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Redundancy 
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● Fundamental principle to build fault-tolerant systems

● Redundancy in digital design

○ Detect deviations and automatically restore correct behavior

○ Space-redundancy: state

○ Time-redundancy: transmission

● Redundancy in computer systems

○ Coding 

○ Data replication 

○ N-modular programming 

○ Software replication
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Redundancy Through Coding

● Incremental redundancy in memories: 

○ DRAM ECC - correct single-bit errors, detect double-bit errors. 

○ RAID5 -- symmetric parity encoding to recover from single-drive failures 

○ RAID6 -- Galois-field encoding to recover from dual-drive failures. 

● Incremental redundancy in communication 

○ Forward-Error Correction (FEC) -- correct link errors on the link 

○ Cyclic Redundancy Check (CRC) -- detect transmission errors on the link 

● Incremental redundancy at the end-to-end layer 

○ TCP checksum

○ SCSI -- Data Integrity Field (DIF)
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Data Redundancy Through Replication 

● RAID 1 – “mirroring” 

○ 2 copies of each sector 

○ Mechanism to detect disk failures

● Replication across systems 

○ Copies in different location 

○ For availability, disaster recovery, or content 

distribution

○ Strongly or weakly consistent variants

● Example – cloud storage (HDFS, Amazon S3) 

○ 3 independent copies  
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Fault Tolerance

● Denial is not a strategy – things will fail 

○ Your code 

○ Your computer 

○ Somebody else’s code 

○ Some part of the environment 
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Definitions

Fault → underlying defect, e.g. software (bug), hardware 
(fried component), operation (user error), environment 
(power grid)
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Failure → module not producing the desired result, e.g. an 
error

• Can be active (generates errors) or latent

• Occurs when a fault is not detected and masked by the module

Fault tolerance → building reliable systems out of unreliable 
components



Tolerating software faults 

● Applying NMR to software → N-version programming 

○ Example: DNS root servers run on different systems with different implementations 

○ Flight-control systems (Swiss Boeing 777 -- N=3) 

● Systematic approaches to fault tolerance in systems 

○  Respond to active faults (within a system) → containment + repair 

○  Examples 

■ Process pairs 

■ High-availability clusters 

■ Consensus algorithms 
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Tandem NONSTOP 

● Redundant hardware components

● Process pairs 

○ Each process has a backup 

○ API to communicate state changes using 

messages 

○ Process heartbeat to detect failures at all levels 

●  Fast detection (fail-fast) 

●  Fast recovery of transient software faults 

(process pairs) 
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Replication Technique

●  Distributed systems replicate data across multiple servers
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●  Distributed systems replicate data across multiple servers

○ Replication provides fault-tolerance if servers fail

○ Allowing clients to access different servers potentially increasing scalability (max 

throughput)

Replication Technique

Client
(EPFL)
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●  Distributed systems replicate data across multiple servers

○ Replication provides fault-tolerance if servers fail

○ Allowing clients to access different servers potentially increasing scalability (max 

throughput)

○ What is the problem?

Replication Technique
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Consistency Problem

X=0 X=0
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Consistency Problem
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W(X,1)

X=1 X=?

Client
(MIT)
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Client
(EPFL)

R(X)= 1 or 0?
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Consistency Problem
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Disclaimer for Databases

● Atomicity
● Consistency → Not that kind of consistency!!
● Integrity
● Durability
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Consistency Models

● A consistency model specifies a contract between programmer and 

system, wherein the system guarantees that if the programmer follows 

the rules, data will be consistent
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Consistency Models

● A consistency model specifies a contract between programmer and 

system, wherein the system guarantees that if the programmer follows 

the rules, data will be consistent

● If a system supports the stronger consistency model, then the weaker 

consistency model is automatically supported

● But stronger consistency models sacrifice more availability and fault 

tolerance
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Many Consistency Models

● Strict Consistency

● Linearizability

● Sequential Consistency

● Causal Consistency

● Eventual Consistency

Weaker consistency 
models

These models describe when and how different nodes in a 
distributed system view the order of operations
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These models describe when and how different nodes in a 
distributed system view the order of operations
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Why we have so many consistency 
models? 

Different applications → different trade-offs between 
consistency/availability/fault-tolerance



● Strict Consistency

● Linearizability

● Sequential Consistency

● Causal Consistency

● Eventual Consistency

Strong Consistency
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Strong Consistency
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Weaker consistency 
models

● Strict Consistency

● Linearizability

● Sequential Consistency

● Causal Consistency

● Eventual Consistency



Linearizability

● Provide behavior of a single copy of object

○ Read should return the most recent write  

○ Subsequent reads should return same value, until next write
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Linearizability

● Provide behavior of a single copy of object:  

○ Read should return the most recent write  

○ Subsequent reads should return same value, until next write

● Telephone intuition: 

○ Bob updates Facebook post 

○ Bob calls Alice on phone: “Check my Facebook post!” 

○ Alice read’s Bob’s wall, sees his post

33



Linearizability

write(A,1)

success
Server 1

Server 2

Server 3
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write(A,1)

Server 1

Server 2

Server 3
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read(A) A=1

success

How to achieve this? 
Server 3 did not get the write
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read(A) A=1

success

Idea: Delay responding to writes/ops until committed
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write(A,1)

Server 1

Server 2

Server 3
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read(A) A=1

success

Linearizability? This is buggy!

● How much delay is “enough”? Who writes on Server 3?

● Not sufficient to return value of Server 3 → It does not know 

precisely when op is “globally” committed

● Need global ordering between the write and the read operation



write(A,1)

Server 1

Server 2

Server 3
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read(A) A=1

success

Linearizability!

Order all operations via (1) leader and (2) agreement

committed



Linearizability

● Linearizability:

○ All servers execute all ops in some identical sequential order

○ Global ordering preserves each client’s own local ordering

● Once write completes, all later reads should return value of that write or 

value of later write

● Once read returns particular value, all later reads should return that 

value or value of later write

41



High Availability
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High Availability

System guarantees a response, even during network partitions (async network) 

43

[Gilbert and Lynch, ACM SIGACT News 2002]



Network partitions

“Network partitions should be rare but net gear continues to cause more issues 
than it should.” --James Hamilton, Amazon Web Services 

MSFT LAN: avg. 40.8 failures/day (95th %ile: 136) 5 min median time to repair (up to 1 week)

HP LAN: 67.1% of support tickets are due to network median incident duration 114-188 min

44

[perspectives.mvdirona.com, 2010]

[SIGCOMM 2011]

[HP Labs 2012]
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● Linearizability

● Sequential Consistency

● Causal Consistency
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Weak Consistency
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Causal Consistency

● Causal consistency is one of weak consistency models 

○ Causally related writes must be seen by all processes in the same order 

○ Concurrent writes may be seen in different orders on different machines
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Causal Consistency

● Have you seen causal consistency?

● Have you implemented causal consistency?
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Weak Consistency
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● Strict Consistency

● Linearizability

● Sequential Consistency

● Causal Consistency

● Eventual Consistency

Weaker consistency 
models



Eventual Consistency

● Eventual consistency

○ Achieve high availability 

○ If no new updates are made to a given data item, eventually all accesses to the data will 

return the last updated value

● Eventual consistency is commonly used

○ Git repo, iPhone sync 

○ Dropbox

○ Amazon Dynamo
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The CAP Theorem
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Consistency

Availability
Partition 
Toleranc
e

The CAP Theorem
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Consistency

Availability
Partition 
Toleranc
e

Partitions will occur on the Internet

The CAP Theorem



Disclaimer

● CAP is not as absolute as many claim

○ “Highly Available Transactions: Virtues and Limitations”, P.Bailis et al. VLDB 2014

○ “CAP Twelve Years Later: How the “Rules” Have Changed”, E.Brewer, Computer 45.2 (2012)

53



The AP Choice

● Strong consistency is not possible

○ The system can reply with stale data

● Many applications do not care

○ DNS

○ Web caching

○ Most applications (e.g., Facebook, Dropbox)

● Benefits of weak consistency

○ Highly-available systems

○ Low latency 

○ No coordination
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The CP Choice

● Strong Consistency 

○ Safety first

○ System halts on partitions

● Needs coordination

○ Consensus protocols

● Benefits

○ Writes are atomic

○ Any data read are the freshest possible
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Consensus

● In the consensus problem, processes propose values and have to agree 

on one of these values 

● Properties

○ Validity: Any value decided is a value proposed 

○ Agreement: No two correct processes decide differently 

○ Termination: Every correct process eventually decides 

○ Integrity: No process decides twice
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Round Synchronous

● The processes go through rounds incrementally (1 to n)

○ In each round, the process with the id corresponding to that round is the leader of the 

round

● The leader of a round decides its current proposal and broadcasts it to all

● A process that is not leader in a round waits:

○ (a) to deliver the proposal of the leader in that round to adopt it OR

○ (b) to suspect the leader
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Uniform Consensus Algorithm

● The processes go through rounds incrementally (1 to n)

○ In each round i, process pi sends its current proposal to all

● A process adopts any current proposal it receives

● Processes decide on their current proposal values at the end of round n

59



Asynchronous?

● We don’t know when the round ends :(
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Asynchronous?

● We don’t know when the round ends :(

● Majority Voting
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Paxos

https://www.youtube.com/watch?v=WX4gjowx45E
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https://www.youtube.com/watch?v=WX4gjowx45E


Raft
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https://raft.github.io

https://raft.github.io/


Byzantine Failures

● Assume some nodes and the network may be actively malicious

○ They might not reply at all (direct DoS attack)

○ They might be able to prevent honest nodes from communicating (indirect DoS attack)

○ They might send different messages to different nodes (equivocation)

● Fundamentally need N=3f+1 for consensus in the general case

○ f out of N might not reply → Need to proceed with N-f or 2f+1

○ f out of the N-f might be malicious → Need majority

■ N-2f > f => N>3f or N=3f+1

● Can be relaxed to N=2f+1 under various stronger assumptions

○ Trusted hardware components to prevent equivocation

○ Assumptions that honest nodes can communicate within a finite time (synchrony) 64



Impossibility results

● No Byzantine consensus if f >= N/3

● Counter example: divide into 3 equal groups: P, Q and R    

○ P is corrupted and contains the sender

○ Temporarily partition Q and R

○ P behaves as though the Sender says “0” and interacts with Q

○ P behaves as though the Sender says “1” and interacts with R

● (P and Q) must behave the same as if R has crashed (pick “0”)

● (P and R) must behave the same as if Q had crashed (pick “1”)

65

P+Q+1 P+R+1
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Bitcoin

● Bitcoin is a cryptocurrency

○ Security based on asymmetric cryptography

○ Full client control over his currency
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Bitcoin
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Transaction Verification in Bitcoin

69

A → B
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Conflict Resolution
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Yellow

A → B

A → C

Conflict Resolution



77

A → B

A → C

Conflict Resolution



Leader Election
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Proof-of-Work
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TX

TX

TX

TX

TX

TX

Hash(Previous Block)

BLOCK

nonce

H(Block, nonce=0) =abc3426fe31233

H(Block, nonce=1) =fe541200abc229

.

.

.

.

H(Block, nonce=2) =0bc3429831233

H(Block, nonce=f23) =0000fed98312



Unstable Consensus (Forks)
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Question?
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What happens if there is a network partition

a) The protocol halts preserving safety

b) Now we have 2 versions of Bitcoin that will never merge back

c) The clients do not realize it and can be attacked

d) Free money for everyone



Risk or Wait
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● In order for a transaction to be valid it 

needs to be confirmed by the blocks

○ Each confirmation takes 10 minutes

○ Wait one hour to spend your money

○ Real time transactions are risky, 

double-spending them is not a hard thing to 

do



What’s new about Bitcoin?

● We do not assume that we know all of the node IDs ahead of time!

○ This undercuts ~30 years of work.

● “Honest majority” measured as a fraction of “hashpower”

● Incentives for following the protocol (though this is an incomplete story)

● Nodes do not need to output a final decision (aka “stabilizing consensus”)
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Double Spending Attack

1) Give transaction to seller

2) Take the product

3) Send a 2nd transaction and 

create a longer chain
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A->B

A->C



Is an AP system safe? Eclipsing 
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Hijacking Bitcoin: Routing Attacks on 
Cryptocurrencies

Eclipse Attacks on Bitcoin’s 
Peer-to-Peer Network



Is an AP system safe? Strategic Mining
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