Artificial Neural Networks (Gerstner). Exercises for week 8

Model-Based Deep Reinforcement Learning

Exercise 1. Background Planning.

In this exercise we look again at the simple map of Europe on slide 3. You will run value iteration with goal Vienna. This means that we will keep $V(\mathrm{~V})=0$ all the time.
a. Initialize all V- and Q-values to zero.
b. Apply the update rule of value iteration (equation 1 on slide 3) to all cities in parallel. Hint 1: keep $V(\mathrm{~V})=0$ and don't worry, if you find e.g. $V(\mathrm{Z})=-2$. Hint 2: "In parallel" means, that you should assume $V\left(s^{\prime}\right)=0$ when running this step for the first time and take the value that you obtained in the previous iteration otherwise.
c. Repeat step b. until convergence.
d. Convince yourself that value iteration found the optimal solution. Write down, how you convinced yourself that the optimal solution was found.

Exercise 2. Exploration in MCTS

In this exercise we will have a closer look at the exploration term in Monte Carlo Tree Search. Assume that in state s_{0} there are two actions a_{1} and a_{2}. Their true values would be $\mu\left(s_{0}, a_{1}\right)=0.8$ and $\mu\left(s_{0}, a_{2}\right)=2 / 3$, but this is unknown to the learner. So far, in the expansion of the tree in MCTS, each action was taken 5 times. By an unlucky coincidence, action a_{1} always led to a loss, whereas action a_{2} always led to a win, i.e. the current Q-values are $Q\left(s_{0}, a_{1}\right)=0$ and $Q\left(s_{0}, a_{2}\right)=1$.
a. Assume that the exploration term is of the form $\sqrt{\frac{2}{N(s, a)}}$, i.e. it decreases with visitation counts but it does not increase with the total number of MCTS iterations. Show that in this case the action selection of MCTS $a^{*}=\arg \max _{a} Q(s, a)+\sqrt{\frac{2}{N(s, a)}}$ never considers action a_{1} anymore and thus fails to discover that action a_{1} would actually be better.
b. Let us now use the UCB1 exploration term $\sqrt{\frac{2 \log (N(s))}{N(s, a)}}$ and assume that every third time a_{2} is taken, a loss results and otherwise a win. After how many iterations will MCTS explore again action a_{1} ?

Exercise 3. AlphaZero.

In this exercise you will manually compute some steps in one iteration of AlphaZero's Monte Carlo Tree Search. Assume that from the previous Monte Carlo Tree Search you have already a tree that starts at state s_{0} with $N\left(s_{0}, a_{1}\right)=8, W\left(s_{0}, a_{1}\right)=4, P\left(s_{0}, a_{1}\right)=0.2, N\left(s_{0}, a_{2}\right)=24, W\left(s_{0}, a_{2}\right)=16, P\left(s_{0}, a_{2}\right)=0.8$. We fix $C(s)=1$.
a. Determine the action (a_{1} or a_{2}) that AlphaZero would take in the selection step of MCTS in state s_{0}.
b. Is it a greedy or an exploratory action that was taken in a?
c. Update N, P, W and Q (if it changes in the backpropagation step of MCTS) under the assumption that the expansion step led to $v=0.7$.
d. Compute the probability that AlphaZero would take the actual action a_{1} now.

Exercise 4. MuZero

O_{1}, \ldots, O_{16}

o_{17}, \ldots, o_{32}

Above you see some example images of an environment, where states o_{1}, \ldots, o_{16} always have the black rectangle at the top right, while each pixel in the bottom row can be randomly 0 or 1 . States o_{17}, \ldots, o_{32} have a similar pattern with a black rectangle at the top left and random pixels in the bottom row. States o_{33}, \ldots, o_{48} have a similar pattern with a bar in the second row from the bottom and random pixels in the bottom row. Assume the actual state transitions are $P_{o_{i} \rightarrow o_{j}}^{a_{1}}=1 / 16$ for $i \in\{1, \ldots, 16\}, j \in\{17, \ldots, 32\}, P_{o_{i} \rightarrow o_{j}}^{a_{1}}=1 / 16$ for $i \in\{17, \ldots, 32\}, j \in\{33, \ldots, 48\}, P_{o_{i} \rightarrow o_{j}}^{a_{1}}=1 / 16$ for $i \in\{33, \ldots, 48\}, j \in\{1, \ldots, 16\}$ and $P_{o_{i} \rightarrow o_{j}}^{a_{2}}=P_{o_{j} \rightarrow o_{i}}^{a_{1}}$. The rewards are $R_{o_{i} \rightarrow o_{j}}^{a_{1}}=1$ for $i \in\{1, \ldots, 16\}, j \in\{17, \ldots, 32\}$, all other rewards are zero. Episodes start in a random state and end after 10 actions have been taken.
a. How many bits does the latent representation s_{t} need to have at least for a model-based RL method that relies on a auto-encoder approach, where o_{t} has to be reconstructable from s_{t} ?
b. How many bits does the latent representation s_{t} need to have at least for a model-based RL method like MuZero, where the latent state only needs to be sufficient for predicting the immediate reward, the value and the policy?
c. Can MuZero still find the optimal policy, if $P_{o_{i} \rightarrow o_{j}}^{a_{2}}=1 / 32$ for $i \in\{17, \ldots, 32\}, j \in\{1, \ldots, 16,33, \ldots 48\}$?

