Introduction to Differentiable Manifolds				
$EPFL - Fall \ 2022$	F. Carocci, M. Cossarini			
Solutions Series H - Homework solutions	2021 – 11 – 20			

Exercise H.1. Show that the **projective space** \mathbb{P}^n , defined as the quotient of $\mathbb{R}^{n+1}\setminus\{0\}$ by the equivalence relation $x \sim y$ iff $x = \lambda y$ for some $\lambda \in \mathbb{R} \setminus \{0\}$, is a smooth *n*-manifold with atlas $\mathcal{A} = \{(U_i, \varphi_i)\}_{i=0,...,n}$ given by

$$U_i := \{ [x] \in \mathbb{P}^n \mid x_i \neq 0 \}, \qquad \varphi_i([x]) = \left(\frac{x_0}{x_i}, \dots, \frac{\widehat{x_i}}{x_i}, \dots, \frac{x_n}{x_i} \right),$$

where $[x] \in \mathbb{P}^n$ denotes the equivalence class of a point $x = (x_0, \ldots, x_n) \in \mathbb{R}^{n+1} \setminus \{0\}$.

Solution. We will prove several facts

- (a) The quotient map $\pi : \mathbb{R}_{\neq 0}^{n+1} \to \mathbb{P}^n$ is open. Let $U \subseteq \mathbb{R}_{\neq 0}^{n+1}$ be an open set. To see that $\pi(U)$ is open in the quotient topology, we verify that its preimage $\pi^{-1}(\pi(U)) = \bigcup_{\lambda \neq 0} \lambda U$ is open, being a union of open sets λU .
- (b) \mathbb{P}^n is second countable. Cleary $\mathbb{R}_{\neq 0}^{n+1}$ is second countable, being a subspace of the countable space \mathbb{R}^{n+1} . Let $(W_j)_{j\in\mathbb{N}}$ be a countable topological basis for $\mathbb{R}_{\neq 0}^{n+1}$. Then $(\pi(W_j))_{j\in\mathbb{N}}$ is a countable basis for \mathbb{P}^n , being the image of a topological basis by a surjective open map.
- (c) \mathbb{P}^n is locally homeomorphic to \mathbb{R}^n . To see that U_i is open in the quotient topology, we verify that its preimage $\pi^{-1}(U_i)$ is open in $\mathbb{R}^{n+1}_{\neq 0}$. And indeed, its preimage is the set

$$V_i = \{ x \in \mathbb{R}_{\neq 0}^{n+1} : x_i \neq 0 \},\$$

which is open. To see that φ_i is a bijection, let's find its inverse function. A direct calculation provides us with the formula

$$\varphi_i^{-1}(x_0,\ldots,x_{n-1}) = [x_0,\ldots,x_{i-1},1,x_i,\ldots,x_n].$$

This formula also shows that φ_i^{-1} is continuous. Finally, to see that φ_i itself is continuous, it suffices to note that the composite map

$$\widetilde{\varphi}_i = \varphi_i \circ \pi|_{V_i}^{U_i} : V_i \to \mathbb{R}^n$$

is continuous. (Here we are using the universal property of the quotient. The map $\pi|_{V_i}^{U_i}$ is a quotient map because it is surjective and open.) And indeed, the map

$$\widetilde{\varphi}_i(x_0,\ldots,x_n) = \left(\frac{x_0}{x_i},\ldots,\frac{x_{i-1}}{x_i},\frac{x_{i+1}}{x_i},\ldots,\frac{x_n}{x_i}\right)$$

is continuous. Thus φ_i is a homeomorphism between the open set $U_i \subseteq \mathbb{P}^n$ and \mathbb{R}^n .

(d) \mathbb{P}^n is Hausdorff. Let [x], [y] be two distinct points of \mathbb{P}^n . We will show there are disjoint open neighboorhoods U, V of x, y in $\mathbb{R}^{n+1}_{\neq 0}$ that are saturated by the equivalence relation \sim . Then it follows that $\pi(U), \pi(V)$ are disjoint respective neighborhoods of [x], [y] in \mathbb{P}^n .

We consider two cases. The first case is when both points x, y have a nonzero coordinate at the same place, i.e. $x_i, y_i \neq 0$ for some *i*. Then the points [x], [y] are contained in the open subset U_i , which is homeomorphic to \mathbb{R}^n , hence Hausdorff. Thus there are disjoint open neighborhoods V, W of [x], [y] in U_i , and these sets are also open in \mathbb{P}^n .

The remaining case is when there is no *i* such that $x_i, y_i \neq 0$. In this case let i, j such that $x_i \neq 0$ (hence $y_i = 0$) and $y_j \neq 0$ (hence $x_j = 0$). Then we have in $\mathbb{R}^{n+1}_{\neq 0}$ the saturated open sets

$$V = \{ z \in \mathbb{R}_{\neq 0}^{n+1} : |z_i| > |z_j| \}$$
$$W = \{ z \in \mathbb{R}_{\neq 0}^{n+1} : |z_j| > |z_i| \}$$

which are disjoint neighborhoods of x and y respectively.

Alternative way of showing that an open quotient is Hausdorff: Show that the relation $R \subseteq (\mathbb{R}^{n+1} \setminus \{0\})^2$ consisting of the pairs $(z, \lambda z)$ is closed...

(e) Smooth structure.

Convention: All indices i, j, k are in the set $n' = n + 1 = \{0, \ldots, n\}$. For each i we have a chart $\phi_i : U_i \to \mathbb{R}^{n' \setminus \{k\}} \equiv \mathbb{R}^n$, given by

$$U_i = \{ [x] \in \mathbb{P}^n : x^i \neq 0 \} \subseteq \mathbb{P}^i$$
$$\phi_i : [x] \mapsto \left(\frac{x_j}{x_i}\right)_{j \neq i}.$$

Its inverse is $\phi_i^{-1}: (y^j)_{j \neq i} \mapsto [x^j]_j$ where $x^j := y^j$ if $j \neq i$ and $x^i := 1$. The nontrivial transition functions are $\phi_k \circ \phi_i^{-1}$, with $k \neq i$, defined on

$$\phi_i(U_k) = \{ x \in \mathbb{R}^{n' \setminus \{i\}\}} : x_k \neq 0 \}$$

by the formula

$$\phi_k \circ \phi_i^{-1} : y \mapsto (\frac{x^j}{y_k})_{j \neq k},$$

where the x^j is defined as above: $x^j = y^j$ if $j \neq i$, $x^i = 1$. The transition maps are smooth, therefore the atlas is smooth.

Exercise H.2 (to hand in). Prove the following

- (a) Let $c: M \to N$ the constant map between two smooth manifolds; c is smooth
- (b) Every smooth chart $\varphi : U \to \varphi(U)$ of M is a diffeomorphism; here U and $\varphi(U)$ are given the open subspace smooth structure defined in Exercise 1.4.
- (c) The composite $g \circ f$ of two smooth maps $f: M \to N, g: N \to P$ is smooth map.
- (d) Show that the quotient map $\pi : \mathbb{R}^{n+1} \setminus 0 \to \mathbb{RP}^n$ is a smooth map of manifolds where on \mathbb{RP}^n we considered the smooth structure defined in Exercise 1.7.

Exercise H.3. (To hand in) Consider the inclusion $\iota : S^2 \to \mathbb{R}^3$, where we endow both spaces with the standard smooth structure. Let $p \in S^2$. What is the image of $D_p\iota: T_pS^2 \to T_p\mathbb{R}^3$? (Identify $T_p\mathbb{R}^3$ with \mathbb{R}^3 in the standard way, i.e. $e_i \mapsto \frac{\partial}{\partial x^i}|_p$) So the result should be the equation for a plane in \mathbb{R}^3 .)

Solution. We will do the computations for a point $p = (p^0, p^1, p^2) \in S^2$ such that $p^2 > 0$. (The other cases are similar.)

This point p is contained in the open set $U = U_2^+ = \{x \in S^2 : x^2 > 0\}$, which is the domain of the chart $\varphi = \varphi_2^+ : (x^0, x^1, x^2) \mapsto (x^0, x^1)$.

The local expression of the inclusion map $\iota: S^2 \to \mathbb{R}^3$ with respect to the charts φ and $\mathrm{id}^3_{\mathbb{R}}$ is the map $\tilde{\iota}: (x^0, x^1) \mapsto (x^0, x^1, \sqrt{1 - (x^0)^2 - (x^1)^2})$, whose Jacobian matrix at the point $x = (x_0, x_1) = \iota^{-1}(p)$ is

$$J_x \tilde{\iota} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{-x^0}{\sqrt{1 - (x^0)^2 - (x^1)^2}} & \frac{-x^1}{\sqrt{1 - (x^0)^2 - (x^1)^2}} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{-p^0}{p^3} & \frac{-p^1}{p^3} \end{pmatrix}$$

This implies that the differential $D_p \iota$ sends the vectors $\frac{\partial}{\partial \varphi^0}\Big|_p$, $\frac{\partial}{\partial \varphi^1}\Big|_p$ (which constitute a basis of $T_p S^2$) to the vectors

$$D_{p\ell}\left(\frac{\partial}{\partial\varphi^{0}}\Big|_{p}\right) = \frac{\partial}{\partial x^{0}}\Big|_{p} - \frac{p^{0}}{p^{3}}\frac{\partial}{\partial x^{2}}\Big|_{p} \cong \left(1, 0, -\frac{p^{0}}{p^{3}}\right)\Big|_{p},$$
$$D_{p\ell}\left(\frac{\partial}{\partial\varphi^{1}}\Big|_{p}\right) = \frac{\partial}{\partial x^{1}}\Big|_{p} - \frac{p^{1}}{p^{3}}\frac{\partial}{\partial x^{2}}\Big|_{p} \cong \left(0, 1, -\frac{p^{1}}{p^{3}}\right)\Big|_{p},$$

Therefore, the image of $D_{p\ell}$ is the vector space spanned by these two image vectors, which coincides with the orthogonal space of p,

$$S = p^{\perp}|_p = \{v|_p : v \in \mathbb{R}^3 \text{ such that } \langle p, v \rangle = 0\}.$$

Exercise H.4 (To hand in). Let $f: M \to N$ be an injective immersion of smooth manifolds. Show that there exists a closed embedding $M \to N \times \mathbb{R}$. *Hint:* Recall that there exists a proper map $g: M \to \mathbb{R}$ (Exercise 3.2)

Solution. The map $h: M \to N \times \mathbb{R} : x \mapsto (f(x), g(x))$ is an immersion and is proper, hence it is a closed embedding.

Proof that h is proper: Let $K \subseteq N \times \mathbb{R}$ a compact set. Note that K is closed in N since it's a compact subset of a Hausdorff space. It follows that $h^{-1}(K)$ is closed. In addition $h^{-1}(K)$ is contained in the compact set $g^{-1}(\pi_1(K))$, where $\pi_1: N \times \mathbb{R} \to \mathbb{R}$ is the projection. Therefore $h^{-1}(K)$ is compact. This proves that h is proper, hence closed. Since in addition it is injective, it's a closed topological embedding.

Proof that h is an immersion: for each nonzero vector $v \in T_p M$, the vector $T_p h(v) =$ $(T_p f(v), T_p g(v))$ is nonzero because its first component $T_p f(v)$ is nonzero.

Exercise H.5 (To hand in). Show that the following subgroups of $GL_n(\mathbb{R})$ are closed submanifolds. Compute their dimension and their tangent space at the identity.

(a) The special linear group $SL_n(\mathbb{R})$, consisting of matrices with determinant equal to 1.

Solution. The determinant function det : $M_n \to \mathbb{R}$ is continuous, which implies that the preimage of a closed (resp. open) set is a closed (resp. open) set. We have already used this to show that the general linear group $GL_n = \det^{-1}(\mathbb{R}_{\neq 0})$ is open in M_n . And now we can use it to show that the special linear group $SL_n = \det^{-1}(1)$ is a closed subset of M_n . (And since SL_n is contained in GL_n , it is also closed in GL_n).

To show that SL_n is a submanifold we use the regular preimage theorem. We apply the theorem to the determinant map det : $M_n \to \mathbb{R}$, which is a smooth map (by a previous exercise).

To apply the theorem we have to show that 1 is a regular value of det. Thus we have to show that the linear transformation

$$D_A \det : T_A M_n \equiv \mathbb{R}^{n^2} \longrightarrow T_{\det(A)} \mathbb{R} \equiv \mathbb{R}$$

is surjective for all points $A \in SL_n$. Since the codomain of this linear transformation has dimension 1, we have two possibilities: either the transformation is surjective (if it has rank 1) or it is null (if it has rank 0). Thus it suffices to show that the transformation D_A det is not null. We have already computed the differential

$$D_A \det(X) = \det(A) \operatorname{tr}(A^{-1}X)$$

Putting X := A we get

$$D_A \det(X) = \det(A) \operatorname{tr}(I_n) = n$$

This implies that $D_A det$ is surjective for every $A \in SL_n$. Therefore $SL_n =$ $det^{-1}(1)$ is an embedded submanifold of M_n of dimension

 $\dim(SL_n) = \dim(M_n) - \dim(\mathbb{R}) = n^2 - 1.$

Finally, the regular preimage theorem also tells us that the tangent space of SL_n at any point $A \in SL_n$ is

$$T_A(SL_n) = Ker(D_A det) = \{ X \in M_n \mid tr(A^{-1}X) = 0 \}$$

In particular,

$$T_{I_n}(SL_n) = \{ X \in M_n \mid tr(X) = 0 \}.$$

We have shown that the tangent space of an open subset is equal to the tangent of the whole manifold which contains this open subset, so here $T_pGL_n(\mathbb{R}) = T_pM_n(\mathbb{R})$ since $GL_n(\mathbb{R}) = \det^{-1}(\mathbb{R}_{\neq 0})$ is an open subset of $M_n(\mathbb{R})$. This implies that

$$\dim(SL_n(\mathbb{R})) = \dim GL_n(\mathbb{R}) - 1 = n^2 - 1.$$

(b) The orthogonal group $O_n(\mathbb{R})$, consisting of the orthogonal matrices A (which satisfy $A^{\top}A = I_n$).

Hint: Consider the map $f: M_n \to M_n^{sym}$ that sends $A \mapsto A^{\top}A$, there M_n^{sym} is the vector space of symmetric $n \times n$ matrices.

Solution. Note that $f^{-1}(I_n) = O_n$. To apply the regular preimage theorem we have to verify that I_n is a regular value of f. Thus we have to show that for each point $A \in O_n$, the linear transformation

$$D_A f: TM_n \equiv M_n \longrightarrow TM_n^{sym} \equiv M_n^{sym}$$

is surjective. Note that

$$D_A f(X) = A^\top X + X^\top A$$
$$= A^\top X + (A^\top X)^\top$$

Let $Y \in M_n^{sym}$ be an antisymmetric matrix. Let us find some $X \in M_n$ such that $D_A f(X) = Y$. We can write $Y = \frac{1}{2}Y + \frac{1}{2}Y^{\top}$, thus it suffices to find $X \in M_n$ such that $A^{\top}X = \frac{1}{2}Y$. We put simply $X = (A^{\top})^{-1}\frac{1}{2}Y = \frac{1}{2}AY$. This finishes the proof that I_n is a regular value of f. Therefore, by the regular preimage theorem, the set $O_n = f^{-1}(I_n)$ is a closed embedded submanifold of M_n of dimension

$$\dim(O_n) = \dim(M_n) - \dim(M_n^{sym}) = n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}.$$

Its tangent space at any point $A \in O_n$ is

$$D_A O_n = \operatorname{Ker} D_A f = \{ X \in \operatorname{T} M_n \mid A^\top X + X^\top A = 0 \}$$

In particular, its tangent space at the identity matrix is

$$D_{I_n}(O_n) = \{ X \in M_n \mid X + X^\top = 0 \},\$$

that is, the space of antisymmetric matrices.

(a) Show that the map $f: \mathbb{P}^2 \to \mathbb{R}^3$ defined by Exercise H.6 (To hand in).

$$f([x, y, z]) = \frac{1}{x^2 + y^2 + z^2}(yz, xz, xy).$$

is smooth, and has injective differential except at 6 points.

(b) Show that the map $q: \mathbb{P}^2 \to \mathbb{R}^4$ defined by

$$g([x, y, z]) = \frac{1}{x^2 + y^2 + z^2} (yz, xz, xy, x^2 - z^2)$$

is a smooth embedding.

Exercise H.7. Show that there is a smooth vector field on S^2 which vanishes at exactly one point.

Hint: Try using stereographic projection and consider one of the coordinate vector fields.

Solution. Recall that

$$\mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$$

Let us denote (u, v) the stereographic coordinates relative to the projection from the north pole N = (0, 0, 1), that is, the map

$$\phi: \mathbb{S}^2 \setminus \{N\} \quad \to \quad \mathbb{R}^2$$
$$(x, y, z) \quad \mapsto \quad (u, v) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right).$$

(Note that we use the letters u, v to denote real numbers but also to denote the component functions ϕ^0 , ϕ^1 of the chart ϕ , which are functions $\mathbb{S}^2 \to \mathbb{R}$.)

Similarly, denote $(\overline{u}, \overline{v})$ the stereographic coordinates relative to the projection from the south pole S = (0, 0, -1), which is the map

$$\psi : \mathbb{S}^2 \setminus \{S\} \quad \to \quad \mathbb{R}^2$$
$$(x, y, z) \quad \mapsto \quad (\bar{u}, \bar{v}) = \left(\frac{x}{1+z}, \frac{y}{1+z}\right)$$

The transition function $\psi \circ \phi^{-1}(u, v)$ is obtained after some computation:

$$(\overline{u},\overline{v}) = \left(\frac{u}{u^2 + v^2}, \frac{v}{u^2 + v^2}\right)$$

For this we use the inverse of the north stereographic projection which is

$$x = \frac{2u}{1+u^2+v^2}$$
 $y = \frac{2v}{1+u^2+v^2}$ $z = \frac{-1+u^2+v^2}{1+u^2+v^2}.$

Let $X = \frac{\partial}{\partial \phi^0} = \frac{\partial}{\partial u}$ be the first coordinate vector field of the chart ϕ . This vector field X is a non-vanishing smooth vector field defined on $\mathbb{S}^2 \setminus \{N\}$. (Its component functions w.r.t. ϕ are just the constant functions 1 and 0; therefore X is smooth.) The important step is to show that X extends to a smooth vector field defined on the whole sphere.

For this we compute the component functions w.r.t. ψ on the intersection of the two charts, i.e. on $\mathbb{S}^2 \setminus \{N, S\}$:

$$\begin{split} X &= \frac{\partial \psi^0}{\partial \phi^0} \frac{\partial}{\partial \psi^1} + \frac{\partial \psi^1}{\partial \phi^0} \frac{\partial}{\partial \psi^1} \\ &= \frac{\partial \overline{u}}{\partial u} \frac{\partial}{\partial \overline{u}} + \frac{\partial \overline{v}}{\partial u} \frac{\partial}{\partial \overline{v}} \\ &= \frac{v^2 - u^2}{(u^2 + v^2)^2} \frac{\partial}{\partial \overline{u}} + \frac{-2uv}{(u^2 + v^2)^2} \frac{\partial}{\partial \overline{v}} \\ &= (\overline{v}^2 - \overline{u}^2) \frac{\partial}{\partial \overline{u}} - 2\overline{u}\overline{v} \frac{\partial}{\partial \overline{v}} \end{split}$$

From this we see that X can be extended to a smooth vector field X on the whole sphere by setting its value on the north pole to zero., i.e.

$$X|_p = \begin{cases} \frac{\partial}{\partial u}|_p & \text{if } p \in \mathbb{S}^2 \setminus \{N\}\\ 0 & \text{if } p = N. \end{cases}$$

Then on $\mathbb{S}^2 \setminus \{S\}$

$$X = (\overline{v}^2 - \overline{u}^2) \frac{\partial}{\partial \psi^1} - 2\overline{u}\overline{v} \frac{\partial}{\partial \psi^2} \quad \text{on } \mathbb{S}^2 \setminus \{S\}$$

so the component functions w.r.t. ψ are smooth as functions on $\mathbb{S}^2 \setminus \{S\}$. By construction the component functions of X w.r.t. ϕ are smooth as functions on $\mathbb{S}^2 \setminus \{N\}$.

Remark: We could also have used the reverse of the north stereographic projection to the sphere

$$x = \frac{2u}{1 + u^2 + v^2} \qquad y = \frac{2v}{1 + u^2 + v^2} \qquad z = \frac{-1 + u^2 + v^2}{1 + u^2 + v^2}$$

to express $\frac{\partial}{\partial \phi^1}$ in cartesian coordinates (a priori the expression below is only defined for $(x, y, z) \in \mathbb{S}^2 \setminus \{N\}$)

$$\begin{aligned} (\varphi_N^{-1})_* \frac{\partial}{\partial u} &= \frac{2(1-u^2+v^2)}{(1+u^2+v^2)^2} \frac{\partial}{\partial x} + \frac{4uv}{(1+u^2+v^2)^2} \frac{\partial}{\partial y} + \frac{4u}{(1+u^2+v^2)^2} \frac{\partial}{\partial z} \\ &= (1-z-x^2) \frac{\partial}{\partial x} + xy \frac{\partial}{\partial y} + x(1-z) \frac{\partial}{\partial z} \end{aligned}$$

and argue that this extends to a smooth vector field on the sphere.

Exercise H.8. (To hand in) Compute the flows of the following vector fields.

(a) On the plane \mathbb{R}^2 , the "angular" vector field $X = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}$.

Solution. The integral curves are of the form $\gamma(t) = \begin{pmatrix} r\cos(t-t_0) \\ r\sin(t-t_0) \end{pmatrix}$, with $t_0 \in \mathbb{R}$ and $r \geq 0$. We can rewrite them as

$$\gamma(t) = \begin{pmatrix} r\cos(t-t_0) \\ r\sin(t-t_0) \end{pmatrix}$$
$$= \begin{pmatrix} r\cos(t)\cos(t_0) + r\sin(t)\sin(t_0) \\ r\sin(t)\cos(t_0) - r\cos(t)\sin(t_0) \end{pmatrix}$$
$$= \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix} \begin{pmatrix} r\cos(t_0) \\ -r\sin(t_0) \end{pmatrix}$$
$$= \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$

where $(x_0, y_0) = \gamma(0)$. Thus the flow is $\Phi_X^t \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$, defined for all points $(x_0, y_0) \in \mathbb{R}^2$ and all $t \in \mathbb{R}$.

(b) A constant vector field X on the torus \mathbb{T}^n . (What is a constant vector field on the torus?)

Solution. Note first that we have an identification $T_{[p]}\mathbb{T}^n \equiv \mathbb{R}^n$ for all points $[p] = \pi(p) \in \mathbb{T}^n$, where $p \in \mathbb{R}^n$ and $\pi : \mathbb{R}^n \to \mathbb{T}^n$ is the quotient map. This identification is the linear transformation $D_p\pi$, which is an isomorphism from $D_p\mathbb{R}^n \equiv \mathbb{R}^n$ to $T_{[p]}\mathbb{T}^n$. This identification $D_p\pi : \mathbb{R}^n \to D_p\mathbb{T}^n$ is independent of which preimage we choose for [p], since if p' is another preimage and τ is the translation of \mathbb{R}^n that maps $p \mapsto p'$, then $\pi(x) = \pi \circ \tau$, and therefore

$$D_p \pi = \mathrm{T}_{p'} \pi \circ \mathrm{T}_p \tau \equiv \mathrm{T}_{p'} \pi$$

since $D_p \tau \equiv \mathrm{id}_{\mathbb{R}^n}$.

Thus we can talk about a constant vector field X on \mathbb{T}^n . This means that

$$X_{[p]} = a$$
 for all $p \in \mathbb{R}^n$

for some fixed $a \in \mathbb{R}^n$.

Let $\hat{X} = \pi^* X$ be the vector field on \mathbb{R}^n given by the similar formula $\hat{X}_p = a$ for all $p \in \mathbb{R}^n$. Note that \hat{X} is π -related to X, where $\pi : \mathbb{R}^n \to \mathbb{T}^n$ is the quotient map. Therefore $\pi \circ \gamma$ is an integral curve of X if γ is an integral curve of \hat{X} .

For any point $p \in \mathbb{R}^n$, the maximal integral curve of \widehat{X} starting at the point p is $\gamma_{\widehat{X},p}(t) = p + at$. Therefore the curve

$$\gamma_{X,[p]}(t) := \pi(\gamma_{\widehat{X},p}(t)) = [p+ta]$$

is an integral curve of X. It has initial condition $\gamma_{X,[p]}(0) = [p]$ and it is maximal because it is defined for all t.

Therefore the flow of X is $\Phi_X^t[p] = [p+ta]$, which is defined for all points $[p] \in \mathbb{T}^n$ and all $t \in \mathbb{R}$.

Exercise H.9 (to hand in). Consider the following 1-form on $M = \mathbb{R}^3$:

$$\omega = \frac{-4z \, \mathrm{d}x}{(x^2 + 1)^2} + \frac{2y \, \mathrm{d}y}{y^2 + 1} + \frac{2x \, \mathrm{d}z}{x^2 + 1}$$

(a) Set up and compute the line integral of ω along the line going from (0,0,0) to (1,1,1)

Solution. This line is parametrized by the curve $\gamma : t \in [0,1] \mapsto \gamma(t) = (t,t,t)$. The velocity vector of this curve is $\gamma'(t) = (1,1,1)$. Therefore the pullback of

$$\begin{split} \int_{\gamma} \omega &= \int_{[0,1]} \gamma^* \omega \\ &= \int_0^1 \left(\frac{-4t}{(t^2+1)^2} + \frac{2t}{t^2+1} + \frac{2t}{t^2+1} \right) \mathrm{d}t \\ &= \int_0^1 \frac{-4t + 4t(t^2+1)}{(t^2+1)^2} \,\mathrm{d}t \\ &= \int_0^1 \frac{4t^3}{(t^2+1)^2} \,\mathrm{d}t \\ &= \left[2 \left(\frac{1}{t^2+1} + \log(t^2+1) \right) \right]_{t=0}^{t=1} \\ &= \log(4) - 1 \end{split}$$

(b) Consider the smooth map $\Psi: W \to \mathbb{R}^3$ given by $(r, \varphi, \theta) \in W := \mathbb{R}^+ \times (0, 2\pi) \times (0, \pi)$:

$$\Psi(r,\varphi,\theta) = (r\cos\varphi\sin\theta, r\sin\varphi\sin\theta, r\cos\theta) \in \mathbb{R}^3.$$

Compute $\Psi^*\omega$.

Exercise H.10 (to hand in). For a point $p \in \mathbb{R}^3$ and vectors $v, w \in T_p \mathbb{R}^3 \equiv \mathbb{R}^3$ we define $\omega|_p(v, w) := \det(p \mid v \mid w)$. Show that ω is a smooth differential 2-form on \mathbb{R}^3 , and express ω as a linear combination of the elementary alternating 2-forms determined by the standard coordinate chart (x^0, x^1, x^2) .

Solution. For each point $p \in \mathbb{R}^3$, the function $\omega|_p(v, w) = \det(p \mid v \mid w)$ is linear on each of its two variables $v, w \in \mathbb{R}^3$, and also alternating, therefore ω is a differential form. The elementary covector fields are dx^0 , dx^1 , dx^2 , and the elementary 2-forms are $dx^0 \wedge dx^1$, $dx^1 \wedge dx^2$ and $dx^2 \wedge dx^0$. The calculation

$$\omega|_{p}(v,w) = \det \begin{pmatrix} p^{0} & v^{0} & w^{0} \\ p^{1} & v^{1} & w^{1} \\ p^{2} & v^{2} & w^{2} \end{pmatrix} = p^{0}(v^{1}w^{2} - v^{2}w^{1}) + p^{1}(v^{2}w^{0} - v^{0}w^{2}) + p^{2}(v^{0}w^{1} - v^{1}w^{0})$$

shows that

$$\omega|_p = p^0 \,\mathrm{d}x^1 \wedge \mathrm{d}x^2 + p^1 \,\mathrm{d}x^2 \wedge \mathrm{d}x^0 + p^2 \,\mathrm{d}x^0 \wedge \mathrm{d}x^1.$$

Thus the component functions of ω are the functions $p \mapsto p^i$ which are smooth. This shows that ω is a smooth 2-form.