
Markov Decision Processes

Johanni Brea

25 April 2023

Artificial Neural Networks CS-456

Introduction

Many RL papers contain a background

section like the following one:
In this lecture you will learn

1. what a Markov Decision Process is.

2. how MDPs can be solved with dynamic

programming or linear programming.

3. how future discounted MDPs can be

solved with value iteration or policy

iteration.

Recommended reading:

Sutton & Barto, Chapters 3 & 4

Algorithms of Reinforcement Learning

http://www.ualberta.ca/~szepesva/

papers/RLAlgsInMDPs.pdf

1

http://www.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf
http://www.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf

Markov Decision Processes

We considerMarkov Decision Processes (MDPs) with

I finite state space S with |S| < ∞,

I finite action spaces {As |s ∈ S} with |As | < ∞,

I immediate rewards ra
s ∈ R

I transition probabilities pa
si→sj ∈ [0, 1]

I discount factor γ ∈ [0, 1]

I and initial state probabilities p(0)
si .

For a sequence (or trajectory) of state-action-reward tuples, we will use the notation

τ = (S0, A0, R1, S1, A1, . . . , RT).

2

Notes

Markov Decision Processes

We considerMarkov Decision Processes (MDPs) with

I finite state space S with |S| < ∞,

I finite action spaces {As |s ∈ S} with |As | < ∞,

I immediate rewards ra
s ∈ R

I transition probabilities pa
si→sj ∈ [0, 1]

I discount factor γ ∈ [0, 1]

I and initial state probabilities p(0)
si .

For a sequence (or trajectory) of state-action-reward tuples, we will use the notation

τ = (S0, A0, R1, S1, A1, . . . , RT).

• The Markov Decision Processes can also be defined for continuous state and action spaces,

but we restrict ourselves here to finite (and thus discrete) state and action spaces.

• In general, the available actions can depend on the state (it is not possible to advance when

standing in front of a wall). Sometimes the action spaces are independent of the state; in this

case we just writeA for the action space.

• The transition probabilities have the property
∑

sj∈S pa
si→sj = 1, ∀a ∈ Asi , si ∈ S .

• Sometimes rewards are considered stochastic or dependent on the next state Ra
si→sj . In this

case one can define the immediate rewards as the expected immediate rewards ra
si = E[Ra

si→sj].

• The initial state probabilities have the property
∑

si∈S p(0)
si = 1.

• Different authors use different conventions to define MDPs; some include only the state space,

action space, transition probabilities and rewards, others include also the discount factor or the

initial state probabilities.

Policies, Value Functions and Objectives

The goal is to find a policy π(t)(a|s) ∈ [0, 1] (i.e. probability of taking action a in state s and
time point t) that maximizes some objective. We use the notation π to denote the policy for

all states and time points. We define the horizon-T value function

V (T)
γ (π, s) = E

[T∑
t=1

γ(t–1)Rt

∣∣∣∣S0 = s
]

(1)

=
∑

A0,S1,A1,...,AT–1

π(0)(A0|s)pA0

s→S1
· · ·

(
rA0s + γrA1

S1
+ · · · + γT–1rAT–1

ST–1

)
Objectives find the policy π that maximizes for all s ∈ S

I Horizon-T values: V (T)
γ (π, s).

I Future Discounted Values: V∞
γ (π, s) = limT→∞ V (T)

γ (π, s) for γ ∈ [0, 1).

I Reward Rate: limT→∞
1
T V (T)

1
(π, s).

3

Notes

Policies, Value Functions and Objectives

The goal is to find a policy π(t)(a|s) ∈ [0, 1] (i.e. probability of taking action a in state s and
time point t) that maximizes some objective. We use the notation π to denote the policy for

all states and time points. We define the horizon-T value function

V (T)
γ (π, s) = E

[T∑
t=1

γ(t–1)Rt

∣∣∣∣S0 = s
]

(1)

=
∑

A0,S1,A1,...,AT–1

π(0)(A0|s)pA0

s→S1
· · ·

(
rA0s + γrA1

S1
+ · · · + γT–1rAT–1

ST–1

)
Objectives find the policy π that maximizes for all s ∈ S

I Horizon-T values: V (T)
γ (π, s).

I Future Discounted Values: V∞
γ (π, s) = limT→∞ V (T)

γ (π, s) for γ ∈ [0, 1).

I Reward Rate: limT→∞
1
T V (T)

1
(π, s).

• In general, the policy can depend on the time point, but in some cases it is independent of time

and we can drop the upper index (t).
• On the second line of the definition of the value function we write out explicitly the expectation by

summing over all possible actions and states (up to horizon T), weighted by the probabilities of

taking those actions π(t)(At , St) (given by the policy) and the transition probabilities pAt
St→St+1

.

Comments

I Sometimes it will be useful to work with Q-values

Q(T)
γ (π, s, a) = E

[T∑
t=1

γ(t–1)Rt

∣∣∣∣S0 = s, A0 = a
]

V (T)
γ (π, s) =

∑
a∈As

π(a|s)Q(T)
γ (π, s, a)

I Why is it called “Markov Decision Process”? A Markov Decision Process together

with a policy defines a Markov chain on space S with transition probabilities

Tsi→sj = pa
si→sjπ(a|si).

I Are there non-Markovian Decision Processes? Yes! Depending on how the state

space is defined, the next state sj may depend on more than just the current state and

action. For example, in partially observable Markov Decision Processes (POMDPs) one

assumes there is an underlying MDP, but instead of observing the full state the agent

observes only parts of the full state.

4

Notes

Comments

I Sometimes it will be useful to work with Q-values

Q(T)
γ (π, s, a) = E

[T∑
t=1

γ(t–1)Rt

∣∣∣∣S0 = s, A0 = a
]

V (T)
γ (π, s) =

∑
a∈As

π(a|s)Q(T)
γ (π, s, a)

I Why is it called “Markov Decision Process”? A Markov Decision Process together

with a policy defines a Markov chain on space S with transition probabilities

Tsi→sj = pa
si→sjπ(a|si).

I Are there non-Markovian Decision Processes? Yes! Depending on how the state

space is defined, the next state sj may depend on more than just the current state and

action. For example, in partially observable Markov Decision Processes (POMDPs) one

assumes there is an underlying MDP, but instead of observing the full state the agent

observes only parts of the full state.

In the Atari games we encountered already a non-Markovian Decision Process: for moving objects a

single video frame is not sufficient to determine the direction of movement. In this case it is easy to turn

the non-Markovian Decision Process into a Markov Decision Process by augmenting the state space

and defining the state as a few subsequent video frames.

A famous, academic example of a partially observable Markov Decision Process is the so-called Tiger

Problem (https://people.csail.mit.edu/lpk/papers/aij98-pomdp.pdf), where a tiger is behind

one door and a large reward is behind the other door. The agent can either listen, or open the left

or the right door. When the agent listens, it observes a roar either behind the left or the right door, but

the observation is not always accurate; with a small probability the agent may observe a roar behind

the left door, even when the tiger is behind the right door and vice versa.

All non-Markovian Decision Processes could in principle be turned into Markov Decision Processes by

augmenting the state space (for example with perfect knowledge about the actual position of the tiger)

but in practice it may be difficult or impossible to do this augmentation.

Our world is usually partially observable: as long as the door of the fridge is closed we do not directly

observe the content of the fridge; the full state of mind of another person is usually unobservable to us.

https://people.csail.mit.edu/lpk/papers/aij98-pomdp.pdf

What is the relationship to Reinforcement Learning?

“Solving” an MDP amounts to a solving an optimal control problem, i.e. finding the

optimal policy, where the dynamics is known, i.e. pa
si→sj and ra

s are assumed to be

known. In reinforcement learning, one assumes that the dynamics is unknown.

I In model-free RL, the agent tries to find the optimal policy, without ever

explicitly estimating the dynamics pa
si→sj and rewards ra

s .

I In model-based RL, the agent tries to estimate the dynamics and than solves

the control problem.

5

Notes

What is the relationship to Reinforcement Learning?

“Solving” an MDP amounts to a solving an optimal control problem, i.e. finding the

optimal policy, where the dynamics is known, i.e. pa
si→sj and ra

s are assumed to be

known. In reinforcement learning, one assumes that the dynamics is unknown.

I In model-free RL, the agent tries to find the optimal policy, without ever

explicitly estimating the dynamics pa
si→sj and rewards ra

s .

I In model-based RL, the agent tries to estimate the dynamics and than solves

the control problem.

• There is no estimation problem involved in solving an MDP, but solving the optimal control

problem is still a non-trivial problem itself.

• Model-based reinforcement learning solves explicitly an estimation problem and an optimal

control problem. Model-free reinforcement learning solves the estimation and the optimal

control problem implicitly.

• The exploration-exploitation trade-off exists only in reinforcement learning, but not when solving

MDPs. One could say, solving MDPs is solving an exploitation problem. The exploration part in

reinforcement learning is needed to tackle the estimation problem.

The Optimal Fixed Horizon Policy

The policy π∗ that maximizes the horizon-T values can be found with Dynamic

Programming: recursively find the optimum for problems of growing horizon.

1. The optimal horizon-1 values are V (1)
γ (π∗, s) = maxa∈As ra

s .

2. The optimal horizon-(t + 1) values are

V (t+1)
γ (π∗, s) = max

a∈As
Q(t+1)
γ (π∗, s, a) = max

a∈As
ra
s + γ

∑
s′∈S

pa
s→s′V

(t)
γ (π∗, s ′) (2)

The optimal horizon-T policy picks at time t an action in the

arg maxa∈As Q(T–t+1)
γ (π∗, s, a).

The horizon-T policy is not stationary, in general, i.e. π(t)(a|s) 6= π(t′)(a|s) for t 6= t ′,
but it can be chosen to be deterministic.

6

Notes

The Optimal Fixed Horizon Policy

The policy π∗ that maximizes the horizon-T values can be found with Dynamic

Programming: recursively find the optimum for problems of growing horizon.

1. The optimal horizon-1 values are V (1)
γ (π∗, s) = maxa∈As ra

s .

2. The optimal horizon-(t + 1) values are

V (t+1)
γ (π∗, s) = max

a∈As
Q(t+1)
γ (π∗, s, a) = max

a∈As
ra
s + γ

∑
s′∈S

pa
s→s′V

(t)
γ (π∗, s ′) (2)

The optimal horizon-T policy picks at time t an action in the

arg maxa∈As Q(T–t+1)
γ (π∗, s, a).

The horizon-T policy is not stationary, in general, i.e. π(t)(a|s) 6= π(t′)(a|s) for t 6= t ′,
but it can be chosen to be deterministic.

• The dynamic programmingmethod breaks decision problems into smaller subproblems.

Bellman’s principle of optimality describes how to do this: An optimal policy has the property

that whatever the initial state and initial decision are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the first decision. (See Bellman, 1957, Chap.

III.3.)

• The arg maxa∈As Q(T–t+1)
γ (π∗, s, a) may contain multiple actions. In this case one can randomly

break ties and select any action that maximizes the Q-values.

• For a horizon-T problem, one finds first the (set of) optimal action(s) for the last time step (the

solution for the horizon-1 problem), for example π(T)(a|s) = 1 if a = first(arg maxa∈As ra
s) and

π(T)(a′|s) = 0 for all a′ 6= a.
• Then one finds the (set of) optimal action(s) for the second to last time step (the solution for the

horizon-2 problem), e.g. π(T–1)(a|s) = 1 if a = first(arg maxa∈As Q(2)(π∗, s, a)) and
π(T–1)(a′|s) = 0 for all a′ 6= a, etc.

• In the exercises you will construct an example to show that the horizon-T policy can be

non-stationary.

Fixed-Point Iterations and Banach’s Fixed Point Theorem

Some equations of the form

x = T (x) can be solved with a

fixed point iteration:

Start with x(0) and compute

x(k) = T (x(k–1))

until x(k) ≈ x(k–1).

Example: Heron’s method for

computing the square root of a

x = 1

2

(a
x + x

)
= Ta(x)

0
√
7 T7(10) 10

0

5

10

y = x

y = T7(x)

x

y

https://towardsdatascience.com/why-does-the-optimal-policy-exist-29f30fd51f8c

7

https://towardsdatascience.com/why-does-the-optimal-policy-exist-29f30fd51f8c

Notes

Fixed-Point Iterations and Banach’s Fixed Point Theorem

Some equations of the form

x = T (x) can be solved with a

fixed point iteration:

Start with x(0) and compute

x(k) = T (x(k–1))

until x(k) ≈ x(k–1).

Example: Heron’s method for

computing the square root of a

x = 1

2

(a
x + x

)
= Ta(x)

0
√
7 T7(10) 10

0

5

10

y = x

y = T7(x)

x

y

https://towardsdatascience.com/why-does-the-optimal-policy-exist-29f30fd51f8c

For the interested students, here is the mathematical background

(see also Appendix A of http://www.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf):

Let (X , d) be a complete metric space. Then a map T : X → X is called a contractionmapping on X
if there exists q ∈ [0, 1) such that d(T (x), T (y)) ≤ qd(x , y) for all x , y ∈ X .

Banach Fixed Point Theorem. Let (X , d) be a non-empty complete metric space with a contraction

mapping T : X → X . Then T admits a unique fixed-point x∗ in X (i.e. T (x∗) = x∗). Furthermore,

x∗ can be found as follows: start with an arbitrary element x0 ∈ X and define a sequence (xn)n∈N by

xn = T (xn–1) for n ≥ 1. Then limn→∞ xn = x∗.

For Heron’s method for computing the square root, we can take the distance d(x , y) = |x – y | and
the contraction mapping T : [

√
a/2,∞) → [

√
a/2,∞), x → Ta(x) for a > 0. It is easy to show that∣∣∣ dfa

dx (x)
∣∣∣ ≤ 1

2
on [

√
a/2,∞) and therefore (by the mean value theorem) |fa(x) – fa(y)| ≤ 1

2
|x – y |.

https://towardsdatascience.com/why-does-the-optimal-policy-exist-29f30fd51f8c
http://www.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf

Maximizing Future Discounted Values with Dynamic Programming

Let us define the mapping (sometimes called Bellman operator)

Tγ : R|S| → R|S|, Tγ(X)s = max
a∈As

ra
s + γ

∑
s′∈S

pa
s→s′Xs′

 . (3)

I One can show that the mapping Tγ is a contraction mapping and Banach’s

fixed point theorem can be applied. Hence, there is a unique fixed point

X∗ = Tγ(X∗).
I Note that X∗ = Tγ(X∗) is exactly the same equation we want the optimal

horizon-∞ values to satisfy (c.f. Eq. 2).

I Therefore, this fixed point is the solution V∞
γ (π∗, s) = X∗

s .
I The optimal policy is to choose actions in arg maxa∈As Q∞

γ (π∗, s, a).
I This policy is stationary, i.e. π(t)(a|s) = π(t′)(a|s) for t 6= t ′, and it can be

chosen to be deterministic.

8

Value Iteration

Iteratively compute horizon-t values until maxs∈S |V (t+1)
γ (π∗, s) – V (t)

γ (π∗, s)| < θ, where
θ > 0 is some convergence criterion. The optimal stationary policy picks actions in

arg maxa∈As Qt∗
γ (π∗, s, a), where t∗ is the stopping iteration.

9

Notes

Value Iteration

Iteratively compute horizon-t values until maxs∈S |V (t+1)
γ (π∗, s) – V (t)

γ (π∗, s)| < θ, where
θ > 0 is some convergence criterion. The optimal stationary policy picks actions in

arg maxa∈As Qt∗
γ (π∗, s, a), where t∗ is the stopping iteration.

It is not unreasonable to start the fixed-point iteration with Xs = maxa∈As ra
s (as for the horizon-T so-

lution), but value iteration would also converge, if one initialized X randomly (thanks to the contraction

mapping and Banach’s fixed point theorem).

Having to define some stopping criterion makes value iteration a bit unattractive.

Policy Iteration

Policy Improvement Theorem

Let π and π′ be a pair of

deterministic policies such that ∀s

Qπ(s,π′(s)) ≥ Qπ(s,π(s)) .

Then the policy π′ must be as

good as or better than π, i.e.

Qπ′(s,π′(s)) ≥ Qπ(s,π(s)) .

Policy Evaluation

V∞
γ (π, s) = rπ(s)

s + γ
∑
s′∈S

pπ(s)
s→s′V

∞
γ (π, s ′) (4)

V∞
γ (π) = (I – γP)–1r (5)

with r s = rπ(s)
s and identity matrix I and Ps,s′ = pπ(s)

s→s′ .

Policy Improvement

π′(s) = first(arg maxa∈As Q∞
γ (π, s, a))

Policy Iteration

Start with a random deterministic policy, evaluate it,

improve it and repeat evaluation and improvement until

the policy does not change anymore.

10

Notes

Policy Iteration

Policy Improvement Theorem

Let π and π′ be a pair of

deterministic policies such that ∀s

Qπ(s,π′(s)) ≥ Qπ(s,π(s)) .

Then the policy π′ must be as

good as or better than π, i.e.

Qπ′(s,π′(s)) ≥ Qπ(s,π(s)) .

Policy Evaluation

V∞
γ (π, s) = rπ(s)

s + γ
∑
s′∈S

pπ(s)
s→s′V

∞
γ (π, s ′) (4)

V∞
γ (π) = (I – γP)–1r (5)

with r s = rπ(s)
s and identity matrix I and Ps,s′ = pπ(s)

s→s′ .

Policy Improvement

π′(s) = first(arg maxa∈As Q∞
γ (π, s, a))

Policy Iteration

Start with a random deterministic policy, evaluate it,

improve it and repeat evaluation and improvement until

the policy does not change anymore.

• For deterministic policies

π(a|s) = 1 for some a and

π(a′|s) = 0, ∀a′ 6= a, we will

use here the notation

a = π(s).
• The policy evaluation can

be done by explicitly

inverting the matrix (I – γP)
or by approximating the

Neumann series

(I – γP)–1 =
∑∞

k=0 γkPk

as in the example of

iterative policy evaluation in

the pseudocode on the

right.

Generalized Policy Iteration

Policy iteration consists of two simultaneous, interacting

processes, one making the value function consistent with

the current policy (policy evaluation), and the other making

the policy greedy with respect to the current value func-

tion (policy improvement). In policy iteration, these twopro-

cesses alternate, each completing before the other be-

gins, but this is not really necessary. In value iteration,

for example, only a single iteration of policy evaluation is

performed in between each policy improvement. In asyn-

chronous dynamic programming methods, the evaluation

and improvement processes are interleaved at an even

finer grain. In some cases a single state is updated in one

process before returning to the other. As long as both pro-

cesses continue to update all states, the ultimate result is

typically the same—convergence to the optimal value func-

tion and an optimal policy.
Sutton and Barto, Chapter 4.6

11

Notes

Generalized Policy Iteration

Policy iteration consists of two simultaneous, interacting

processes, one making the value function consistent with

the current policy (policy evaluation), and the other making

the policy greedy with respect to the current value func-

tion (policy improvement). In policy iteration, these twopro-

cesses alternate, each completing before the other be-

gins, but this is not really necessary. In value iteration,

for example, only a single iteration of policy evaluation is

performed in between each policy improvement. In asyn-

chronous dynamic programming methods, the evaluation

and improvement processes are interleaved at an even

finer grain. In some cases a single state is updated in one

process before returning to the other. As long as both pro-

cesses continue to update all states, the ultimate result is

typically the same—convergence to the optimal value func-

tion and an optimal policy.
Sutton and Barto, Chapter 4.6

Standard Q-learning can be seen as an example of asynchronous dynamic programming, where in

every step the policy is evaluated only for the current state action pair and the policy is only improved

(if necessary) for the current state.

Terminal or Absorbing States

Sometimes we wish to model something in between fixed-horizon and

infinite-horizon: settings where an episode can terminate, because some task is

completed, independently of when this happens.

Such terminal states can be modeled with absorbing states that transition

deterministically (and for any action) to themselves, without any immediate reward.

This corresponds to fixing the values for absorbing states at 0.

Sutton and Barto, Chapter 3.4

12

Notes

Terminal or Absorbing States

Sometimes we wish to model something in between fixed-horizon and

infinite-horizon: settings where an episode can terminate, because some task is

completed, independently of when this happens.

Such terminal states can be modeled with absorbing states that transition

deterministically (and for any action) to themselves, without any immediate reward.

This corresponds to fixing the values for absorbing states at 0.

Sutton and Barto, Chapter 3.4

The planning example in the simplified map of some cities in Europe can be modeled by introducing

a self-transition with zero reward for the goal city and removing all out-going transitions, e.g. for Rome.

If we want to use the same map to solve another planning problem, we would re-insert the out-going

transitions and remove the self-transition for Rome and apply these changes to the new goal city. This

modification of the MDP results effectively in fixing the value for the goal city at 0.

Maximizing Future Discounted Values with Linear Programming

As an alternative to dynamics programming, one can define the problem of finding

optimal values as a linear program.

Let us the notation vs = V∞
γ (π∗, s). For the optimal policy π∗ we have

vs ≥ ra
s + γ

∑
s′∈S

pa
s→s′vs′ ,∀a ∈ As , s ∈ S . (6)

This allows us to define the linear program

min
vs

∑
s∈S

vs (7)

subject to

vs ≥ ra
s + γ

∑
s′∈S

pa
s→s′vs′ ,∀a ∈ As , s ∈ S

13

Notes

Maximizing Future Discounted Values with Linear Programming

As an alternative to dynamics programming, one can define the problem of finding

optimal values as a linear program.

Let us the notation vs = V∞
γ (π∗, s). For the optimal policy π∗ we have

vs ≥ ra
s + γ

∑
s′∈S

pa
s→s′vs′ ,∀a ∈ As , s ∈ S . (6)

This allows us to define the linear program

min
vs

∑
s∈S

vs (7)

subject to

vs ≥ ra
s + γ

∑
s′∈S

pa
s→s′vs′ ,∀a ∈ As , s ∈ S

Linear Programming is a technique for the optimization of a linear objective function, subject to linear

equality and linear inequality constraints. There exist efficient solvers for linear programming problems.

We will not discuss linear programming solutions of MDPs in details, but you should know that MDPs

can be solved with linear programming and you should get an idea how MDP problems can be de-

scribed as a linear programming problems.

All techniques to solve MDPs can give us inspirations for solving reinforcement learning problems (see

for example http://proceedings.mlr.press/v130/bas-serrano21a.html).

http://proceedings.mlr.press/v130/bas-serrano21a.html

Maximizing the Reward Rate with Linear Programming

Let us define the Markov chain with transition probabilities pπ
s→s′ =

∑
a∈As π(a|s)pa

s→s′ and
let us assume that this Markov chain is irreducible and aperiodic for all π. Then there exists

the stationary distribution ρπ Note the this is a strong assumption, which, however, is e.g.

fulfilled when pa
s→s′ is positive for all a, s, s ′. Let us define the reward rate

r̄ =
∑

s∈S,a∈As

ππs π(a|s)ra
s

and introduce the variables ca
s = ρπs π(a|s). Then we can define the linear program

max
ca

s

∑
s∈S,a∈As

ra
s ca

s (8)

subject to∑
s∈S,a∈As

ca
s = 1 and

∑
a∈As′

ca
s′ =

∑
s∈S,a∈As

ca
s pa

s→s′ (9)

14

