Applied Biostatistics

https://moodle.epfl.ch/course/view.php?id=15590

- Research process
- Basic experimental design ideas
- Analysis of variance
- ANOVA modeling with R

Research process

- Scientific question of interest
- Decide what data to collect (and how)
- Collection and analysis of data

■ Conclusions, generalizations : inference on the population

- Communication and dissemination of results

Generic question :

Does a 'treatment' have an 'effect'?

Examples:
■ Does smoking cause cancer, heart disease, etc ?
■ Does eating oat bran lower cholesterol ?

- Does echinacea prevent illness?

■ Does exercise slow the aging process?

Approach the question :
■ One simple method for resolving this type of question is to compare two groups of study subjects :

- Control group : gives a base level for comparison
- Treatment group : group receiving the 'treatment'

Types of studies

- A basic means to address this type of question involves comparing two groups of study subjects :
- Control group : provides a baseline for comparison
- Treatment group : group receiving the 'treatment'

■ Experimental study : subjects assigned to groups by the investigator

- randomization : protects against bias in assignment to groups
■ 'blind', 'double-blind' : protects against bias in outcome assessment/measurement
- placebo: artificial/fake treatment
- Observational study : subjects 'assign' themselves to groups
- confounder: associated with both group membership/risk factor and with the outcome of interest

A few comments

■ With a well-planned and well executed controlled experiment, it is possible to infer causality

- This is not possible with observational studies due to the presence of confounders
■ With confounding, it is not possible to tell whether the observed difference between groups is due to the treatment or to the confounding factor
■ Not always possible to carry out an experiment, for pratical and ethical reasons

Example: Hibernation

■ General question: How do changes in an animal's environment induce hibernation?
■ What changes should be studied ??

- temperature
- photoperiod (daylight duration)
- What measures to take?

■ nerve enzymatic activity ($\mathrm{Na}+\mathrm{K}+$ ATP-ase)
■ What animal to study?

- golden hamster, 2 organs

Specific question

■ General question: How do changes in an animal's environment induce hibernation?
■ Specific question: What is the effect of changing daylight duration on the enzyme concentration of the sodium pump in two golden hamster organs?

Sources of variability

- Variability due to the conditions of interest (wanted)
- Duration (long or short)
- Organ (heart or brain)

■ Variability of the response (NOT wanted) : measurement error

- Preparation of the enzyme suspension

■ Instrument calibration/standardization

- Variability in experimental units (NOT wanted)
- biological differences between hamsters
- environmental differences

Types of variability

■ Systematic, expected (wanted)

- Random variation (can manage this)
- Systematic, unexpected (NOT wanted)

■ biased results

- e.g., what time the measurements are made

Questions for the hibernation study

■ Long or short : Is there an effect of daylight duration on enzyme concentration?

- Heart vs. Brain : Are the concentrations different in the 2 organs?
- Interaction : Is the difference in enzyme concentration (long/short) different for heart and brain?
■ Hamsters : Variability between hamsters?
■ Measurement error: What is the error due to the measurement process for enzyme concentration?

Experimental design - why do we care?

- Poor design costs :
- time, money, ethical considerations

■ To ensure relevant data are collected, and can be analyzed to test the scientific hypothesis/question of interest

- Decide in advance how data will be analyzed
- 'Designing the experiment' = 'Planning the analysis'
- The design is about the biology

Common experimental designs

- Completely randomized design (CRD)

■ compares 2 (or more) levels of a single factor

- analysis: 1-way anova (below)
- Randomized Block Design (RBD)
- compares 2 (or more) levels of a single factor
- observations in blocks

■ analysis : similar to unreplicated 2-way anova

- (Full) Factorial design

■ levels from multiple factors varied and studied simultaneously

- can detect interaction between factors

■ analysis: 2-way (or multi-way) anova

Completely randomized experiment

■ Study subjects (experimental units) homogeneous

- Randomized to treatments (factor levels)
experimental units randomized to treatments

Data example : Blood coagulation time

- 24 animals
- Randomly assigned
- to 4 different diets

■ Measured blood coagulation times from samples taken in a random order

- As always, the first step of analysis is EXPLORATORY

Compare distributions with boxplots

■ We hope we don't see :
■ outliers - points outside the whiskers
■ skewness - asymmetrical boxes
■ unequal variance - clearly unequal box sizes
■ BUT : don't over-interpret boxplots based on small n

Trees

- A study is conducted to investigate the growth of a certain type of tree at an elevation of 675 meters
- The variable of interest is the core measurement (in cm) for a 10 year period
- The theory is that the mean should be at least 1.75

■ In a random sample of 10 measurements, the mean was 2 with an SD of 0.5

Hypothesis test for this setup

■ Identify the population parameter being tested Here, the parameter being tested is the population mean core measurement μ

- Formulate the NULL and ALT hypotheses
$H: \mu=1.75$ (or $\mu \leq 1.75$)
A: $\mu>1.75$
■ Compute the Test Statistic (TS)
$t=(2 ? 1.75) /(.5 / \sqrt{10})=1.58$
- Compute the p-value Here, $p=P\left(t_{9}>1.58\right)=0.07$
- Decision Rule : REJECT H if the p-value $\leq \alpha$ If we use $\alpha=0.05$, the decision here will be DO NOT REJECT H (but just barely!)

More trees

- Now say we are interested in whether the mean core measurement is the same in trees at 675 meters and trees at 825 meters
- Assume that we have a random sample also of size 10 of trees at 825 meters, with a mean core measurement of 2.65 cm and SD 1.15 cm
- How might we test the null that the means are the same, against the alternative that they are different?

Test for comparing two (independent) means: equal variances

- We want to compare the means of two sets of measures:

■ Group 1 (p. ex. 'control') : x_{1}, \ldots, x_{n}
■ Group 2 (p. ex. 'treatment') : y_{1}, \ldots, y_{m}

- We can model these data as :

$$
\begin{aligned}
& x_{i}=\mu+\epsilon_{i} ; i=1, \ldots, n \\
& y_{j}=\mu+\Delta+\tau_{i} ; j=1, \ldots, m
\end{aligned}
$$

where Δ signifies the effect of the treatment (compared to the 'control' group)
■ $H: \Delta=0$ vs. $A: \Delta \neq 0$ or $A: \Delta>0$ or $A: \Delta<0$

Equal variances, cont.

$\begin{aligned} & T=\text { obs. diff. } / \mathrm{ES}(\text { obs. diff. })=\frac{\Delta}{\sqrt{\hat{\operatorname{Var}(\hat{\Delta})}}} ; \\ & \hat{\Delta}=\bar{y}-\bar{x} ; \operatorname{Var}(\hat{\Delta})=\frac{\sigma^{2}}{n}+\frac{\sigma^{2}}{m}=\frac{n+m}{n m} \sigma^{2}\end{aligned}$
■ We assume that :
■ the variances of the 2 samples are equal :

$$
\operatorname{Var}(\epsilon)=\operatorname{Var}(\tau)
$$

■ the observations are independent

- the 2 samples are independent

■ We can estimate the variances separately :

$$
\begin{aligned}
& s_{x}^{2}=\left(\left(x_{1}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}\right) /(n-1) \\
& s_{y}^{2}=\left(\left(y_{1}-\bar{y}\right)^{2}+\cdots+\left(y_{m}-\bar{y}\right)^{2}\right) /(m-1)
\end{aligned}
$$

■ When the variances are equal, we can combine the two estimators : $s_{p}^{2}=\left((n-1) s_{x}^{2}+(m-1) s_{y}^{2}\right) /(n+m-2)$

$$
\Rightarrow t_{o b s}=\frac{\bar{y}-\bar{x}}{\sqrt{s_{p}^{2}(n+m) /(n m)}} \sim t_{n+m-2} \text { under } H
$$

Trees one more time!

■ You guessed it! Now say we are also interested in trees at 975 meters as well

■ Want to make a three-way comparison

- Have a random sample (size 10 again) and find the mean is 2.5 and the SD is 1
- How might we test the null that all three means are the same, against the alternative that at least one is different ?

ANOVA

■ Abbreviation for ANalysis Of VAriance (analyse de variance)

- But it's a test for a difference in means

■ The idea:

Principle

- The variation (total sum of squared deviations) consists of 2 components

■ individual fluctuations : variability intra-group (error)

- between group fluctuations : variability inter-group (treatment)
- Variability inter-group > Variability intra-group
\Rightarrow (at least) 2 means are (significantly) different
- General principle :
- Decompose the total sum of squared deviations into its 2 (orthogonal) parts
- Test if the MSinter (MSB) is (significantly) bigger than the MSintra (MSW, or MSE)

Hypothesis tests

■ Notation:

- k groups
- n_{i} individuals in group i
- observations $x_{i j}$ (observation j from group i)

■ $H: \mu_{1}=\mu_{2}=\cdots=\mu_{k}$
$A: \exists \mu_{i} \neq \mu_{j}$ (at least 1 mean is different from the others)

- ANOVA is a rather robust test (resultats not too influenced by small deviations from the assumptions

Pairs of tests : why not?

Why not start off by carrying out tests (z or t) for each pair of samples?

- For m comparisons (independent), the probability of rejecting at least one H can be expressed as $\alpha_{m}=1-(1-\alpha)^{m}$; now for $\alpha=0.05$:
■ 3 tests \Longrightarrow Type I error $=0.14$
■ 5 tests \Longrightarrow Type I error $=0.23$
■ 10 tests \Longrightarrow Type I error $=0.4$
■ 21 tests \Longrightarrow Type I error $=0.66$
\Longrightarrow Type I error no longer controlled at level $\alpha=0.05$
(anti-conservative/liberal test)

The models

■ $\epsilon_{i j} \sim \operatorname{iid} N\left(0, \sigma^{2}\right)$

- Under H, the model is:

$$
x_{i j}=\mu+\epsilon_{i j}
$$

- Under A, the model is :

$$
x_{i j}=\mu+\alpha_{i}+\epsilon_{i j}
$$

where α_{i} ia the effect of modality/level i of facteur A on the variable X

- For each model, we can derive an estimator for the residual variance

Sum of squares

- Goal : test difference between means of two (or more) groups
- Between SS measures the difference
- The difference must be measured relative to the variance within the groups
- Within SS
- F-test : considers the ratio of B / W
- The larger F is, the more significant the difference

The ANOVA procedure

■ Subdivide observed total sum of squares into several components
■ Pic appropriate significance point for a chosen Type I error from an F table

■ Compare the observed components to test the NULL hypothesis

Parameter estimation

■ Under $H: x_{i j}=\mu+\epsilon_{i j}$:

$$
\hat{\mu}=\bar{x}=\frac{1}{n} \sum_{i=1}^{k}, \sum_{j=1}^{n_{i}} x_{i j}, \quad n=\sum_{i=1}^{k} n_{i}
$$

■ Under $A: x_{i j}=\mu+\alpha_{i}+\epsilon_{i j}:$

$$
\hat{\mu}+\hat{\alpha}_{i}=\bar{x}_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} x_{i j}, \quad n=\sum_{i=1}^{k} n_{i},
$$

which gives us $\hat{\alpha}_{i}=\bar{x}_{i}-\bar{x}$

$$
\hat{\epsilon}_{i j}=x_{i j}-\hat{x}_{i j}=x_{i j}-\hat{\mu}-\hat{\alpha}_{i}=x_{i j}-\bar{x}-\left(\bar{x}_{i}-\bar{x}\right)=x_{i j}-\bar{x}_{i}
$$

Decomposition of the total variation

- The model under $A: x_{i j}=\mu+\alpha_{i}+\epsilon_{i j}$

■ with estimators: $x_{i j}=\bar{x}+\left(\bar{x}_{i}-\bar{x}\right)+\left(x_{i j}-\bar{x}_{i}\right)$
■ $\Longrightarrow\left(x_{i j}-\bar{x}\right)=\left(\bar{x}_{i}-\bar{x}\right)+\left(x_{i j}-\bar{x}_{i}\right)$
■ with sum of squares :

- $\left(x_{i j}-\bar{x}\right)^{2}=\left(\bar{x}_{i}-\bar{x}\right)^{2}+\left(x_{i j}-\bar{x}_{i}\right)^{2}+2\left(\bar{x}_{i}-\bar{x}\right)\left(x_{i j}-\bar{x}_{i}\right)$

■ and sums for individuals (j) :
$\sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}\right)^{2}=$
$n_{i}\left(\bar{x}_{i}-\bar{x}\right)^{2}++\sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}_{i}\right)^{2}+2\left(\bar{x}_{i}-\bar{x}\right) \sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}_{i}\right)$

Decomposition, cont.

■ Thus, $2\left(\bar{x}_{i} \bar{x}\right) \sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}_{i}\right)=0$, since $\sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}_{i}\right)=0$ $\left(E\left[\epsilon_{i j}\right]=0\right)$

- Therefore,

$$
\sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}\right)^{2}=n_{i}\left(\bar{x}_{i}-\bar{x}\right)^{2}+\sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}_{i}\right)^{2}
$$

■ with the sums for the factor levels:

$$
\begin{aligned}
& \sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}\right)^{2}+\sum_{i=1}^{k} n_{i}\left(\bar{x}_{i}-\bar{x}\right)^{2}+\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(x_{i j}-\bar{x}_{i}\right)^{2} \\
\Longrightarrow & S S_{\text {total }}=S S_{\text {groups }}+S S_{\text {error }}
\end{aligned}
$$

Test principle

- 1-factor analysis of variance tests the effect of one factor A having k modalities on the means of a quantitative variable X
■ The tested hypotheses are:

$$
H: \mu_{1}=\mu_{2}=\cdots=\mu_{k}=\mu \text { vs. } A: \exists \mu_{i} \neq \mu_{j}
$$

- Test if the ratio of 2 variance estimators is close to 1
- The variance estimators associated are :
- Total variance : $S S_{\text {total }} /(n-1)$
- Variance due to factor $A\left(M S_{t r t s}\right): S S_{t r t s} /(k-1)$ \Longrightarrow estimator of σ^{2} if H is true
■ Residual variance $\left(M S_{\text {error }}\right)$: $S S_{\text {error }} /(n-k)$ \Longrightarrow estimator of σ^{2} whichever model

Test statistic

■ Under $H, S S_{t r t s} /(k-1)$ and $S S_{\text {error }} /(n-k)$
\Rightarrow estimators of the same parameter σ^{2}

- Thus (under H), the ratio $\frac{S S_{\text {trts }} /(k-1)}{S S_{\text {error }} /(n-k)} \approx 1$
- Under A, at least $1 \alpha_{i} \neq 0$ and $S S_{\text {error }} /(n-k)$ is a unique estimator of $\sigma^{2} ; S S_{t r t s} /(k-1) \gg S C_{\text {error }} /(n-k)$
- Thus (under A), the ratio $\frac{S S_{\text {trst }} /(k-1)}{S S_{\text {error }} /(n-k)}$ much larger than 1
$■ \Rightarrow F$-Test unilateral in every case
- $F_{\text {obs }}=\frac{S S_{\text {trts }} /(k-1)}{S S_{\text {error }} /(n-k)}=M S_{\text {trts }} / M S_{\text {erreur }}$
- Test statistic is distributed according to a Fisher F distribution, with $k-1$ (num) and $n-k$ (denom) degrees of liberty (df)

ANOVA table

ANOVA table

source	df	$S S$	$M S(=S S / \mathrm{df})$	F	p-value
treatments	$k-1$	$S S_{t r t s}$	$S S_{\text {trts }} /(k-1)$	$M S_{\text {trts }} / M S_{\text {error }}$	$P\left(F_{\text {obs }}>\right.$
error	$n-k$	$S S_{\text {error }}$	$S S_{\text {error }} /(n-k)\left(=\hat{\sigma}^{2}\right)$		$\left.F_{k-1, n-k}\right)$
total (corr.)	$n-1$	$S S_{\text {total }}$			

What does it mean when we reject H ?

- The null hypothesis H is a joint (global) one : that all the population means are equal
- When we reject the null hypothesis, that does not mean that all the means are different!!
- It means that at least one is different
- To know which is different, we can carry out 'post hoc'/a posteriori tests (pairs of tests, for example - below)

BREAK

Model formulas in R

- A simple model formula in R looks something like :

```
yvar ~ xvar1 + xvar2 + xvar3
```

- We could write this model (algebraically) as

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\epsilon
$$

- By default, an intercept is included in the model - you don ?t have to include a term in the model formula
- If you want to leave the intercept out:
yvar ~ -1 + xvar1 + xvar2 + xvar3

More on model formulas

■ We can also include interaction terms in a model formula : yvar ~ xvar1 + xvar2 + xvar3

- Examples:

■ yvar ~ xvar1 + xvar2 + xvar3 + xvar1 :xvar2
■ yvar ~ (xvar1 + xvar2 + xvar3) ${ }^{2}$
■ yvar ~ (xvar1 * xvar2 * xvar3)

More on model formulas

- The generic form is response ~ predictors
- The predictors can be numeric or factor
- Other symbols to create formulas with combinations of variables (e.g. interactions)

■ + to add more variables
■ - to leave out variables

- : to introduce interactions between two (or more) terms
■ * to include both the interactions and all lower order terms ($\mathrm{a} * \mathrm{~b}$ is the same $\mathrm{as} \mathrm{a}+\mathrm{b}+\mathrm{a}: \mathrm{b}$)
- $\wedge n$ adds all terms including interactions up to order n
- I() treats what's inside () as a mathematical expression

Tables of group means for chicks data

		Groundnut	Soybean	Mean
Level of	0	6676	7452	7064
protein	1	6593	6961	7927
	2	6719	6624	6671
Mean	6763	7012	6887	

		G-nut	Soy		Level of protein			
				0	1	2	Mean	
Level of	0	6537	6752		6750	6595	6588	6644
fish	1	6989	7273		7379	7259	6755	7131
	Mean		6763	7012		7064	6927	6671

Interpreting R output

> chicks.aov <- aov(Weight ~ House + Protein*LP*LS)
> summary (chicks.aov)

	Df	Sum Sq	Mean Sq F value	Pr ($>$ F)		
House	1	708297	708297	15.8153	0.0021705	**
Protein	1	373751	373751	8.3454	0.0147366	*
LP	2	636283	318141	7.1037	0.0104535	*
LS	1	1421553	1421553	31.7414	0.0001524	**
Protein:LP	2	858158	429079	9.5808	0.0038964	**
Protein:LS	1	7176	7176	0.1602	0.6966078	
LP:LS	2	308888	154444	3.4485	0.0687641	.
Protein:LP:LS	2	50128	25064	0.5596	0.5868633	
Residuals	11	492640	44785			

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ' ' 1

R output for the coagulation example

$>g<-\operatorname{lm}(c o a g \sim$ diet, data=coagulation)
$>$ summary (g)

Call:
lm(formula $=$ coag \sim diet, data $=$ coagulation)
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-5.00	-1.25	0.00	1.25	5.00

Coefficients:

| | Estimate | Std. Error | t value $\operatorname{Pr}(>\|t\|)$ | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | $6.100 e+01$ | $1.183 e+00$ | 51.554 | $<2 e-16$ *** |
| dietB | $5.000 e+00$ | $1.528 e+00$ | 3.273 | 0.003803 ** |
| dietC | $7.000 e+00$ | $1.528 e+00$ | 4.583 | 0.000181 *** |
| dietD | $2.991 e-15$ | $1.449 e+00$ | 0.000 | 1.000000 |

Signif. codes: $0{ }^{\prime * * * ’} 0.001$ '**’ 0.01 '*’ 0.05 '. 0.1 ' ' 1
Residual standard error: 2.366 on 20 degrees of freedom Multiple R-squared: 0.6706, Adjusted R-squared: 0.6212 F-statistic: 13.57 on 3 and 20 DF, p-value: 4.658e-05

ASSUMPTIONS

■ Independence: The k groups (samples) are independent, as well as the individuals within groups; the ensemble of the n individuals are placed at random (randomization) between the k modalities for the controled factor A, with n_{i} individuals receiving treatment i.

- Homoscedasticity: The k populations have the same variance ; the factor A acts only on the mean of the variable X and does not change its variance
- Normality : The variable studied follows a Normal distribution in the k populations compared (or the CLT applied to the means if the n_{i} are 'sufficiently large')

Model assessment : Normality

■ Boxplots of observations (or residuals) should be rather symmetric
■ A graph of the sample mean vs. variaces should not display any pattern
■ QQ-plot (normal) plot of the observations (or residuals) should form a straight line
■ Check whether there are any unusual or influential values

Model evaluation: Homogeneity of variance

■ Boxplots of the observations should show similar variability
■ Variability of the residuals should be similar in teh graph of residuals versus fitted values

- It is also possible to carry out formal hypothesis tests (e.g. Bartlett, Levene), but these are not useful for diagnosing problems

Some diagnostic plots

Evaluation of the model : Independence

■ Graphics : residuals vs. group mean, might indicated autocorrelation for example

- Normally, treat the question of independence during the conception of the expermient, for example using randomization or perhaps other methods

ANOVA : after the test

- Once all the conditions for an ANOVA have been verified and the analysis carried out, two conclusions are possible :
- we reject H
- we do not have enough evidence to reject H
- If H is not rejected, we conclude that there are not significant differences between group means
■ If we DO reject H, typically we are interested in identifying the modalities/factor levels that are responsible for the significant result

Multiple comparisons

- Comparing means of pairs of treatments
- Carried out after a significant ANOVA
- Types of comparisons

■ planned (a priori) : indpendent of the ANOVA results; the theory predicts which treatments should be different

- unplanned (a posteriori) : the comparisons are decided based on the ANOVA results
■ $H: \mu_{i}=\mu_{j}$ vs. $A: \mu_{i} \neq \mu_{j}$
■ Test statistic

$$
t=\frac{\bar{y}_{i}-\bar{y}_{j}}{\sqrt{\hat{\sigma}^{2}\left(1 / n_{i}+1 / n_{j}\right)}}
$$

- $\left(\hat{\sigma}^{2}=M S_{\text {error }}\right) ; \mathrm{df}=d f_{\text {error }}$

Bonferroni method - global control

- To maintain the global level α_{e} at level α, we must adjust α for each comparison by the total number of comparisons
■ In this way, α_{e} is independent of the number of comparisons
■ Simplest method : method of Bonferroni

$$
\alpha^{\prime}=\alpha / k,
$$

where $k=$ number of comparisons (tests)

- $p_{\text {adj }}=\min (k p, 1)$

■ Bonferroni's method assures that the global level is no larger than the desired level

- (That property makes this method conservative, and thus less powerful than other methods, but it is applicable for any situation)

Multiple comparisons: Tukey Honest Significant Differences

■ Interested in simultaneous confidence intervals or tests for differences in the mean outcome X for pairs of levels of a factor

- To test all pairwise comparisons among means using the Tukey HSD, calculate HSD for each pair of means:

$$
q_{s}=\frac{M_{i}-M_{j}}{\sqrt{M S W / n_{\text {group }}}}
$$

where M_{k} is the mean of group $k, M_{i}>M_{j}$

- For hypothesis testing, compare q_{s} to a q value from the studentized range distribution (difference between largest and smallest sample means divided by pooled sample SD sqrt2/n)
- Reject the null at level α if $q_{s}>q_{\alpha}$
- $\mathrm{Cl}:\left(\bar{y}_{i}-\bar{y}_{j}\right) \pm \frac{q_{\alpha ; ; ; N-k}}{\sqrt{2}} \hat{\sigma}_{e} \sqrt{2 / n} ; i, j=1, \ldots, k, i \neq j$

■ $k=$ number of populations ; $N=$ total sample size

(Complete) Randomized block design

■ Assume that the hamsters have come from 4 different litters, 2 hamsters per litter

- We expect that hamsters born in the same litter are more similar to each other than hamsters from a different litter
■ For each pair of hamsters randomly assign short or long to one member of each pair
- Example (toss a fair coin, for example) : S, L // L, S // S, L // S, L
■ Analysis: 2-way analysis of variance

Replication, Randomization, Blocking

- These are the 'big three' of experimental design

■ Replication - to reduce random variation of the test statistic ; increases generalizability

- Randomisation - to reduce/remove bias
- Blocking - to reduce unwanted variation
- Idea here is that units within a block are similar to each other, but different between blocks
■ 'Block what you can, randomize what you cannot'

Factorial crossing

- Compare 2 (or more) sets of conditions in the same experiment
- Designs with factorial treatment structure allow you to measure interaction between two (or more) sets of conditions that influence the response
■ Factorial designs may be either observational or experimental

Interaction

■ Interaction is very common (and very important) in science

- Interaction is a difference of differences
- Interaction is present if the effect of one factor is different for different levels of the other factor
- Main effects can be difficult to interpret in the presence of interaction, because the effect of one factor depends on the level of the other factor

Factorial experimental design and interaction

■ Example : hibernation study
■ General question : How do changes in an animal's environment induce hibernation?

- Specific question: What is the effect of changing daylight duration on the enzyme concentration of the sodium pump in two golden hamster organs?
- Compare two (or more) sets of conditions in the same experiment : long/ short AND heart/brain
- In this example, there are 4 combinations of conditions:
- Long/Heart, Long/Brain, Short/Heart, Short/Brain

■ Interaction = 'difference of differences'

- There is an interaction when the effect of the association of combined treatments is not the sum of treatment effects
- In the case of interaction, the effect of a treatment varies according to whether it is associated with the other treatment
- The interpretation of individual effects is more difficult when interation is present

Interaction plot

pas d'interaction

interaction

Advantages of factorial experiments

- More efficient (powerful) than a series of experiments studying one factor at a time
■ Permits estimation of interaction between sets of conditions that may affect the response
- All data are used for effect estimation

2-way ANOVA

- Simulataneous study of a factor A with I levels and a factor B with J levels
■ For each pair of levels (A, B) :
■ we have a sample
- all samples are of the same size n (balanced design)
- Suppositions :
- the populations studies are Normally distributed
- the population variances are all equal (homoscedasticity)
- the samples are taken randomly and independently in the populations

Complete model

- The complete model : with interaction
- $y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\gamma_{i j}+\epsilon_{i j k}$

■ $E\left[\epsilon_{i j k}\right]=0, \operatorname{Var}\left(\epsilon_{i j k}\right)=\sigma^{2}, \operatorname{Cov}\left(\epsilon_{i j k}, \epsilon_{i^{\prime} j^{\prime} k^{\prime}}\right)=0 \mathrm{si}$ (ijk) $=\left(i^{\prime} j^{\prime} k^{\prime}\right)$

ANOVA table

source	df	$S S$	$M S$	F
A	$I-1$	$n J \sum_{i=1}^{l}\left(\bar{y}_{i . .}-\bar{y}_{\ldots . .}\right)^{2}$	$S S_{A} / d f_{A}$	$M S_{A} / M S_{e r r}$
B	$J-1$	$n I \sum_{j=1}^{J}\left(\bar{y}_{. j .}-\bar{y}_{\ldots .}\right)^{2}$	$S S_{B} / d f_{B}$	$M S_{B} / M S_{e r r}$
$A B$	$(I-1)(J-1)$	$n \sum_{j=1}^{J} \sum_{i=1}^{l}\left(y_{i j .}-\bar{y}_{i . .}-\bar{y}_{. j .}+\bar{y}_{\ldots . .}\right)^{2}$	$S S_{A B} / d f_{A B}$	$M S_{A B} / M S_{e r r}$
error	$I J(n-1)$	$\sum_{k=1}^{n} \sum_{j=1}^{J} \sum_{i=1}^{l}\left(y_{i j k}-\bar{y}_{i j .}\right)^{2}$	$S S_{e r r} / d f_{e r r}$	
total (corr.)	$n I J-1$	$\sum_{k=1}^{n} \sum_{j=1}^{J} \sum_{i=1}^{l}\left(y_{i j k}-\bar{y}_{\ldots . .}\right)^{2}$		

Hypothesis tests

- Test for interaction

$$
H: \gamma_{i j}=0, i=1, \ldots, l, j=1, \ldots, J
$$

- Test statistic :

$$
F_{A B}=M S_{A B} / M S_{\text {error }} \sim F_{(I-1)(J-1), I J(n-1)} \text { under } H
$$

- Test for effect of factor A

$$
H: \alpha_{i}=0, i=1, \ldots, l
$$

- Test statistic :

$$
F_{A}=M S_{A} / M S_{\text {error }} \sim F_{I-1, I J(n-1)} \text { sous } H
$$

- Test for effect of factor B
$H: \beta_{j}=0, j=1, \ldots, J$
- Test statistic :
$F_{B}=M S_{B} / M S_{\text {error }} \sim F_{J-1, I J(n-1)}$ sous H

Additive model

- The additive model : without interactions
- $y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\epsilon_{i j k}$

■ $E\left[\epsilon_{i j k}\right]=0, \operatorname{Var}\left(\epsilon_{i j k}\right)=\sigma^{2}, \operatorname{Cov}\left(\epsilon_{i j k}, \epsilon_{i^{\prime} j^{\prime} k^{\prime}}\right)=0 \mathrm{id}$ (ijk) $\neq\left(i^{\prime} j^{\prime} k^{\prime}\right)$

ANOVA Table

source	df	$S S$	$M S$	F
A	$I-1$	$n J \sum_{i=1}^{I}\left(\bar{y}_{i . .}-\bar{y}_{\ldots}\right)^{2}$	$S S_{A} / d f_{A}$	$M S_{A} / M S_{e r r}$
B	$J-1$	$n I \sum_{j=1}^{J}\left(\bar{y}_{. j .}-\bar{y}_{\ldots .}\right)^{2}$	$S S_{B} / d f_{B}$	$M S_{B} / M S_{e r r}$
error	$n I J-I-J+1$	$\sum_{k=1}^{n} \sum_{j=1}^{J} \sum_{i=1}^{l}\left(y_{i j k}-\bar{y}_{i . .}-\bar{y}_{. j .}+\bar{y}_{\ldots}\right)^{2}$	$S S_{e r r} / d f_{e r r}$	
total (corr.)	$n I J-1$	$\sum_{k=1}^{n} \sum_{j=1}^{J} \sum_{i=1}^{l}\left(y_{i j k}-\bar{y}_{\ldots . .}\right)^{2}$		

Indicator variables for the model

- The matrix form for the linear model :

$$
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

- According to the form of the matrix \mathbf{X}, we are in the case of :
- linear regression (\mathbf{X} is then comprised of the constant 1 and p explanatory variables), or
- factorial model (\mathbf{X} is comprised of indicator variables associated with the levels of the factor(s))
- ancova (\mathbf{X} is comprised of both qualitative and quantitative variables)

Example: ToothGrowth

- "The response is the length of odontoblasts (teeth) in each of 10 guinea pigs at each of three dose levels of Vitamin C (0.5, 1 , and 2 mg) with each of two delivery methods (orange juice or ascorbic acid)."

Boxplots of Tooth Growth Data

Example, cont: Graphics

Given: supp

ToothGrowth data: length vs dose, given type of supplement

Example, cont. : Interaction plot

Example, cont : ANOVA table output

```
> aov.out = aov(len ~ supp * dose, data=ToothGrowth)
> summary(aov.out)
```

supp
dose
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
supp:dose
22426.4 1213.2 $92.000<2 e-16$ ***

Residuals
2108.354 .24 .1070 .021860 *

Signif. codes: 0 '***' 0.001 `**' 0.01 '*' 0.05 '.' 0.1 , , 1

Unbalanced designs

- When all sample sizes are equal, the main effects and interactions can be estimated independently independently
- That ;s because of the orthogonality of the sub-spaces that correspond to the different model effects
- This is no longer the case when the sample sizes are different (unbalanced case) :
SSModel $=$ SSA + SSB + SSAB
■ For an unbalanced design, effect estimation must be adjusted (for the other effects in the model) : the estimated values depend on the other terms in the model and their order of entry
- We can no longer carry out tests $F=\frac{M S x}{M S e r r o r}$

■ We must carry out sub-model tests

Example, cont : Unbalanced subset

	L	M	H
VC	4.2	16.5	
	11.5	16.5	23.6
	7.3	15.2	18.5
	15.2		25.5
	21.5	19.7	26.4
	17.6	23.3	22.4
	9.7		24.5

Example, cont. : supp 1st

```
> # full interaction model with
> # supp entering first
>
> fit1 <-
    lm(len ~ supp + doselev + supp:doselev,
        data=toothun)
> anova(fit1)
Analysis of Variance Table
```

Response: len

	Df	Sum Sq	Mean Sq	F value	Pr $(>F)$
supp	1	174.46	174.46	17.3664	0.0011049
doselev	2	375.75	187.87	18.7012	0.0001495
supp:doselev	2	17.70	8.85	0.8808	0.4377931
Residuals	13	130.60	10.05		

Example, cont: doselev 1st

```
> # full interaction model with doselev
> # entering first
>
> fit2 <-
    lm(len ~ doselev + supp + supp:doselev,
        data=toothun)
    > anova(fit2)
Analysis of Variance Table
```

Response: len
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
doselev 2396.08198 .0419 .71310 .0001158
supp $\quad 1154.13154 .1315 .3428 \quad 0.0017685$
doselev:supp $217.70 \quad 8.85 \quad 0.8808 \quad 0.4377931$
Residuals $13130.60 \quad 10.05$

Summary : numerical and graphical analysis

- Design plot
- Boxplots of outcome for each factor level
- Interaction plots
- Write out model, assumptions, de ne all parameters
- ANOVA table

■ Plots for assumption checking/model assessment

- Example of full analysis at : https://www.guru99.com/r-anova-tutorial.html

