: \mathbb{S}^{2} \backslash\{N\} & \rightarrow \mathbb{R}^{2} \\
(x, y, z) & \mapsto(u, v)=\left(\frac{x}{1-z}, \frac{y}{1-z}\right) .
\end{aligned}
$$

(Note that we use the letters u, v to denote real numbers but also to denote the component functions ϕ^{0}, ϕ^{1} of the chart ϕ, which are functions $\mathbb{S}^{2} \rightarrow \mathbb{R}$.)

Similarly, denote (\bar{u}, \bar{v}) the stereographic coordinates relative to the projection from the south pole $S=(0,0,-1)$, which is the map

$$
\begin{aligned}
\psi: \mathbb{S}^{2} \backslash\{S\} & \rightarrow \mathbb{R}^{2} \\
(x, y, z) & \mapsto(\bar{u}, \bar{v})=\left(\frac{x}{1+z}, \frac{y}{1+z}\right)
\end{aligned}
$$

The transition function $\psi \circ \phi^{-1}(u, v)$ is obtained after some computation:

$$
(\bar{u}, \bar{v})=\left(\frac{u}{u^{2}+v^{2}}, \frac{v}{u^{2}+v^{2}}\right)
$$

For this we use the inverse of the north stereographic projection which is

$$
x=\frac{2 u}{1+u^{2}+v^{2}} \quad y=\frac{2 v}{1+u^{2}+v^{2}} \quad z=\frac{-1+u^{2}+v^{2}}{1+u^{2}+v^{2}} .
$$

Let $X=\frac{\partial}{\partial \phi^{0}}=\frac{\partial}{\partial u}$ be the first coordinate vector field of the chart ϕ. This vector field X is a non-vanishing smooth vector field defined on $\mathbb{S}^{2} \backslash\{N\}$. (Its component functions w.r.t. ϕ are just the constant functions 1 and 0 ; therefore X is smooth.) The important step is to show that X extends to a smooth vector field defined on the whole sphere.

For this we compute the component functions w.r.t. ψ on the intersection of the two charts, i.e. on $\mathbb{S}^{2} \backslash\{N, S\}$:

$$
\begin{aligned}
X & =\frac{\partial \psi^{0}}{\partial \phi^{0}} \frac{\partial}{\partial \psi^{1}}+\frac{\partial \psi^{1}}{\partial \phi^{0}} \frac{\partial}{\partial \psi^{1}} \\
& =\frac{\partial \bar{u}}{\partial u} \frac{\partial}{\partial \bar{u}}+\frac{\partial \bar{v}}{\partial u} \frac{\partial}{\partial \bar{v}} \\
& =\frac{v^{2}-u^{2}}{\left(u^{2}+v^{2}\right)^{2}} \frac{\partial}{\partial \bar{u}}+\frac{-2 u v}{\left(u^{2}+v^{2}\right)^{2}} \frac{\partial}{\partial \bar{v}} \\
& =\left(\bar{v}^{2}-\bar{u}^{2}\right) \frac{\partial}{\partial \bar{u}}-2 \overline{u v} \frac{\partial}{\partial \bar{v}}
\end{aligned}
$$

From this we see that X can be extended to a smooth vector field X on the whole sphere by setting its value on the north pole to zero., i.e.

$$
\left.X\right|_{p}= \begin{cases}\left.\frac{\partial}{\partial u}\right|_{p} & \text { if } p \in \mathbb{S}^{2} \backslash\{N\} \\ 0 & \text { if } p=N\end{cases}
$$

Then on $\mathbb{S}^{2} \backslash\{S\}$

$$
X=\left(\bar{v}^{2}-\bar{u}^{2}\right) \frac{\partial}{\partial \psi^{1}}-2 \overline{u v} \frac{\partial}{\partial \psi^{2}} \quad \text { on } \mathbb{S}^{2} \backslash\{S\}
$$

so the component functions w.r.t. ψ are smooth as functions on $\mathbb{S}^{2} \backslash\{S\}$. By construction the component functions of X w.r.t. ϕ are smooth as functions on $\mathbb{S}^{2} \backslash\{N\}$.

Remark: We could also have used the reverse of the north stereographic projection to the sphere

$$
x=\frac{2 u}{1+u^{2}+v^{2}} \quad y=\frac{2 v}{1+u^{2}+v^{2}} \quad z=\frac{-1+u^{2}+v^{2}}{1+u^{2}+v^{2}}
$$

to express $\frac{\partial}{\partial \phi^{1}}$ in cartesian coordinates (a priori the expression below is only defined for $(x, y, z) \in \mathbb{S}^{2} \backslash\{N\}$)

$$
\begin{aligned}
\left(\varphi_{N}^{-1}\right)_{*} \frac{\partial}{\partial u} & =\frac{2\left(1-u^{2}+v^{2}\right)}{\left(1+u^{2}+v^{2}\right)^{2}} \frac{\partial}{\partial x}+\frac{4 u v}{\left(1+u^{2}+v^{2}\right)^{2}} \frac{\partial}{\partial y}+\frac{4 u}{\left(1+u^{2}+v^{2}\right)^{2}} \frac{\partial}{\partial z} \\
& =\left(1-z-x^{2}\right) \frac{\partial}{\partial x}+x y \frac{\partial}{\partial y}+x(1-z) \frac{\partial}{\partial z}
\end{aligned}
$$

and argue that this extends to a smooth vector field on the sphere.
Exercise H.8. (To hand in) Compute the flows of the following vector fields.
(a) On the plane \mathbb{R}^{2}, the "angular" vector field $X=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}$.

Solution. The integral curves are of the form $\gamma(t)=\binom{r \cos \left(t-t_{0}\right)}{r \sin \left(t-t_{0}\right)}$, with $t_{0} \in \mathbb{R}$ and $r \geq 0$. We can rewrite them as

$$
\begin{aligned}
\gamma(t) & =\binom{r \cos \left(t-t_{0}\right)}{r \sin \left(t-t_{0}\right)} \\
& =\binom{r \cos (t) \cos \left(t_{0}\right)+r \sin (t) \sin \left(t_{0}\right)}{r \sin (t) \cos \left(t_{0}\right)-r \cos (t) \sin \left(t_{0}\right)} \\
& =\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)\binom{r \cos \left(t_{0}\right)}{-r \sin \left(t_{0}\right)} \\
& =\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)\binom{x_{0}}{y_{0}}
\end{aligned}
$$

where $\left(x_{0}, y_{0}\right)=\gamma(0)$. Thus the flow is $\Phi_{X}^{t}\binom{x_{0}}{y_{0}}=\left(\begin{array}{cc}\cos t & -\sin t \\ \sin t & \cos t\end{array}\right)\binom{x_{0}}{y_{0}}$, defined for all points $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ and all $t \in \mathbb{R}$.
(b) A constant vector field X on the torus \mathbb{T}^{n}. (What is a constant vector field on the torus?)
Solution. Note first that we have an identification $\mathrm{T}_{[p]} \mathbb{T}^{n} \equiv \mathbb{R}^{n}$ for all points $[p]=\pi(p) \in \mathbb{T}^{n}$, where $p \in \mathbb{R}^{n}$ and $\pi: \mathbb{R}^{n} \rightarrow \mathbb{T}^{n}$ is the quotient map. This identification is the linear transformation $D_{p} \pi$, which is an isomorphism from $D_{p} \mathbb{R}^{n} \equiv \mathbb{R}^{n}$ to $\mathrm{T}_{[p]} \mathbb{T}^{n}$. This identification $D_{p} \pi: \mathbb{R}^{n} \rightarrow D_{p} \mathbb{T}^{n}$ is independent of which preimage we choose for $[p]$, since if p^{\prime} is another preimage and τ is the translation of \mathbb{R}^{n} that maps $p \mapsto p^{\prime}$, then $\pi(x)=\pi \circ \tau$, and therefore

$$
D_{p} \pi=\mathrm{T}_{p^{\prime}} \pi \circ \mathrm{T}_{p} \tau \equiv \mathrm{~T}_{p^{\prime}} \pi
$$

since $D_{p} \tau \equiv \mathrm{id}_{\mathbb{R}^{n}}$.
Thus we can talk about a constant vector field X on \mathbb{T}^{n}. This means that

$$
X_{[p]}=a \quad \text { for all } p \in \mathbb{R}^{n}
$$

for some fixed $a \in \mathbb{R}^{n}$.
Let $\widehat{X}=\pi^{*} X$ be the vector field on \mathbb{R}^{n} given by the similar formula $\widehat{X}_{p}=a$ for all $p \in \mathbb{R}^{n}$. Note that \widehat{X} is π-related to X, where $\pi: \mathbb{R}^{n} \rightarrow \mathbb{T}^{n}$ is the quotient map. Therefore $\pi \circ \gamma$ is an integral curve of X if γ is an integral curve of \widehat{X}.

For any point $p \in \mathbb{R}^{n}$, the maximal integral curve of \widehat{X} starting at the point p is $\gamma_{\widehat{X}, p}(t)=p+a t$. Therefore the curve

$$
\gamma_{X,[p]}(t):=\pi\left(\gamma_{\widehat{X}, p}(t)\right)=[p+t a]
$$

is an integral curve of X. It has initial condition $\gamma_{X,[p]}(0)=[p]$ and it is maximal because it is defined for all t.

Therefore the flow of X is $\Phi_{X}^{t}[p]=[p+t a]$, which is defined for all points $[p] \in \mathbb{T}^{n}$ and all $t \in \mathbb{R}$.

Exercise H. 9 (to hand in). Consider the following 1-form on $M=\mathbb{R}^{3}$:

$$
\omega=\frac{-4 z \mathrm{~d} x}{\left(x^{2}+1\right)^{2}}+\frac{2 y \mathrm{~d} y}{y^{2}+1}+\frac{2 x \mathrm{~d} z}{x^{2}+1}
$$

(a) Set up and compute the line integral of ω along the line going from $(0,0,0)$ to $(1,1,1)$

Solution. This line is parametrized by the curve $\gamma: t \in[0,1] \mapsto \gamma(t)=(t, t, t)$. The velocity vector of this curve is $\gamma^{\prime}(t)=(1,1,1)$. Therefore the pullback of

$$
\begin{aligned}
\int_{\gamma} \omega & =\int_{[0,1]} \gamma^{*} \omega \\
& =\int_{0}^{1}\left(\frac{-4 t}{\left(t^{2}+1\right)^{2}}+\frac{2 t}{t^{2}+1}+\frac{2 t}{t^{2}+1}\right) \mathrm{d} t \\
& =\int_{0}^{1} \frac{-4 t+4 t\left(t^{2}+1\right)}{\left(t^{2}+1\right)^{2}} \mathrm{~d} t \\
& =\int_{0}^{1} \frac{4 t^{3}}{\left(t^{2}+1\right)^{2}} \mathrm{~d} t \\
& =\left[2\left(\frac{1}{t^{2}+1}+\log \left(t^{2}+1\right)\right)\right]_{t=0}^{t=1} \\
& =\log (4)-1
\end{aligned}
$$

(b) Consider the smooth map $\Psi: W \rightarrow \mathbb{R}^{3}$ given by $(r, \varphi, \theta) \in W:=\mathbb{R}^{+} \times(0,2 \pi) \times$ $(0, \pi)$:

$$
\Psi(r, \varphi, \theta)=(r \cos \varphi \sin \theta, r \sin \varphi \sin \theta, r \cos \theta) \in \mathbb{R}^{3} .
$$

Compute $\Psi^{*} \omega$.
Exercise H. 10 (to hand in). For a point $p \in \mathbb{R}^{3}$ and vectors $v, w \in \mathrm{~T}_{p} \mathbb{R}^{3} \equiv \mathbb{R}^{3}$ we define $\left.\omega\right|_{p}(v, w):=\operatorname{det}(p|v| w)$. Show that ω is a smooth differential 2 -form on \mathbb{R}^{3}, and express ω as a linear combination of the elementary alternating 2 -forms determined by the standard coordinate chart $\left(x^{0}, x^{1}, x^{2}\right)$.

Solution. For each point $p \in \mathbb{R}^{3}$, the function $\left.\omega\right|_{p}(v, w)=\operatorname{det}(p|v| w)$ is linear on each of its two variables $v, w \in \mathbb{R}^{3}$, and also alternating, therefore ω is a differential form. The elementary covector fields are $\mathrm{d} x^{0}, \mathrm{~d} x^{1}, \mathrm{~d} x^{2}$, and the elementary 2-forms are $\mathrm{d} x^{0} \wedge \mathrm{~d} x^{1}$, $\mathrm{d} x^{1} \wedge \mathrm{~d} x^{2}$ and $\mathrm{d} x^{2} \wedge \mathrm{~d} x^{0}$. The calculation

$$
\begin{aligned}
\left.\omega\right|_{p}(v, w)=\operatorname{det}\left(\begin{array}{ccc}
p^{0} & v^{0} & w^{0} \\
p^{1} & v^{1} & w^{1} \\
p^{2} & v^{2} & w^{2}
\end{array}\right)= & p^{0}\left(v^{1} w^{2}-v^{2} w^{1}\right) \\
& +p^{1}\left(v^{2} w^{0}-v^{0} w^{2}\right) \\
& +p^{2}\left(v^{0} w^{1}-v^{1} w^{0}\right)
\end{aligned}
$$

shows that

$$
\begin{aligned}
\left.\omega\right|_{p}= & p^{0} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2} \\
& +p^{1} \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{0} \\
& +p^{2} \mathrm{~d} x^{0} \wedge \mathrm{~d} x^{1} .
\end{aligned}
$$

Thus the component functions of ω are the functions $p \mapsto p^{i}$ which are smooth. This shows that ω is a smooth 2 -form.

