
Replication & Consensus

(Slide credits: Lefteris Kokoris-Kogias & Enis Ceyhun Alp) 1

Outline

● Redundancy and Fault-Tolerance

● High Availability and Data Consistency

● Consensus

● Bitcoin & Blockchains

2

Outline

● Redundancy and Fault-Tolerance

● High Availability and Data Consistency

● Consensus

● Bitcoin & Blockchains

3

Redundancy

4

● Fundamental principle to build fault-tolerant systems

● Redundancy in digital design

○ Detect deviations and automatically restore correct behavior

○ Space-redundancy: state

○ Time-redundancy: transmission

● Redundancy in computer systems

○ Coding

○ Data replication

○ N-modular programming

○ Software replication

Redundancy

5

● Fundamental principle to build fault-tolerant systems

● Redundancy in digital design

○ Detect deviations and automatically restore correct behavior

○ Space-redundancy: state

○ Time-redundancy: transmission

● Redundancy in computer systems

○ Coding

○ Data replication

○ N-modular programming

○ Software replication

Redundancy Through Coding

● Incremental redundancy in memories:

○ DRAM ECC - correct single-bit errors, detect double-bit errors.

○ RAID5 -- symmetric parity encoding to recover from single-drive failures

○ RAID6 -- Galois-field encoding to recover from dual-drive failures.

● Incremental redundancy in communication

○ Forward-Error Correction (FEC) -- correct link errors on the link

○ Cyclic Redundancy Check (CRC) -- detect transmission errors on the link

● Incremental redundancy at the end-to-end layer

○ TCP checksum

○ SCSI -- Data Integrity Field (DIF)

6

Data Redundancy Through Replication

● RAID 1 – “mirroring”

○ 2 copies of each sector

○ Mechanism to detect disk failures

● Replication across systems

○ Copies in different location

○ For availability, disaster recovery, or content

distribution

○ Strongly or weakly consistent variants

● Example – cloud storage (HDFS, Amazon S3)

○ 3 independent copies

7

Fault Tolerance

● Denial is not a strategy – things will fail

○ Your code

○ Your computer

○ Somebody else’s code

○ Some part of the environment

8

Definitions

Fault → underlying defect, e.g. software (bug), hardware
(fried component), operation (user error), environment
(power grid)

9

Failure → module not producing the desired result, e.g. an
error

• Can be active (generates errors) or latent

• Occurs when a fault is not detected and masked by the module

Fault tolerance → building reliable systems out of unreliable
components

Tolerating software faults

● Applying NMR to software → N-version programming

○ Example: DNS root servers run on different systems with different implementations

○ Flight-control systems (Swiss Boeing 777 -- N=3)

● Systematic approaches to fault tolerance in systems

○ Respond to active faults (within a system) → containment + repair

○ Examples

■ Process pairs

■ High-availability clusters

■ Consensus algorithms

10

Tandem NONSTOP

● Redundant hardware components

● Process pairs

○ Each process has a backup

○ API to communicate state changes using

messages

○ Process heartbeat to detect failures at all levels

● Fast detection (fail-fast)

● Fast recovery of transient software faults

(process pairs)

11

Outline

● Redundancy and Fault-Tolerance

● High Availability and Data Consistency

● Consensus

● Bitcoin & Blockchains

● Smart Contracts

12

Replication Technique

● Distributed systems replicate data across multiple servers

13

Replica 1 Replica 2

Replication Technique

● Distributed systems replicate data across multiple servers

○ Replication provides fault-tolerance if servers fail

14

Replica 1 Replica 2

● Distributed systems replicate data across multiple servers

○ Replication provides fault-tolerance if servers fail

○ Allowing clients to access different servers potentially increasing scalability (max

throughput)

Replication Technique

Client
(EPFL)

15

Client
(MIT)

Replica 1 Replica 2

● Distributed systems replicate data across multiple servers

○ Replication provides fault-tolerance if servers fail

○ Allowing clients to access different servers potentially increasing scalability (max

throughput)

○ What is the problem?

Replication Technique

16

Client
(EPFL)

Client
(MIT)

Replica 1 Replica 2

Consistency Problem

X=0 X=0

17

Client
(EPFL)

Client
(MIT)

Replica 1 Replica 2

Consistency Problem

W(X,1)

18

X=0 X=0

Client
(MIT)

Replica 1 Replica 2

Client
(EPFL)

Consistency Problem

19

W(X,1)

X=1 X=?

Client
(MIT)

Replica 1 Replica 2

Client
(EPFL)

R(X)= 1 or 0?

Consistency Problem

W(X,1)

20

W(X,1)

X=1 X=1

Client
(MIT)

Replica 1 Replica 2

Client
(EPFL)

R(X)= 1

Consistency Problem

Replica 1 Replica 2

Client
(EPFL)

Client
(MIT)

X=1 X=1

R(X)= 1

W
(X,1)

W(X,1)

Replica 1 Replica 2

X=1 X=0

R(X)= 0

W
(X,1)

W(X,1)

21

Client
(EPFL)

Client
(MIT)

Disclaimer for Databases

● Atomicity
● Consistency → Not that kind of consistency!!
● Integrity
● Durability

22

Outline

● Redundancy and Fault-Tolerance

● High Availability and Data Consistency

● Consensus

● Bitcoin & Blockchains

23

Consistency Models

● A consistency model specifies a contract between programmer and

system, wherein the system guarantees that if the programmer follows

the rules, data will be consistent

24

Consistency Models

● A consistency model specifies a contract between programmer and

system, wherein the system guarantees that if the programmer follows

the rules, data will be consistent

● If a system supports the stronger consistency model, then the weaker

consistency model is automatically supported

25

Consistency Models

● A consistency model specifies a contract between programmer and

system, wherein the system guarantees that if the programmer follows

the rules, data will be consistent

● If a system supports the stronger consistency model, then the weaker

consistency model is automatically supported

● But stronger consistency models sacrifice more availability and fault

tolerance

26

Many Consistency Models

● Strict Consistency

● Linearizability

● Sequential Consistency

● Causal Consistency

● Eventual Consistency

Weaker consistency
models

These models describe when and how different nodes in a
distributed system view the order of operations

27

Many Consistency Models

● Strict Consistency

● Linearizability

● Sequential Consistency

● Causal Consistency

● Eventual Consistency

Weaker consistency
models

These models describe when and how different nodes in a
distributed system view the order of operations

28

Why we have so many consistency
models?

Many Consistency Models

● Strict Consistency

● Linearizability

● Sequential Consistency

● Causal Consistency

● Eventual Consistency

Weaker consistency
models

These models describe when and how different nodes in a
distributed system view the order of operations

29

Why we have so many consistency
models?

Different applications → different trade-offs between
consistency/availability/fault-tolerance

● Strict Consistency

● Linearizability

● Sequential Consistency

● Causal Consistency

● Eventual Consistency

Strong Consistency

30

Weaker consistency
models

Strong Consistency

31

Weaker consistency
models

● Strict Consistency

● Linearizability

● Sequential Consistency

● Causal Consistency

● Eventual Consistency

Linearizability

● Provide behavior of a single copy of object

○ Read should return the most recent write

○ Subsequent reads should return same value, until next write

32

Linearizability

● Provide behavior of a single copy of object:

○ Read should return the most recent write

○ Subsequent reads should return same value, until next write

● Telephone intuition:

○ Bob updates Facebook post

○ Bob calls Alice on phone: “Check my Facebook post!”

○ Alice read’s Bob’s wall, sees his post

33

Linearizability

write(A,1)

success
Server 1

Server 2

Server 3

34

Linearizability

write(A,1)

Server 1

Server 2

Server 3

35

read(A) A=1

success

Linearizability

write(A,1)

Server 1

Server 2

Server 3

36

read(A) A=1

success

How to achieve this?
Server 3 did not get the write

Linearizability

write(A,1)

Server 1

Server 2

Server 3

37

read(A) A=1

success

Idea: Delay responding to writes/ops until committed

write(A,1)

Server 1

Server 2

Server 3

38

read(A) A=1

success

Idea: Delay responding to writes/ops until committed

Linearizability? This is buggy!

write(A,1)

Server 1

Server 2

Server 3

39

read(A) A=1

success

Linearizability? This is buggy!

● How much delay is “enough”? Who writes on Server 3?

● Not sufficient to return value of Server 3 → It does not know

precisely when op is “globally” committed

● Need global ordering between the write and the read operation

write(A,1)

Server 1

Server 2

Server 3

40

read(A) A=1

success

Linearizability!

Order all operations via (1) leader and (2) agreement

committed

Linearizability

● Linearizability:

○ All servers execute all ops in some identical sequential order

○ Global ordering preserves each client’s own local ordering

● Once write completes, all later reads should return value of that write or

value of later write

● Once read returns particular value, all later reads should return that

value or value of later write

41

High Availability

42

High Availability

System guarantees a response, even during network partitions (async network)

43

[Gilbert and Lynch, ACM SIGACT News 2002]

Network partitions

“Network partitions should be rare but net gear continues to cause more issues
than it should.” --James Hamilton, Amazon Web Services

MSFT LAN: avg. 40.8 failures/day (95th %ile: 136) 5 min median time to repair (up to 1 week)

HP LAN: 67.1% of support tickets are due to network median incident duration 114-188 min

44

[perspectives.mvdirona.com, 2010]

[SIGCOMM 2011]

[HP Labs 2012]

● Strict Consistency

● Linearizability

● Sequential Consistency

● Causal Consistency

● Eventual Consistency

Weak Consistency

45

Weaker consistency
models

Causal Consistency

● Causal consistency is one of weak consistency models

○ Causally related writes must be seen by all processes in the same order

○ Concurrent writes may be seen in different orders on different machines

46

Causal Consistency

● Have you seen causal consistency?

● Have you implemented causal consistency?

47

Weak Consistency

48

● Strict Consistency

● Linearizability

● Sequential Consistency

● Causal Consistency

● Eventual Consistency

Weaker consistency
models

Eventual Consistency

● Eventual consistency

○ Achieve high availability

○ If no new updates are made to a given data item, eventually all accesses to the data will

return the last updated value

● Eventual consistency is commonly used

○ Git repo, iPhone sync

○ Dropbox

○ Amazon Dynamo

49

The CAP Theorem

50

51

Consistency

Availability
Partition
Toleranc
e

The CAP Theorem

52

Consistency

Availability
Partition
Toleranc
e

Partitions will occur on the Internet

The CAP Theorem

Disclaimer

● CAP is not as absolute as many claim

○ “Highly Available Transactions: Virtues and Limitations”, P.Bailis et al. VLDB 2014

○ “CAP Twelve Years Later: How the “Rules” Have Changed”, E.Brewer, Computer 45.2 (2012)

53

The AP Choice

● Strong consistency is not possible

○ The system can reply with stale data

● Many applications do not care

○ DNS

○ Web caching

○ Most applications (e.g., Facebook, Dropbox)

● Benefits of weak consistency

○ Highly-available systems

○ Low latency

○ No coordination

54

The CP Choice

● Strong Consistency

○ Safety first

○ System halts on partitions

● Needs coordination

○ Consensus protocols

● Benefits

○ Writes are atomic

○ Any data read are the freshest possible

55

Outline

● Redundancy and Fault-Tolerance

● High Availability and Data Consistency

● Consensus

● Bitcoin & Blockchains

56

Consensus

● In the consensus problem, processes propose values and have to agree

on one of these values

● Properties

○ Validity: Any value decided is a value proposed

○ Agreement: No two correct processes decide differently

○ Termination: Every correct process eventually decides

○ Integrity: No process decides twice

57

Round Synchronous

● The processes go through rounds incrementally (1 to n)

○ In each round, the process with the id corresponding to that round is the leader of the

round

● The leader of a round decides its current proposal and broadcasts it to all

● A process that is not leader in a round waits:

○ (a) to deliver the proposal of the leader in that round to adopt it OR

○ (b) to suspect the leader

58

Uniform Consensus Algorithm

● The processes go through rounds incrementally (1 to n)

○ In each round i, process pi sends its current proposal to all

● A process adopts any current proposal it receives

● Processes decide on their current proposal values at the end of round n

59

Asynchronous?

● We don’t know when the round ends :(

60

Asynchronous?

● We don’t know when the round ends :(

● Majority Voting

61

Paxos

https://www.youtube.com/watch?v=WX4gjowx45E

62

https://www.youtube.com/watch?v=WX4gjowx45E

Raft

63

https://raft.github.io

https://raft.github.io/

Byzantine Failures

● Assume some nodes and the network may be actively malicious

○ They might not reply at all (direct DoS attack)

○ They might be able to prevent honest nodes from communicating (indirect DoS attack)

○ They might send different messages to different nodes (equivocation)

● Fundamentally need N=3f+1 for consensus in the general case

○ f out of N might not reply → Need to proceed with N-f or 2f+1

○ f out of the N-f might be malicious → Need majority

■ N-2f > f => N>3f or N=3f+1

● Can be relaxed to N=2f+1 under various stronger assumptions

○ Trusted hardware components to prevent equivocation

○ Assumptions that honest nodes can communicate within a finite time (synchrony) 64

Impossibility results

● No Byzantine consensus if f >= N/3

● Counter example: divide into 3 equal groups: P, Q and R

○ P is corrupted and contains the sender

○ Temporarily partition Q and R

○ P behaves as though the Sender says “0” and interacts with Q

○ P behaves as though the Sender says “1” and interacts with R

● (P and Q) must behave the same as if R has crashed (pick “0”)

● (P and R) must behave the same as if Q had crashed (pick “1”)

65

P+Q+1 P+R+1

Outline

● Redundancy and Fault-Tolerance

● High Availability and Data Consistency

● Consensus

● Bitcoin & Blockchains

66

Bitcoin

● Bitcoin is a cryptocurrency

○ Security based on asymmetric cryptography

○ Full client control over his currency

67

Bitcoin

68

Transaction Verification in Bitcoin

69

A → B

70

A → B

Transaction Verification in Bitcoin

71

A → B

Transaction Verification in Bitcoin

72

A → B

Transaction Verification in Bitcoin

Conflict Resolution

73

A->B

A->C

74

A → B

A → C

Conflict Resolution

75

A → B

A → C

Conflict Resolution

76

Yellow

A → B

A → C

Conflict Resolution

77

A → B

A → C

Conflict Resolution

Leader Election

78

Proof-of-Work

79

TX

TX

TX

TX

TX

TX

Hash(Previous Block)

BLOCK

nonce

H(Block, nonce=0) =abc3426fe31233

H(Block, nonce=1) =fe541200abc229

.

.

.

.

H(Block, nonce=2) =0bc3429831233

H(Block, nonce=f23) =0000fed98312

Unstable Consensus (Forks)

80

Question?

81

What happens if there is a network partition

a) The protocol halts preserving safety

b) Now we have 2 versions of Bitcoin that will never merge back

c) The clients do not realize it and can be attacked

d) Free money for everyone

Risk or Wait

82

● In order for a transaction to be valid it

needs to be confirmed by the blocks

○ Each confirmation takes 10 minutes

○ Wait one hour to spend your money

○ Real time transactions are risky,

double-spending them is not a hard thing to

do

What’s new about Bitcoin?

● We do not assume that we know all of the node IDs ahead of time!

○ This undercuts ~30 years of work.

● “Honest majority” measured as a fraction of “hashpower”

● Incentives for following the protocol (though this is an incomplete story)

● Nodes do not need to output a final decision (aka “stabilizing consensus”)

83

Double Spending Attack

1) Give transaction to seller

2) Take the product

3) Send a 2nd transaction and

create a longer chain

84

A->B

A->C

Is an AP system safe? Eclipsing

85

Hijacking Bitcoin: Routing Attacks on
Cryptocurrencies

Eclipse Attacks on Bitcoin’s
Peer-to-Peer Network

Is an AP system safe? Strategic Mining

86

Acknowledgments

87

These slides are partly inspired by:

● CS-522 POCS EPFL

● Highly Available Transactions VLDB 2014

● ECE-598 AM UIUC

● CS426/526 Yale

● CS-451 Distributed Algorithms EPFL

