Introduction to Differentiable	Manifolds	
$EPFL - Fall \ 2022$	F. Carocci	, M. Cossarini
Exercise Series 2 - Differentiable manifolds and	nd maps	2022 - 09 - 27

Exercise 2.1 (Manifolds from vector spaces). Let V be a vector space and $, |\cdot| : V \to \mathbb{R}$ a norm. Then V is endowed with a distance function and thus has the structure of a topological space. Let E_1, \ldots, E_n be a basis for V, then $E : \mathbb{R}^n \to V$ defined by $(x_1, \ldots, x_n) \to \sum_i x_i E_i$.

- (a) Show that (V, E^{-1}) is a chart for V;
- (b) Show that given a different base $\widetilde{E}_1, \ldots, \widetilde{E}_n$ (V, E^{-1}) , (V, \widetilde{E}^{-1}) are smoothly compatible.

We say that the collection of charts of this form define the *standard smooth* structure on V.

Use the previous part of the exercise to show that:

- (a) The space $M(n \times m, \mathbb{R})$ of $n \times m$ matrices has a natural smooth manifold structure
- (b) The general linear group $\operatorname{Gl}(n,\mathbb{R})$ has a natural smooth manifold structure
- (c) Let V, W two vector spaces and L(V; W) the space of linear maps from V to W has a natural smooth manifold structure.

Exercise 2.2 (Stereographic projection.). Let $N = (0, ..., 0, 1) \in \mathbb{R}^{n+1}$ be the north pole and S = -N the south pole of the sphere \mathbb{S}^n . Define stereographic projection $\sigma : \mathbb{S}^n \setminus \{N\} \to \mathbb{R}^n$ by

$$\sigma(x_0, \dots, x_n) = \frac{1}{1 - x_n} (x_0, \dots, x_{n-1}).$$

Let $\widetilde{\sigma}(x) = \sigma(-x)$ for $x \in \mathbb{S}^n \setminus \{S\}$.

(a) Show that σ is bijective, and

$$\sigma^{-1}(u_0,\ldots,u_{n-1}) = \frac{1}{|u|^2 + 1} (2u_0,\ldots,2u_{n-1},|u|^2 - 1).$$

- (b) Verify that $\{\sigma, \tilde{\sigma}\}$ is a smooth atlas for \mathbb{S}^n .
- (c) Show that the smooth structure defined by the atlas $\{\sigma, \tilde{\sigma}\}$ is the same as the one defined via graph coordinates in the lecture.

Exercise 2.3. Let N be an open subset of a smooth n-manifold (M, \mathcal{A}) , endowed with the smooth structure described in Exercise 1.4. Prove that:

- (a) The inclusion map $\iota: N \hookrightarrow M$ is a smooth map of manifolds.
- (b) A function $f: L \to N$ from a smooth manifold l is smooth f and only if the composite $\iota \circ f$ is smooth.

Exercise 2.4 (Properties of manifolds). Show that:

- (a) Let $\mathcal{A}, \mathcal{A}'$ be smooth atlases on a topological manifold M. Then \mathcal{A} and \mathcal{A}' determine the same smooth structure on M if and only if their union is a smooth atlas.
- (b) Two smooth atlases $\mathcal{A}_1, \mathcal{A}_2$ on M are equivalent iff the following holds: For every function $f: N \to M$ (where N is a smooth manifold), the function f is smooth as a map $N \to M_0$ if and only if it is \mathcal{C}^k as a map $N \to M_1$.

Exercise 2.5 (to hand in). Prove the following

- (a) Let $c: M \to N$ the constant map between two smooth manifolds; c is smooth
- (b) Every smooth chart $\varphi : U \to \varphi(U)$ of M is a diffeomorphism; here U and $\varphi(U)$ are given the open subspace smooth structure defined in Exercise 1.4.

- (c) The composite $g \circ f$ of two smooth maps $f: M \to N, g: N \to P$ is smooth map.
- (d) Show that the quotient map $\pi : \mathbb{R}^{n+1} \setminus 0 \to \mathbb{RP}^n$ is a smooth map of manifolds where on \mathbb{RP}^n we considered the smooth structure defined in Exercise 1.7.

Exercise 2.6. On the real line \mathbb{R} (with the standard topology) we define two atlases $\mathcal{A} = \{ \mathrm{id}_{\mathbb{R}} \}, \mathcal{B} = \{ \varphi \}$, where $\varphi : \mathbb{R} \to \mathbb{R}$ is given by $\varphi(x) = x^3$.

(a) Find a smooth diffeomorphism $(\mathbb{R}, \overline{\mathcal{A}}) \to (\mathbb{R}, \overline{\mathcal{B}})$.