Artificial Neural Networks (Gerstner). Exercises for week 4

TD-learning and function approximation

Exercise 1. Consistency condition for 3 -step SARSA

In class we have seen the arguments leading to the error function arising from the consistency condition of Q-values:

$$
E=\frac{1}{2} \sum \delta_{t}^{2}
$$

with $\delta_{t}=r_{t}+\gamma Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a)$. This specific consistency condition corresponds to 1-step SARSA.
Write down an analogous consistency condition for 3-step SARSA.

Exercise 2. Q-values for continuous states

We approximate the state-action value function $Q(s, a)$ by a weighted sum of basis functions (BF):

$$
Q(s, a)=\sum_{j} w_{a j} \Phi\left(s-s_{j}\right)
$$

where $\Phi(x)$ is the BF "shape", and the s_{j} 's represent the centers of the BFs.
Calculate

$$
\frac{\partial Q(s, a)}{\partial w_{\tilde{a} i}}
$$

the gradient of $Q(s, a)$ along $w_{\tilde{a} i}$ for a specific weight linking the basis function i to the action \tilde{a}.

Exercise 3. Gradient-based learning of Q-values

Assume again that the Q-values are expressed as a weighted sum of 400 basis functions:

$$
Q(s, a)=\sum_{k=1}^{400} w_{a}^{k} \Phi\left(s-s_{k}\right)
$$

For this exercise the function Φ is arbitrary, but you may think of it as a Gaussian function. Note that s and s_{k} are usually vectors in \mathbb{R}^{N} in this case. There are 3 different actions so that the total number of weights is 1200. Now consider the error function $E_{t}=\frac{1}{2} \delta_{t}^{2}$, where

$$
\begin{equation*}
\delta_{t}=r_{t}+\gamma \cdot Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a) \tag{1}
\end{equation*}
$$

is the reward prediction error. Our aim is to optimize $Q(s, a)$ for all s, a by changing the parameters w. We consider $\eta \in[0,1)$ as the learning rate.
a. Use the full gradient of the error function E_{t} and write down the learning rule based on gradient decent. Consider the case where the actions a and a^{\prime} are different.
How many weights need to be updated in each time step?
b. Use the full gradient of the error function E_{t} and write down the learning rule based on gradient decent. Consider the case where the actions a and a^{\prime} are the same.
Is there any difference to the case considered in (a)?
c. Repeat (a) and (b) by using the semi-gradient of the error function E_{t}. Do your answers change?
d. Suppose that the input space is two-dimensional and you discretize the input in 400 small square 'boxes' (i.e., 20×20). The basis function $\Phi\left(s-s_{k}\right)$ is now the indicator function: it has a value equal to one if the current state s is in 'box' k and zero otherwise.

How do your results from (a-c) look like in this case?
e. The learning rules in (d) are very similar to standard SARSA. What is the difference?

Hint: Consider the difference between Full Gradient and Semi-gradient.
f. Assume that $Q\left(s^{\prime}, a^{\prime}\right)$ in Equation 1 does not depend on the weights. For example $Q\left(s^{\prime}, a^{\prime}\right)$ could be extracted from a separate neural network with its own parameters. How is your result in (a-c) related to standard SARSA? What do you conclude regarding the choice of semi-gradient versus full gradient? What do you conclude regarding the choice of Mnih et al. (2015) to model $Q\left(s^{\prime}, a^{\prime}\right)$ by a separate network with parameters that are kept fixed for some time?

Exercise 4. Inductive prior in reinforcement learning (from the final exam 2022)

We consider a 2-dimensional discrete environment with 16 states (Figure 1) plus one goal state where the agent receives a positive reward r. States are arranged in a triangular fashion in two dimensions. States are labeled as shown in the Figure 1 on the left. Available actions (Figure 1 on the right) are $a_{1}=\mathrm{up}, a_{2}=$ down, $a_{3}=\mathrm{right}$, $a_{4}=$ diagonally up right, $a_{5}=$ diagonally down right, $a_{6}=$ left (whenever these moves are possible). Returns are possible, e.g., the action up can be immediately followed by the action down.

Figure 1: Figure for Exercise 4
Suppose that we use function approximation for

$$
Q(a ; X)=\sum_{j} w_{a j} x_{j}
$$

with continuous state representation X with the following encoding scheme: Input is encoded in 18 dimensions $X=\left(x_{1}, x_{2}, \ldots, x_{16}, x_{17}, x_{18}\right)$, where the first 16 entriesare 1-hot encoded discrete states; entry 17 is $x_{17}=$ $0.5 \cdot(z+1)$ and $x_{18}=0.1$ where z is the horizontal coordinate of the environment (Figure 1). Before the first episode, we initialize all weights at zero. During the first episode, we update Q-values using the Q -learning algorithm in continuous space derived with the semi-gradient method from the Q-learning error function. We consider $\eta \in[0,1)$ as the learning rate and $\gamma \in[0,1]$ as the discount factor.
a. Write down the quadratic loss function for 1-step Q-learning.
b. Using the semi-gradient update rule, what are the new weight values $w_{a i}$ and Q-values $Q(s, a)$ for all 16 states and all actions at the end of the first episode? Write down all weights and Q-values that have changed.
c. In episode 2 you use a greedy policy in which ties are broken by random search. What is the probabilty p that the agent will choose a path with a minimal number of steps to the goal? Consider two initial states 7 and 11.
d. Is this behavior for episode 2 typical for 1-step Q-learning? Comment on your result in (c) in view of the no-free lunch theorem. (DO NOT write down the no-free lunch theorem, but use it in order to interpret your result.)
e. What can you say about the inductive prior of the variable x_{18} ? To let you focus on the role of x_{18}, consider for a moment the representation $x_{17}=\alpha[z-\beta]$ with $\alpha=0($ instead $\alpha=0.5)$.
f. What can you say about the inductive prior of the variable x_{17} ? To answer this question consider the representation $x_{17}=\alpha[z-\beta]$ and redo the calculations as in (b). Then compare parameters $\alpha=0.5$ and $\beta=2$ with parameters $\alpha=0.5$ and $\beta=-1$.
What happens if the sing of α switches from +1 to -1 ?
g. What would be a great choice of functional representation for input x_{17} and x_{18} if you know that the reward is located at state 6 with coordinates $(z, y)=(2,1)$?

Exercise 5. Review of TD algorithms 1^{1}

You work with an implementation of 2-step SARSA and have doubts whether your algorithm performs correctly.
You have 2 possible actions from each state. You read-out the values after n episodes and find the following values:
$Q(1, a 1)=0, Q(2, a 1)=5 Q(3, a 1)=3 Q(4, a 1)=4 Q(5, a 1)=6 Q(6, a 1)=12 Q(7, a 1)=10 Q(8, a 1)=11$ $Q(9, a 1)=9 \quad Q(10, a 1)=10$
$Q(1, a 2)=1, Q(2, a 2)=1 Q(3, a 2)=3 Q(4, a 2)=2 Q(5, a 2)=1 Q(6, a 2)=4 Q(7, a 2)=2 Q(8, a 2)=6$ $Q(9, a 2)=11 Q(10, a 1)=10$
You run one episode and observe the following sequence (state, action, reward)
$(1, a 2,1)(2, a 2,1)(3, a 1,0)(5, a 1,4)(6, a 1,1)(8, a 2,1)$
What are the updates of 2-step SARSA that the algorithm should produce?

Exercise 6. Review of TD algorithms 2

Your friend proposes the following algorithm, using the pseudocode convention of Sutton and Barto.

```
Initialize Q(s,a)=0 for all }s\in\mathcal{S},a\in\mathcal{A
Initialize }\pi\mathrm{ to be }\varepsilon\mathrm{ -greedy
Parameters: step size \alpha\in(0,1], small }\varepsilon>
All store and access operations (for }\mp@subsup{S}{t}{},\mp@subsup{A}{t}{}\mathrm{ , and }\mp@subsup{R}{t}{}\mathrm{ ) can take their index mod 4
Repeat (for each episode):
    Initialize and store }\mp@subsup{S}{0}{}\not=\mathrm{ terminal
    Select and store an action }\mp@subsup{A}{0}{}~\pi(\cdot|\mp@subsup{S}{0}{}
    T\leftarrow10000
    For }t=0,1,2,\ldots\mathrm{ :
        If }t<T\mathrm{ , then:
            Take action }\mp@subsup{A}{t}{
            Observe and store the next reward as }\mp@subsup{R}{t+1}{}\mathrm{ and the next state as }\mp@subsup{S}{t+1}{
            If }\mp@subsup{S}{t+1}{}\mathrm{ is terminal, then:
                    T\leftarrowt+1
            else:
                Select and store an action }\mp@subsup{A}{t+1}{}~\pi(\cdot|\mp@subsup{S}{t+1}{}
        \tau\leftarrowt- 3
        If }\tau\geq0\mathrm{ :
            X}\leftarrow\mp@subsup{\sum}{i=\tau+1}{\operatorname{min}(\tau,T)}\mp@subsup{\gamma}{}{i-\tau-1}\mp@subsup{R}{i}{
            If }\tau+4<T\mathrm{ , then }X\leftarrowX+\mp@subsup{\gamma}{}{4}Q(\mp@subsup{S}{\tau}{+4}\mp@subsup{A}{\tau}{}+4
            Q(S
    Until }\tau=T-
```

a. Is the algorithm On-Policy or Off-Policy?

Answer: \qquad
b. What does the variable X represent?

Answer \qquad

[^0]c. Is this algorithm novel, similar to, or equivalent to an existing algorithm?

Answer (fill in/choose)
This algorithm is identical/very similar to . \qquad
There is no difference to the named algorithm/the main difference is
d. Is this algorithm a TD algorithm? What is the reason for your answer?

Answer: Yes/No, because

[^0]: ${ }^{1}$ Solving Exercise 5 is not nesscary. You can instead also run similar problems using simulations.

