
Applications of Model-Based

Deep Reinforcement Learning

Johanni Brea

18 April 2023

Artificial Neural Networks CS-456



Table of Contents

1. Model-Based Deep Reinforcement Learning

Background Planning and Decision Time Planning

Model-Based Deep RL with Variational State Tabulation (VaST)

Other Model-Based Deep RL Methods

2. Monte Carlo Tree Search

3. AlphaZero

4. MuZero

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
1



Model-Based Deep Reinforcement Learning

Suggested: Sutton & Barto Ch. 8,

[Corneil et al., 2018, Silver et al., 2016, Silver et al., 2018, Schrittwieser et al., 2019]

A model-based reinforcement learning method estimates the transition dynamics

(e.g. Pa
s→s′ ) and reward structure (e.g. Ra

s→s′ ).

Today you will learn

1. how the model can be used for planning,

2. how we can use standard planning methods in deep RL with variational state

tabulation (VaST).

3. why we may prefer decision time planning over background planning,

4. how AlphaZero learns to play games withMonte Carlo Tree Search,

5. howMuZero reaches the same level as AlphaZero without explicitly knowing

the rules of the game.

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
2



Background Planning

L

N

M

R

P

B

V

Z

F

-9
-4

-7

-6

-3

-7

-3
-6

-2

-4

-7

-3

-7

-9

Deterministic dynamics (Psouth
M→R

= 1, Rsouth
M→R

= –6)
Episode ends when the agent reaches R.

1. for every state s that leads to R (Pa
s→R = 1 for some

a), compute its value V (s) = maxa Ra
s→R

, e.g.

V (M) = –6

2. for every state s that leads to an already visited
state s ′ compute its value
V (s) = maxa

∑
s′ Pa

s→s′
(
Ra

s→s′ + V (s ′)
)

(1)
e.g. Q(L, south) = –13, V (L) = –3+ (–6) = –9.

Value Iteration Start with arbitrary values V (s) for every
state and iterate equation 1 until convergence. This works

also in stochastic and infinite-horizon settings (with dis-

count factor γ < 1).

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
3



Notes

Background Planning

L

N

M

R

P

B

V

Z

F

-9
-4

-7

-6

-3

-7

-3
-6

-2

-4

-7

-3

-7

-9

Deterministic dynamics (Psouth
M→R

= 1, Rsouth
M→R

= –6)
Episode ends when the agent reaches R.

1. for every state s that leads to R (Pa
s→R = 1 for some

a), compute its value V (s) = maxa Ra
s→R

, e.g.

V (M) = –6

2. for every state s that leads to an already visited
state s ′ compute its value
V (s) = maxa

∑
s′ Pa

s→s′
(
Ra

s→s′ + V (s ′)
)

(1)
e.g. Q(L, south) = –13, V (L) = –3+ (–6) = –9.

Value Iteration Start with arbitrary values V (s) for every
state and iterate equation 1 until convergence. This works

also in stochastic and infinite-horizon settings (with dis-

count factor γ < 1).

• Planning can be done when the model is known. We find a typical example in car navigation systems.

• On the left you see a schematic map of Europe. The nodes represent cities (Frankfurt, Zürich, Vienna,

Lausanne, Milano, Nice, Rome, Bari, Palermo) and the numbers on the edges indicate the cost (e.g. some

function of fuel and time costs) of traveling from one city to another one.

• The transition dynamic is deterministic: if one chooses to go south in Milano one arrives deterministically in

Rome Psouth
M→R

= 1 with cost Rsouth
M→R

= –6.
• Our goal is to find the shortest path to Rome, starting from any city. To do so, we compute the value V of

every city, where the value indicates the costs of the optimal path that starts in that city and ends in Rome.

• The value of neighbouring cities of Rome is the cost of taking the action that leads directly to Rome.

• For all other cities we can compute a preliminary value by considering cities for which we already know the

value, e.g. the Q-value of going to Nice in Lausanne is -13, while the Q-value of going to Milano is -9, and the

Q-value of going to Zurich first is not yet known. After having the preliminary values for Lausanne, Zurich and

Vienna, we can recompute the values for all neighbours and find eventually that the preliminary values are

identical to the final values. This example should have given you the intuition of value iteration.

• In value iteration one starts with arbitrary values for all states and iterates Eq. 1 for all states until

convergence. There are some refinement of this basic planning strategy, like hierarchical planning (first city

to city, then road to road), neglecting irrelevant parts of the environment (the value of Frankfurt is irrelevant, if

you start in Nice) or prioritizing updates (if the preliminary value of Zurich changed by a large amount, the

preliminary values of the neighbouring cities are also likely to change).



Model-Based Deep RL with Variational State Tabulation (VaST)

Raw visual observations (in everyday life and in video games) are almost always at least a

tiny bit different from one another, but the value of similar observations may be similar.

⇒ we want model-based RL that generalizes well.

Corneil, Gerstner, Brea (2018), ICML
Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero

4



Notes

Model-Based Deep RL with Variational State Tabulation (VaST)

Raw visual observations (in everyday life and in video games) are almost always at least a

tiny bit different from one another, but the value of similar observations may be similar.

⇒ we want model-based RL that generalizes well.

Corneil, Gerstner, Brea (2018), ICML

• What is a discrete state in the environment of animals, humans or in video games? Every raw

observation looks at least a tiny bit different from all other observations, but the value of states

that look similar (e.g. observations that are only one footstep separated) are likely to be similar.

• Naively assigning each raw observation to a new, discrete state and learning the value for each

state is unreasonable: there are many states, most states are visited only once or a few times

and in standard tabular reinforcement learning there is no generalization across states.

• Idea: learn a mapping to abstract discrete states such that neighbouring observations are

mapped to the same discrete state and define a similarity metric in the space of abstract

discrete states such that similar observations are mapped to similar discrete states.

• With discrete abstract states we can use again standard planning methods.



Model-Based Deep RL with Variational State Tabulation (VaST)

discrete

latent state · · · st–1 st
at · · ·

observation

ot–1 ot

Pa
st–1→st

de-conv net

p(ot–1|st–1)
convolutional network

q(st |ot , ot–1)
0
10
11

Learn to encode images as discrete states (similar images o, same discrete state s ).
Whenever the agent learns something new about the environment (Pa

s→s′ or Ra
s→s′

changes), update offline the policy by running (a smart version of) value iteration.

Corneil, Gerstner, Brea (2018), ICML
Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero

5



Notes

Model-Based Deep RL with Variational State Tabulation (VaST)

discrete

latent state · · · st–1 st
at · · ·

observation

ot–1 ot

Pa
st–1→st

de-conv net

p(ot–1|st–1)
convolutional network

q(st |ot , ot–1)

0
10
11

Learn to encode images as discrete states (similar images o, same discrete state s ).
Whenever the agent learns something new about the environment (Pa

s→s′ or Ra
s→s′

changes), update offline the policy by running (a smart version of) value iteration.

Corneil, Gerstner, Brea (2018), ICML

• The abstract states (discrete latent states) are binary words of length K . The similarity metric is
the Hamming distance, i.e. the number of bits that are different between any pair of binary words.

• The binary words can be represented as integers. These integers are the states that can be

used to estimate the model, i.e. the transition probabilities and the reward table. The model is

used to find a good policy by running a smart version of value iteration that prioritizes updating

the values of states, whose next states had recently an update of the value.

• The function that maps observations to binary words (encoder) is a convolutional network with K
binary output neurons. To deal with moving objects we use the same trick as in DQN for Atari

games and give as input multiple subsequent observations.

• To make sure that the discrete latent state contains relevant information about the state we use

a deconvolutional network that takes latent states as input and produces raw observations. The

only purpose of this decoder is to enforce the encoder to learn a latent representation that

discriminates different states; otherwise it may happen that the encoder maps every

observation to a single latent state s0 and Pa
s0→s0 = 1, Ra

s0→s0 =average reward, but no useful
policy can be found.



WorldModels, SimPLe, Dreamer

Other approaches to model-based deep RL exist.

Most of them

interact with the environment to collect data,

build a model (e.g. with the help of a neural network)

and sample from the model to learn a policy.

I The model can consist of

video-frame predictions

(e.g. SimPLe).

I The model can consist of abstract

latent states with learned transition

dynamics (e.g. WorldModels,

DreamerV2).

I The model can be used as a

simulator to train a standard

model-free RL method

(e.g. PPO, Actor-Critic.)

[Ha and Schmidhuber, 2018, Kaiser et al., 2019, Hafner et al., 2020, Hafner et al., 2023]
Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero

6



Notes

WorldModels, SimPLe, Dreamer

Other approaches to model-based deep RL exist.

Most of them

interact with the environment to collect data,

build a model (e.g. with the help of a neural network)

and sample from the model to learn a policy.

I The model can consist of

video-frame predictions

(e.g. SimPLe).

I The model can consist of abstract

latent states with learned transition

dynamics (e.g. WorldModels,

DreamerV2).

I The model can be used as a

simulator to train a standard

model-free RL method

(e.g. PPO, Actor-Critic.)

[Ha and Schmidhuber, 2018, Kaiser et al., 2019, Hafner et al., 2020, Hafner et al., 2023]

• Alternatively to classic planning methods, the world model can be used to simulate experiences and train a

model-free reinforcement learning policy on the samples from the world model.

• In video-frame prediction a neural network learns to approximate directly p(ot+1|at , ot , ot–1, . . .) (SimPLe =
simulated policy learning).

• WorldModels and DreamerV2 learn an abstract representation with an autoencoder approach similar to

VaST, but instead of using planning methods in the latent state, they sample (dreamed) trajectories to train a

policy.

• It may sound silly to replace a simulator (like the Atari video game environment) by an approximate simulator

that is learned with a neural network and then use this approximate simulator to train a policy instead of

training a policy directly on the original simulator. The goal is, however, to show that training with the learned

simulator allows to reduce the sample complexity, i.e. the number of interactions with the actual

environment. This can be useful for environments that are costly to interact. For example, imagine a robot

that can cook. If it has a somewhat accurate model of the things that can happen in a kitchen, this robot can

simulate many cooking episodes until it has found a policy that leads to a great meal, without having to

waste any resources during the episodes that are used to train the policy.

• Currently, model-based deep reinforcement learning is still a very active field of research, where the goal is to

show that using a model leads to policies that are as good as those obtained with model-free reinforcement

learning while requiring far less interactions with the environment than the model-free methods.



Summary: Background Planning and Variational State Tabulation

I In model-based reinforcement learning we can use background planning to

update the Q- and V-values efficiently (e.g. by value iteration), if the number of

states and actions is not too large.

I Alternatively, the model can be used to sample experiences offline and train a

model-free agent with these artificial samples.

I Learned abstractions may be useful to map high dimensional states (like

images) to discrete states that can be used with standard planning methods.

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
7



Value Iteration Does Not Scale!

I There are presumably less than 108 intersections of roads in Europe.

Value iteration on current compute hardware is feasible for this problem.

I But there are more than 10170 possible positions for the game Go.

(The number of atoms on earth is roughly 1050).

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
8



Decision Time Planning

L

N

M

R

P

B

V

Z

F

-9
-4

-7

-6

-3

-7

-3
-6

-2

-4

-7

-3

-7

-9

L

N M Z

R M L ...
...

1. Start where you are e.g. in L

2. Expand the decision tree, i.e. move to every state s
that is a successor of L (Pa

L→s ).

3. Iteratively move to the successors of the

successors up to a certain depth or until a terminal

state is reached.

4. Propagate values backwards along the decision

tree like in backward planning (but only along the

decision tree).

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
9



Notes

Decision Time Planning

L

N

M

R

P

B

V

Z

F

-9
-4

-7

-6

-3

-7

-3
-6

-2

-4

-7

-3

-7

-9

L

N M Z

R M L ...
...

1. Start where you are e.g. in L

2. Expand the decision tree, i.e. move to every state s
that is a successor of L (Pa

L→s ).

3. Iteratively move to the successors of the

successors up to a certain depth or until a terminal

state is reached.

4. Propagate values backwards along the decision

tree like in backward planning (but only along the

decision tree).

• When full value iteration is not feasible, one can start from the current state and expand the

decision tree.

• For example, if we want to find the shortest path from Lausanne to Rome, we can start in

Lausanne, expand the decision tree by moving to every successor state (neighbouring city) and

from each successor state iteratively continue expanding the decision tree up to a certain depth

or until a terminal state is reached. Then we propagate values backwards along the decision

tree. In this example we see that the optimal solution can be found at depth 2 of the decision

tree. Thus, the update equation of value iteration (Eq. 1 on slide 3) needs to be applied only three

times (for Nice, Milano and Lausanne; the branch following Zurich has not yet reached any

terminal node).

• In general, it is not a good idea to ignore branches that have not yet reached a terminal node (if

there were a teleporter in Frankfurt that takes zero cost to travel to Rome, the optimal path would

only be discoverable at depth 3 of the decision tree and thus ignoring the node Zurich at depth 2

would not be a good idea), but it may be too costly to expand the decision tree to large depth.

One strategy to deal with this is Monte Carlo Tree Search.



Table of Contents

1. Model-Based Deep Reinforcement Learning

Background Planning and Decision Time Planning

Model-Based Deep RL with Variational State Tabulation (VaST)

Other Model-Based Deep RL Methods

2. Monte Carlo Tree Search

3. AlphaZero

4. MuZero

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
10



Monte Carlo Tree Search(MCTS)

root node = node on top of the tree, e.g. current position of a game.

internal node = node where each action has already been taken at least once.

leaf node = node with untaken actions.

terminal node = node at which the tree expansion ends, e.g. end of a game.

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
11



Notes

Monte Carlo Tree Search(MCTS)

root node = node on top of the tree, e.g. current position of a game.

internal node = node where each action has already been taken at least once.

leaf node = node with untaken actions.

terminal node = node at which the tree expansion ends, e.g. end of a game.

• In MCTS the tree gets expanded in an iterative fashion.

• In the figure you see a tree starting at a certain position in a two player game. It is known that

white won 12 out of 21 simulated games from the current position. If white chooses the first

action the game reaches a position (where it is the black player’s turn), where white won 7 out of

10 simulated games, etc.

• In MCTS, one of the leaf nodes is selected for expansion (in this case it is a position where it is

black’s turn and white won 3 out of 3 simulated games). One of black’s allowed actions is taken

and a full game is simulated with a random policy (wiggly line). The random game from the

expanded position led to a loss (0/1). This value is back-propagated. At the end of this iteration

white one 12 out of 22 simulated games from the root position.

• Thanks to the simulation step that always ends at a terminal node, every leaf node has an

estimate of the actual value. However, this estimate can be terrible, because the simulation is

run with a random policy, which may fail to reflect that some positions lead to a win with certainty,

if the actions are selected carefully.



Monte Carlo Tree Search

1: Initialize root node s0 with visitation count N(s0) = 0, state-action count
N(s0, a) = 0, total return W (s0, a) = 0 and expected return Q(s0, a) = 0 ∀a.

2: (Selection) Start at root node s = s0.
3: repeat

4: Select action a∗ = arg maxa Q(s, a) +
√

2 log(N(s))
N(s,a)

5: Increment N(s)← N(s) + 1, N(s, a∗)← N(s, a∗) + 1 and go to next state s
6: until s is a leaf node.
7: (Expansion) Take a new action aN that has never been taken in s, increment N(s, aN),

go to next state sN and set N(sN) = N(sN , a) = W (sN , a) = Q(sN , a) = 0 ∀a.
8: (Simulation) Simulate tree expansion with default policy from sN (e.g. taking actions

uniformly at random or some smart heuristic) and observe value v at terminal node.
9: (Backpropagation) Increment W (s, a)←W (s, a) + v for all nodes visited during the

selection and recompute Q(s, a) = W (s, a)/N(s, a).
10: Iterate these four steps (lines 2-9) for as long as you want.
11: Select actual action arg maxa Q(s0, a) to perform in state s0.

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
12



Notes

Monte Carlo Tree Search

1: Initialize root node s0 with visitation count N(s0) = 0, state-action count
N(s0, a) = 0, total return W (s0, a) = 0 and expected return Q(s0, a) = 0 ∀a.

2: (Selection) Start at root node s = s0.
3: repeat

4: Select action a∗ = arg maxa Q(s, a) +
√

2 log(N(s))
N(s,a)

5: Increment N(s)← N(s) + 1, N(s, a∗)← N(s, a∗) + 1 and go to next state s
6: until s is a leaf node.
7: (Expansion) Take a new action aN that has never been taken in s, increment N(s, aN),

go to next state sN and set N(sN) = N(sN , a) = W (sN , a) = Q(sN , a) = 0 ∀a.
8: (Simulation) Simulate tree expansion with default policy from sN (e.g. taking actions

uniformly at random or some smart heuristic) and observe value v at terminal node.
9: (Backpropagation) Increment W (s, a)←W (s, a) + v for all nodes visited during the

selection and recompute Q(s, a) = W (s, a)/N(s, a).
10: Iterate these four steps (lines 2-9) for as long as you want.
11: Select actual action arg maxa Q(s0, a) to perform in state s0.

1: If one has already visitation counts etc. from previous runs of MCTS, one can use them to initialize the root

node with other values than 0.

2: Every iteration starts at the root node, e.g. the current game position.

4: Here we show a variant of the UCB1 exploration-exploitation criterion. Q(s, a) drives exploitation, the second
term drives exploration. The exploration term should be such that it decreases with N(s, a) (actions with low
N(s, a) should be explored) and increases slowly with N(s) (if s is visited often, we want to be really sure that
none of the less taken actions would in fact be optimal; an increase in N(s) drives occasional re-exploration).
Other explorations policies are possible, e.g. other functions of N(s) and N(s, a), ε-greedy exploration,
Thompson sampling.

7: If a node has actions that have never been taken before, one of this actions is taken and the landing state sN
is initialized.

8: The random game is played to have a very crude approximation of the value of state sN .

9: Despite its name, backpropagation in MCTS is completely different from the error backpropagation algorithm

for deep neural networks! In MCTS, backpropagation means that the Q-values along the path that was taken

during selection and expansion should be updated with the value that was obtained at the terminal node.

11: After many iterations the tree has grown quite a bit and we can select at the root node the action that has the

highest Q-value. We do not need to perform exploration in the actual environment, because the model is

perfectly known and MCTS would converge to the correct Q-value in the limit of N(s0) → ∞.



Monte Carlo Tree Search: An Example

An example with two possible actions a1 and a2 in every state.
iteration 1 iteration 2 iteration 3

An alternative example: https://youtu.be/UXW2yZndl7U
Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero

13

https://youtu.be/UXW2yZndl7U


Notes

Monte Carlo Tree Search: An Example

An example with two possible actions a1 and a2 in every state.
iteration 1 iteration 2 iteration 3

An alternative example: https://youtu.be/UXW2yZndl7U

iteration 1 The root node is a leaf node, because it has actions that have never been explored. Therefore

we expand with one of the untaken actions (a1) and increment the counts. Next we simulate a

random game and observe a win. This is backpropagated to keep track of the fact that taking

action a1 in s0 led to a win.
iteration 2 The root node is still a leaf node, because action a2 has not yet been explored. We expand the

tree with action a2, simulate a random game and observe a loss. This is backprpagated to

keep track of the fact that taking action a2 in s0 led to a loss.
iteration 3 Now the root node is not a leaf node anymore and we need to select. Because both actions

have been taken once and therefore have the same exploration bonus, the Q-value determines

the action and a1 is selected. State s1 is a leaf node, therefore it gets expanded etc.

iteration 4 (not shown on the slide). At the root node we need now to compare 1
2

+
√

2 log(3)
2

(for action a1)

to 0+
√

2 log(3)
1

(for action a2) to decide which action to take. Despite the larger exploration
bonus for action a2, the total value for action a1 is larger and therefore a1 would be selected.
Next, s1 would be expanded with action a2 and thus become an internal node.

https://youtu.be/UXW2yZndl7U


Quiz

Which statement is correct?

�

3

With background planning, the computation at decision time is very cheap,

since one can use the stored Q-values to find the optimal action.
�

3

In Monte Carlo Tree Search, the computation at decision time is very cheap,

since one can use the stored Q-values to find the optimal action.
�

3

Monte Carlo Tree Search plays games with a random policy to estimate the

value of a position.

�

3

The model in model-based deep RL can be used to “dream up” sequences

that were never actually experienced.

�

3

Typically, model-based deep RL methods are computationally heavier but

more sample efficient than model-free deep RL methods.

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
14



Table of Contents

1. Model-Based Deep Reinforcement Learning

Background Planning and Decision Time Planning

Model-Based Deep RL with Variational State Tabulation (VaST)

Other Model-Based Deep RL Methods

2. Monte Carlo Tree Search

3. AlphaZero

4. MuZero

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
15



The Game Go

I 19 x 19 = 361 positions.

I Decision tree grows very quickly!

I Traditional Go programs use human

expert knowledge to focus MCTS on

relevant branches.

I AlphaZero learns focus through

self-play.

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
16



Notes

The Game Go

I 19 x 19 = 361 positions.

I Decision tree grows very quickly!

I Traditional Go programs use human

expert knowledge to focus MCTS on

relevant branches.

I AlphaZero learns focus through

self-play.

• Go is usually played on a board with 19 x 19 = 361 positions.

• For the first few actions there are are thus more than 300 legal positions to place the stone;

even in later stages of the game, there are many legal actions. Expanding the decision tree in

MCTS is therefore very costly (3003 = 27 million).

• Traditional Go computer programs (like CrazyStone) use MCTS with heuristics to exclude moves

that human experts would never play.

• AlphaZero does not use any expert knowledge, but learns to focus on relevant parts of the

decision tree thanks to some neural networks that are trained with self-play.



AlphaZero

1: Initialize root node s0 with N(s0) = 0,N(s0, a) = 0, W (s0, a) = 0 Q(s0, a) = 0 and
prior action probability P(s0, a) = πθ(s0)a ∀a (πθ is a neural network).

2: (Selection) Start at root node s = s0.
3: repeat
4: Select action a∗ = arg maxa Q(s, a) + P(s, a)C(s)

√
N(s)

N(s,a)+1
5: Increment N(s)← N(s) + 1, N(s, a∗)← N(s, a∗) + 1 and go to next state s
6: until N(s) = 0.
7: (Expansion) Take a new action aN that has never been taken in s, increment N(s, aN),

go to sN and set N(sN) = N(sN , a) = W (sN , a) = Q(sN , a) = 0 and P(sN , a) = πθ(sN)a.
8: (No Simulation) Set v = vθ(sN) (vθ is a neural network).
9: (Backpropagation) Increment W (s, a)←W (s, a) + v for all nodes visited during the

selection and recompute Q(s, a) = W (s, a)/N(s, a).
10: Iterate these four steps (lines 2-9) for as long as you want.
11: Select actual action arg maxa N(s0, a) to perform in state s0 during evaluation or

sample action a from π(a|s0) = (N(s0, a) + α)/(
∑

b N(s0, b) + α) during training.

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
17



Notes

AlphaZero

1: Initialize root node s0 with N(s0) = 0,N(s0, a) = 0, W (s0, a) = 0 Q(s0, a) = 0 and
prior action probability P(s0, a) = πθ(s0)a ∀a (πθ is a neural network).

2: (Selection) Start at root node s = s0.
3: repeat
4: Select action a∗ = arg maxa Q(s, a) + P(s, a)C(s)

√
N(s)

N(s,a)+1
5: Increment N(s)← N(s) + 1, N(s, a∗)← N(s, a∗) + 1 and go to next state s
6: until N(s) = 0.
7: (Expansion) Take a new action aN that has never been taken in s, increment N(s, aN),

go to sN and set N(sN) = N(sN , a) = W (sN , a) = Q(sN , a) = 0 and P(sN , a) = πθ(sN)a.
8: (No Simulation) Set v = vθ(sN) (vθ is a neural network).
9: (Backpropagation) Increment W (s, a)←W (s, a) + v for all nodes visited during the

selection and recompute Q(s, a) = W (s, a)/N(s, a).
10: Iterate these four steps (lines 2-9) for as long as you want.
11: Select actual action arg maxa N(s0, a) to perform in state s0 during evaluation or

sample action a from π(a|s0) = (N(s0, a) + α)/(
∑

b N(s0, b) + α) during training.

• AlphaZero modifies MCTS in two important ways: a neural network to compute prior action probabilities

helps in the selection process to focus on relevant parts of the decision tree and another neural network

helps to estimate the value at leaf nodes, making simulations of random games unnecessary.

1: The prior action probabilities for root node s0 are computed with a neural network.
4: In the selection process, these prior action probabilities influence exploration. For example, “silly actions”

that lead almost certainly to a loss will not be explored with P(s, a) ≈ 0 (usually one does not need to

consider how a chess game continues after sacrificing the queen for no reason), whereas promising actions

with large P(s, a) are heavily explored. Side note: the exploration rate C(s) = c1 + log((1+ N(s) + c2)/c2)
grows slowly with search time, but is essentially constant if N(s) is small (in MuZero c1 = 1.25, c2 = 19652; I

didn’t find the parameter values for AlphaZero). I do not know why the factor C(s)
√

N(s)/(N(s, a) + 1) is
chosen instead of the UCB1 exploration term (it may have better convergence bounds). But this term

satisfies the criteria we discussed on line 4 in slide 12.

7: In the expansion step the prior action probabilities are computed using the neural network πθ .

8: Instead of simulating a random game, a value network is used to estimate the value (win probability) of a

given position.

11: Greedy actions are selected during evaluation. The argmax of the counts is apparently less sensitive to

outliers than the argmax of the Q-values. During training the actions are sampled from

π(a|s0) = (N(s0, a) + α)/(
∑

b N(s0, b) + α) where α = {0.3,0.15,0.03} for chess, shogi and go,
respectively. Thanks to non-zero α random actions are occasionally taken.



AlphaZero: How to train the networks

Loss function

L(θ) =
∑
si

(z(si) – vθ(si))2 –
∑
ai

π(ai |si) logπθ(si)a + c‖θ‖22

where z(si) is the final outcome of the game in which position si was encountered,
and π(ai |si) is the action selection policy of MCTS during training.

Sample positions si are generated during self-play, i.e. the same networks and
MCTS are used to select actions for both players.

After some games of self-play, the gradient of L(θ) is computed to update the
parameters; only positions si since the last update are used to evaluate the gradient.

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
18



Notes

AlphaZero: How to train the networks

Loss function

L(θ) =
∑
si

(z(si) – vθ(si))2 –
∑
ai

π(ai |si) logπθ(si)a + c‖θ‖22

where z(si) is the final outcome of the game in which position si was encountered,
and π(ai |si) is the action selection policy of MCTS during training.

Sample positions si are generated during self-play, i.e. the same networks and
MCTS are used to select actions for both players.

After some games of self-play, the gradient of L(θ) is computed to update the
parameters; only positions si since the last update are used to evaluate the gradient.

• With the squared error loss the value vθ(si ) learns to approximate the win probability from a given position.

• The prior action probabilities are trained with the cross-entropy loss to approximate the policy with which

MCTS selects actions. Like this, exploration will be biased towards actions that were in the past selected by

MCTS. This may look like a vicious loop, where MCTS is biased towards actions deemed useful by πθ and πθ

learns to imitate the MCTS policy. I guess the sampling step in line 11 of AlphaZero during training, assures

that πθ does not get stuck at a sub-optimal policy where the probability of some actions would be zero and

does never explored.

• The prior action probabilities πθ resemble the policy of a model-free RL agent. However, it is not trained by a

standard model-free RL method, but instead learns to imitate the policy of MCTS. We are thus in a funny

situation, where we use model-free reinforcement learning to drive exploration in a setting where the full

model is known, but the state space is so large that standard model-based approaches, like value iteration,

fail to solve the problem.

• Why does MCTS still make sense, once we have πθ? There are so many possible states that πθ remains a

crude approximation of the MCTS policy, even after extensive training. A useful analogy may be that πθ is the

policy that a professional player uses when forced to make a move without time to think (e.g. in blitz-chess).

Given time to think, however, the player may use this policy to explore promising actions in the mind,

evaluate resulting positions with vθ and take a more informed decision than without thinking.



AlphaZero: representations and architecture

I input 2MT + L planes of N × N
positions (M = number of pieces types,

factor 2: own pieces & opponent pieces,

T subsequent positions, L extra
information)

I output: for each of K action types one

plane.

I deep conv nets with residual blocks and

batch normalization.

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
19



Notes

AlphaZero: representations and architecture

I input 2MT + L planes of N × N
positions (M = number of pieces types,

factor 2: own pieces & opponent pieces,

T subsequent positions, L extra
information)

I output: for each of K action types one

plane.

I deep conv nets with residual blocks and

batch normalization.

• For games with N × N positions andM different types of pieces the input consists of 2MT + L planes of
size N × N .

• M planes indicate with 0 and 1 the positions of own pieces,M planes the positions of opponent pieces. The

previous T positions are stacked to 2MT planes.

• L additional planes (constant values across the N × N positions) are used to represent the color of the

player, the move number, the availability of special rules (e.g. castling in chess).

• Outputs of the policy networks are also represented as planes. For go there is only one plane that indicates

where to place the piece. For chess there are 73 planes: one plane for each type of move (e.g. move 1

square north, move 3 squares south, move 5 square south-west etc.). A large value at a certain position in

one of these planes, indicates that the piece at that position should be taken to perform the action indicated

by the plane identity. Illegal moves are masked to have 0 probability.

• πθ and vθ use the same network body: a conv layer with batch-normalization followed by 19 residual blocks.
Policy and value heads add some additional layers on top.



AlphaZero: Success Story

Games: Silver et al. 2018

TESLA Autopilot:
https://youtu.be/j0z4FweCy4M?t=4802

Physics: Optimizing quantum annealing schedules with Monte Carlo tree search enhanced

with neural networks

https://www.nature.com/articles/s42256-022-00446-y

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
20

https://youtu.be/j0z4FweCy4M?t=4802
https://www.nature.com/articles/s42256-022-00446-y


Notes

AlphaZero: Success Story

Games: Silver et al. 2018

TESLA Autopilot:
https://youtu.be/j0z4FweCy4M?t=4802

Physics: Optimizing quantum annealing schedules with Monte Carlo tree search enhanced

with neural networks

https://www.nature.com/articles/s42256-022-00446-y

• Except of input and output representations, the same architecture and approach can be applied

to reach better better performance than any computer program or human player in chess, shogi

and go.

• Similar approaches can be applied to search problems that need to be solved efficiently. In a

video from last year, Tesla has an example, where an AlphaZero approach was applied in a car’s

autopilot, to plan the trajectory from current position to a parking lot while avoiding many

obstacles.

• In research we see the same approach applied to search problems in physics.

https://youtu.be/j0z4FweCy4M?t=4802
https://www.nature.com/articles/s42256-022-00446-y


AlphaZero: Summary

I In each position of the game (for both players), MCTS runs for some time.

I The sub-tree below the actual next state is retained as the initial MCTS tree.

I In contrast to traditional Go/Chess/Shogi software there is no hand-crafting of

promising tree expansions or position evaluations: selection of MCTS is

focused on promising actions (according to learned prior action probability πθ )
and the value of leaf nodes vθ is based on a learned position evaluation
function.

I Prior action probabilities πθ are trained with the cross-entropy loss to match
the actual policy π of MCTS and the values vθ are trained with the squared error
loss to the actual outcome z of the game.

I AlphaZero does not need to learn the reward and transition model

Ra
s→s′ , Pa

s→s′ ; for MCTS it relies on the hard coded rules of the game.
What if the model is unknown?

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
21



Table of Contents

1. Model-Based Deep Reinforcement Learning

Background Planning and Decision Time Planning

Model-Based Deep RL with Variational State Tabulation (VaST)

Other Model-Based Deep RL Methods

2. Monte Carlo Tree Search

3. AlphaZero

4. MuZero

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
22



What If the Model Is Unknown?

In high dimensional settings, like in the game Go, it seems hopeless

to learn explicitly Ra
s→s′ and Pa

s→s′ .

MuZero = AlphaZero with a learned latent representation of observations and

learned dynamics model.

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
23



HowMuZero uses its model to plan

Schrittwieser et al. 2019

I Root node of MCTS: encoded state

s0 = hθ(o) instead of raw observation o.

I MCTS runs with learned dynamics

s ′, r = gθ(s, a) instead of known rules.

I Otherwise, MuZero works like AlphaZero with

learned prior action probabilities p and values
v , computed from latent states.

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
24



Notes

HowMuZero uses its model to plan

Schrittwieser et al. 2019

I Root node of MCTS: encoded state

s0 = hθ(o) instead of raw observation o.

I MCTS runs with learned dynamics

s ′, r = gθ(s, a) instead of known rules.

I Otherwise, MuZero works like AlphaZero with

learned prior action probabilities p and values
v , computed from latent states.

• The model consists of three connected components for representation, dynamics and prediction. The initial

hidden state s(0) ∈ RN is obtained by passing current (and potentially a stack of past) observations (e.g. the

Go board or Atari screen) into a representation function hθ .

• Given a previous hidden state s(k–1) and a candidate action a(k), the dynamics function gθ produces an
immediate reward r (k) and a new hidden state s(k). The prediction of the immediate reward r is necessary
for environments with intermediate rewards, like the Atari games.

• The policy p(k) and value function v (k) are computed from the hidden state s(k) by a prediction function
fθ = (πθ, vθ), as in AlphaZero.

• In contrast to VaST, DreamerV2 etc. the latent states s do not need to contain all information to reproduce
the raw observations. “There is no direct constraint or requirement for the hidden state to capture all

information necessary to reconstruct the original observation, drastically reducing the amount of information

the model has to maintain and predict; nor is there any requirement for the hidden state to match the

unknown, true state of the environment; nor any other constraints on the semantics of state. Instead, the

hidden states are free to represent state in whatever way is relevant to predicting current and future values

and policies. Intuitively, the agent can invent, internally, the rules or dynamics that lead to most accurate

planning.” This is an advantage when the raw observation contains information that is irrelevant for the task.



HowMuZero trains its model

Schrittwieser et al. 2019
Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero

25



Notes

HowMuZero trains its model

Schrittwieser et al. 2019

• A trajectory is sampled from the replay buffer. For the initial step, the representation function h
receives as input the past observations o1, . . . , ot from the selected trajectory.

• The model is subsequently unrolled recurrently for K steps. At each step k , the dynamics
function g receives as input the hidden state s(k–1) from the previous step and the real action

at+k .

• The parameters of the representation, dynamics and prediction functions are jointly trained,

end-to-end by backpropagation-through-time, to predict three quantities: the prior action

selection policy p(k) ≈ πt+k should approximate the MCTS policy πt+k in time-step t + k , the
value v (k) ≈ zt+k should approximate the return zt+k (uT indicates win or loss in a board game

and ut the intermediate rewards in general), and the immediate reward r (t+k) ≈ ut+k should
approximate the actual immediate reward ut+k .



MuZero: Success Story

Schrittwieser et al. 2019
Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero

26



Notes

MuZero: Success Story

Schrittwieser et al. 2019

Benchmark lines for Chess, Shogi & Go: AlphaZero.

For Atari: R2D2, a model-free agent that was state-of the art in 2019 (solid lines: mean, dashed lines:

median)



MuZero: Summary

I Instead of relying on a given reward and transition model, MuZero learns an

encoding of observations to states hθ and a transition function from states to

next states gθ .
I Like AlphaZero, it relies on MCTS with a learned function fθ that estimates the
action probability πθ and value vθ of a state.

I In contrast to VaST, WoldModels and SimPLe, the latent state of MuZero is not

trained in an autoencoder approach, i.e. ot is not necessarily reconstructable
from st .

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
27



Dyna Architecture

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
28



Notes

Dyna Architecture

Figure 8.1 from Sutton and Barto: The general Dyna Architecture. Real experience, passing back and

forth between the environment and the policy, affects policy and value functions in much the same way

as does simulated experience generated by the model of the environment.



Replay Buffers, Models, Policies

1. Model-Free RL: use raw experiences (s, a, r , s ′) to train policy π(a|s) or Q(s, a).

2. Model-Free RL with Replay Buffer: store raw experiences (s, a, r , s ′) in bufferM and

train policy π(a|s) or Q(s, a) with samples from buffer.

3. Model-Based RL with Background Learning: use raw experiences (s, a, r , s ′) to
update model Pa

s→s′ and Ra
s→s′ and use samples from model to train policy π(a|s) or

Q(s, a).

4. Model-Based RL with Replay Buffer and Background Learning: store raw

experiences (s, a, r , s ′) in replay bufferM and train a model (simulator) with samples

fromM ; use samples from the model to train policy π(a|s) or Q(s, a).

5. Model-Based RL with Decision Time Planning: use raw experiences or a replay

buffer to update a model; use the model for planning at decision time, e.g. with MCTS.

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
29



Notes

Replay Buffers, Models, Policies

1. Model-Free RL: use raw experiences (s, a, r , s ′) to train policy π(a|s) or Q(s, a).

2. Model-Free RL with Replay Buffer: store raw experiences (s, a, r , s ′) in bufferM and

train policy π(a|s) or Q(s, a) with samples from buffer.

3. Model-Based RL with Background Learning: use raw experiences (s, a, r , s ′) to
update model Pa

s→s′ and Ra
s→s′ and use samples from model to train policy π(a|s) or

Q(s, a).

4. Model-Based RL with Replay Buffer and Background Learning: store raw

experiences (s, a, r , s ′) in replay bufferM and train a model (simulator) with samples

fromM ; use samples from the model to train policy π(a|s) or Q(s, a).

5. Model-Based RL with Decision Time Planning: use raw experiences or a replay

buffer to update a model; use the model for planning at decision time, e.g. with MCTS.

1. e.g. standard policy gradient or Q-learning

2. e.g. DQN or ACER (policy gradient with replay buffer).

3. e.g. Dyna-Q (see Sutton and Barto Chapter 8.2)

4. e.g. VaST, Dreamer, etc.

5. e.g. MuZero



Quiz

Which statement is correct?

�

3

In AlphaZero’s MCTS the actual actions are sampled from the prior action

probability P(s, a).
�

3

In AlphaZero’s MCTS the prior action probability is trained to be as close as

possible to the actual policy of MCTS.

I More than 80% of the lecture content of the last two weeks was new for me.

I Less than 60% of the lecture content of the last two weeks was new for me.

I I understood more than 80% of the lecture content of the last two weeks.

I I understood less than 60% of the lecture content of the last two weeks.

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
30



References I

Corneil, D., Gerstner, W., and Brea, J. (2018).

Efficient model–based deep reinforcement learning with variational state tabulation.

In Dy, J. and Krause, A., editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine

Learning Research, pages 1057–1066, Stockholmsmässan, Stockholm Sweden. PMLR.

Ha, D. and Schmidhuber, J. (2018).

World Models.

ArXiv e-prints.

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. (2020).

Mastering Atari with Discrete World Models.

arXiv e-prints, page arXiv:2010.02193.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. (2023).

Mastering Diverse Domains through World Models.

arXiv e-prints, page arXiv:2301.04104.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Campbell, R. H., Czechowski, K., Erhan, D., Finn, C., Kozakowski, P., Levine, S., Mohiuddin, A.,

Sepassi, R., Tucker, G., and Michalewski, H. (2019).

Model-Based Reinforcement Learning for Atari.

arXiv e-prints, page arXiv:1903.00374.

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
31



References II

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis, D., Graepel, T., Lillicrap, T., and Silver,

D. (2019).

Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model.

arXiv e-prints, page arXiv:1911.08265.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., and

et al. (2016).

Mastering the game of go with deep neural networks and tree search.

Nature, 529(7587):484–489.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., and et al. (2018).

A general reinforcement learning algorithm that masters chess, shogi, and go through self-play.

Science, 362(6419):1140–1144.

Model-Based Deep Reinforcement Learning Monte Carlo Tree Search AlphaZero MuZero
32


	Model-Based Deep Reinforcement Learning
	Background Planning and Decision Time Planning
	Model-Based Deep RL with Variational State Tabulation (VaST)
	Other Model-Based Deep RL Methods

	Monte Carlo Tree Search
	AlphaZero
	MuZero

