
Applications of Model-Free

Deep Reinforcement Learning

Johanni Brea

4 April 2023

Artificial Neural Networks CS-456

Deep Reinforcement Learning Applications

Video Games Simulated Robotics

Board Games (next week)

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
1

A Classification of Deep Reinforcement Learning Methods

Deep RL Algorithms

Model-Free

Policy Optimization Q-Learning

Model-Based

Learn Model Given Model

Policy Gradient

A2C

PPO

TRPO

DQN

C51

HER

R2D2

Agent57

DDPG

TD3

SAC

AlphaZeroWorldModels

VaST

Dreamer

MuZero

inspired by https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
2

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Table of Contents

1. Mini-Batches in On- and Off-Policy Deep Reinforcement Learning

Temporally Correlated Weight Updates Can Cause Instabilities

Deep Q-Network (DQN) and Advantage Actor-Critic (A2C)

Pros and Cons of On- and Off-Policy Deep RL

2. Deep Reinforcement Learning for Continuous Control.

Deep Deterministic Policy Gradient (DDPG)

Proximal Policy Optimization

Comparison of Algorithms in Simulated Robotics

3. Other Success Stories of Model-Free RL

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
3

Mini-Batches in On- and Off-Policy Deep RL

Usually we train deep neural networks with independent and identically distributed

(iid) mini-batches of training data.

In this section you will learn

1. that we should not formmini-batches from sequentially acquired data in RL, but

2. use a replay buffer from which one can sample iid, or

3. runmultiple actors in parallel.

Suggested reading: [Mnih et al., 2015] and [Mnih et al., 2016]

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
4

Correlation of Subsequent Observations in RL

I Subsequent images are highly

correlated.

I Images at the end of the episode

may look quite differently from those

at the beginning of the episode.

I In image classification we shuffle

the training data to have

approximately independent and

identically distributed mini-batches.

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
5

Temporally Correlated Weight Updates Can Cause Instabilities

–1

0

1
∆

w

–200 –100 0 100 200 300 400

–1.5
–1

–0.5
0

time

w

I w0 = 0

wt = wt–1 + 0.02 ·∆wt .

I Temporally correlated

weight updates can

cause large weight

fluctuations⇒ potentially

unstable learning.

I Reshuffling updates

helps to prevent this⇒
reshuffling stabilizes

learning.

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
6

Notes

Temporally Correlated Weight Updates Can Cause Instabilities

–1

0

1

∆
w

–200 –100 0 100 200 300 400

–1.5
–1

–0.5
0

time

w

I w0 = 0

wt = wt–1 + 0.02 ·∆wt .

I Temporally correlated

weight updates can

cause large weight

fluctuations⇒ potentially

unstable learning.

I Reshuffling updates

helps to prevent this⇒
reshuffling stabilizes

learning.

Let us look at a simple example that illustrates why correlated samples can be problematic. You can

think ofwt as a singleweight in a deep neural network that is updatedwith gradient descent. Theweight

updates in this example are temporally correlated, e.g. most∆wt for t < 150 are negative. As a result,

wt moves to a strongly negative value within the first 150 updates and than up again. If we reshuffle

the data – the blue points are obtained by sampling a∆ws with s ∈ {t – 200, t – 199, . . . , t{ – gradient
descent nevermoveswt to strongly negative values (blue curve in lower plot). The strong fluctuations of

the weights during trainingmay not be a big problem in supervised learning. But in deep reinforcement

learning the policy depends on the weights of the neural network and therefore the samples that are

obtained from interactions with the environment also depend on the weights of the neural network. In

this example, the policy at time 150 or 400 for the reshuffled samples may be very different from the

policy obtained with correlated samples and further data obtained with these two policies may differ.

Proposed Solutions for Deep RL

On-policy methods, like policy gradient or SARSA, attempt to improve the policy that is used

to make decisions, whereas off-policy methods, like Q-Learning, improve a policy different

from that used to generate the data.

Off-Policy Deep RL

e.g. DQN

I Put many (e.g. 1M) experiences

(observation, action, reward) of a single

agent into replay buffer (a

first-in-first-out memory buffer).

I Randomly sample from the replay

buffer to obtain mini-batches for

training.

On-Policy Deep RL

e.g. A2C

I Runmultiple agents (e.g. 16) and

environment simulations with different

random seeds in parallel

(ideally, every agents sees a different

observation at any moment in time)

I Obtain mini-batches from the

observations, actions and rewards of

the multiple actors.

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
7

Deep Q-Network (DQN) for Atari Games

Input Encoding

st = (static) tensor of 84x84x4 grayscale pixel values4-frames color video

→

[Mnih et al., 2015]
Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL

8

Notes

Deep Q-Network (DQN) for Atari Games

Input Encoding

st = (static) tensor of 84x84x4 grayscale pixel values4-frames color video

→

[Mnih et al., 2015]

For Atari games 4 subsequent frames are taken as input to a convolutional neural network. The “color

channel” of a convolutional layer is used in a creative way here: instead of representing RGB values it is

used to represent the input at different time points. This allows the network to extract e.g. the direction

of motion of a moving object.

Giving just a stack of raw gray-scale images as input is in the spirit of end-to-end learning: there is

no sophisticated feature engineering involved (beyond the implicit inductive bias that color information

is irrelevant and that all relevant state information is contained in 4 subsequent frames). There were,

however, also attempts to engineer features and use shallow (i.e. standard tabular RL) for Atari games,

see e.g. [Liang et al., 2015].

Deep Q-Network (DQN) for Atari Games

1: Initialize neural network Qθ and empty replay buffer R .
2: Set target Q̂ ← Qθ, counter t ← 0, observe s0.
3: repeat
4: Take action at and observe reward rt and next state st+1
5: Store (st , at , rt , st+1) in R
6: Sample random minibatch of transitions (sj , aj , rj , sj+1) from R
7: Update θ with gradient of L(θ) =

∑
j
(
rj + γmaxa′ Q̂(sj+1)a′ – Qθ(sj)aj

)2
8: Increment t and reset Q̂ ← Qθ every C steps.
9: until some termination criterion is met.

10: return Qθ

[Mnih et al., 2015]
Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL

9

Notes

Deep Q-Network (DQN) for Atari Games

1: Initialize neural network Qθ and empty replay buffer R .
2: Set target Q̂ ← Qθ, counter t ← 0, observe s0.
3: repeat
4: Take action at and observe reward rt and next state st+1
5: Store (st , at , rt , st+1) in R
6: Sample random minibatch of transitions (sj , aj , rj , sj+1) from R
7: Update θ with gradient of L(θ) =

∑
j
(
rj + γmaxa′ Q̂(sj+1)a′ – Qθ(sj)aj

)2
8: Increment t and reset Q̂ ← Qθ every C steps.
9: until some termination criterion is met.

10: return Qθ

[Mnih et al., 2015]

1: For ns dimensional input (e.g. 84x84x4 pixels) the neural network Qθ has ns input neurons and
na (linear) output neurons.

2: Q̂ is the target network.

4: For ε-greedy policy, state st , action at is arg maxa Qθ(st)a with probability 1 – ε or a randomly
chosen action with probability ε. Typically, ε is decreased over the course of learning, e.g. from 1

to 0.1 over the first million transitions (exploration annealing).

6: A minibatch can contain e.g. 32 transitions sampled randomly from R . Minibatches can be
sampled uniformly from the replay buffer [Mnih et al., 2015] or use prioritized replay that favours

transitions with a large TD-error [Schaul et al., 2015].

7: The sum runs over the indices of the sampled minibatch. To avoid large updates of the gradient

(and thereby stabilize training) one can use gradient clipping, or losses like the Huber loss,

L(x) = 1
2

x2 if |x | < 1 and L(x) = |x | – 1
2
otherwise.

8: The update frequency can be quite low, e.g. C = 10′000.

DQN on CartPole

learning to balance a cart pole with 20 different random seeds; lines = median of the reward per

episode; shaded area = range between 10th and 90th percentile.

https://lcnwww.epfl.ch/cs456/dqn_a2c.html

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
10

https://lcnwww.epfl.ch/cs456/dqn_a2c.html

Notes

DQN on CartPole

learning to balance a cart pole with 20 different random seeds; lines = median of the reward per

episode; shaded area = range between 10th and 90th percentile.

https://lcnwww.epfl.ch/cs456/dqn_a2c.html

• Changing only the size of the replay buffer has a strong impact on learning in DQN.

• In the CartPole task a pole is attached by an un-actuated joint to a cart, which moves along a

frictionless track. The system is controlled by applying a force of +1 or -1 to the cart. The

pendulum starts upright, and the goal is to prevent it from falling over. A reward of +1 is provided

for every timestep that the pole remains upright.

• With a replay buffer length of 16 we have basically online learning. We observe strong

fluctuations in the performance, probably because of the correlated samples problem. With a

much lower learning rate these fluctuations may become less problematic, but learning would

be slower.

• With a replay buffer length of 1000 all 20 random seeds that were tested resulted in fast and

reliable learning of the task.

https://lcnwww.epfl.ch/cs456/dqn_a2c.html

Prioritized Replay

Instead of uniformly sampling from the replay buffer, sample transition with

probability

P(i) =
pαi∑
k pαk

, where pi = |δi | + ε or pi = 1

rank(i) (1)

with TD-error δi = Ri + γmaxa Q(si+1, a) – Q(si , a), α = 0 corresponds to uniform

sampling and ε > 0 prevents pi from being 0 for transitions with zero TD-error.

Correction for non-uniform sampling with importance weight 1
P(i) , i.e.

∆θ ∝ 1
P(i)∇L(θ).

[Schaul et al., 2015]

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
11

Notes

Prioritized Replay

Instead of uniformly sampling from the replay buffer, sample transition with

probability

P(i) =
pαi∑
k pαk

, where pi = |δi | + ε or pi = 1

rank(i) (1)

with TD-error δi = Ri + γmaxa Q(si+1, a) – Q(si , a), α = 0 corresponds to uniform

sampling and ε > 0 prevents pi from being 0 for transitions with zero TD-error.

Correction for non-uniform sampling with importance weight 1
P(i) , i.e.

∆θ ∝ 1
P(i)∇L(θ).

[Schaul et al., 2015]

Sampling uniformly from the replay buffer may not be efficient, if most Q-values do not change much.

For example, if rewards are sparse, it would be more efficient to sample and update always the transi-

tions with a large TD-error, i.e. first the states that lead directly to reward, than those that lead to reward

in 1 step, than those that lead to reward in 2 steps, etc.

Importance sampling

E [f (x)] =
∫

p(x)f (x)dx ≈ 1
K
∑K

i=1 f (xi) if xi ∼ p(x).
E [f (x)] =

∫
p(x)f (x)dx =

∫
q(x) p(x)

q(x) f (x)dx ≈ 1
K
∑K

i=1
p(x)
q(x) f (x). The factor p(x)

q(x) is called importance

weight.

For sampling from the replay buffer the correct distribution p(x) is the uniform distribution. If we sample

instead from P(i), we need to correct by 1/P(i).

In [Schaul et al., 2015], they used the “importance weight” wi =
(
1
N

1
P(i)

)β
/C where C = maxk wk ,

where β controls the importances correction. For β < 1 the estimate of the gradient is biased (but

the variance may be smaller). The importance correction is usually annealed towards β → 1 over the

course of training.

Advantage Actor-Critic (A2C)

1: Initialize neural networks πθ and Vφ.
2: Set counter t ← 0, observe s0.
3: repeat
4: for all workers k = 1, . . . , K do
5: Take action a(k)

t and observe reward r (k)
t and next state s(k)

t+1
6: Compute R(k)

t = r (k)
t + γVφ(s(k)

t+1) and advantage A(k)
t = R(k)

t – Vφ(s(k)
t)

7: end for
8: Update θ with gradient of

∑
k A(k)

t logπθ(a
(k)
t ; s(k)

t)
9: Update φ with gradient of

∑
k
(
R(k)

t – Vφ(s(k)
t)

)2.
10: Increment t.
11: until some termination criterion is met.
12: return πθ and Vφ

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
12

Notes

Advantage Actor-Critic (A2C)

1: Initialize neural networks πθ and Vφ.
2: Set counter t ← 0, observe s0.
3: repeat
4: for all workers k = 1, . . . , K do
5: Take action a(k)

t and observe reward r (k)
t and next state s(k)

t+1
6: Compute R(k)

t = r (k)
t + γVφ(s(k)

t+1) and advantage A(k)
t = R(k)

t – Vφ(s(k)
t)

7: end for
8: Update θ with gradient of

∑
k A(k)

t logπθ(a
(k)
t ; s(k)

t)
9: Update φ with gradient of

∑
k
(
R(k)

t – Vφ(s(k)
t)

)2.
10: Increment t.
11: until some termination criterion is met.
12: return πθ and Vφ

1: For ns-dimensional input and na action, the policy network πθ has ns inputs and as output a
softmax layer with na units. The value network Vφ has ns inputs and one linear output.

4: Each worker runs its own and independent copy of the environment, e.g. each one runs an

emulator of an Atari video game. The different workers can e.g. run on different threads of a CPU.

5-6: The pseudo-code shows a version with a one-step advantage. Alternatively, each worker can

run n actions and observe the rewards and next states and compute an n-step advantage
A(k)

t =
∑n–1

i=0 γ
i rt+i + γi+1Vφ(s(k)

t+n).
• A3C stands for Asynchronous Advantage Actor-Critic where each worker computes the gradient

for θ and φ and the parameters are updated asynchronously. However, the asynchronous
updates do not seem to be crucial; the synchronous version (A2C) performs equally well.

• A3C/A2C can be turned into an off-policy method with a replay buffer (see e.g. ACER

https://arxiv.org/abs/1611.01224)

https://arxiv.org/abs/1611.01224

A2C on CartPole

learning to balance a cart pole with 20 different random seeds; lines = median of the reward per step;

shaded area = range between 10th and 90th percentile.

https://lcnwww.epfl.ch/cs456/dqn_a2c.html

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
13

https://lcnwww.epfl.ch/cs456/dqn_a2c.html

Notes

A2C on CartPole

learning to balance a cart pole with 20 different random seeds; lines = median of the reward per step;

shaded area = range between 10th and 90th percentile.

https://lcnwww.epfl.ch/cs456/dqn_a2c.html

• Changing the number of workers has a strong impact on learning in A2C.

• With only 1 worker policy gradient does not succeed at all, although we used 32 times as many

interactions with the environment as in DQN. Maybe a smaller learning rate would help in this

setting.

• With 16 actors all 20 random seeds that were tested resulted in learning the task. Gradient

clipping was used to prevent large parameter updates towards the end of training.

https://lcnwww.epfl.ch/cs456/dqn_a2c.html

Why Can’t We Naively Use a Replay Buffer for On-Policy Methods?

Remember: for a given state s we have

∇θE[R] =
∫
∇θπθ(a|s)R(s, a)da

=
∫
πθ(a|s)∇ log(πθ(a|s))R(s, a)da

≈
K∑

k=1
∇θπθ(a(k)|s)R(s, a(k)) if a(k) ∼ πθ(a|s)

6=
K∑

k=1
∇θπθ(a(k)|s)R(s, a(k)) if a(k) ∼ πθ′(a|s)

In a replay buffer, a(k)
t ∼ πθt (a|s). Therefore, if we want to compute the gradient at t′, we

should use samples from πθt′
(a|s) and cannot naively use the old samples from πθt (a|s);

unless we correct for it with the “importance weight”
πθt′

(a(k)
t |s)

πθt (a(k)
t |s)

.

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
14

Notes

Why Can’t We Naively Use a Replay Buffer for On-Policy Methods?

Remember: for a given state s we have

∇θE[R] =
∫
∇θπθ(a|s)R(s, a)da

=
∫
πθ(a|s)∇ log(πθ(a|s))R(s, a)da

≈
K∑

k=1
∇θπθ(a(k)|s)R(s, a(k)) if a(k) ∼ πθ(a|s)

6=
K∑

k=1
∇θπθ(a(k)|s)R(s, a(k)) if a(k) ∼ πθ′(a|s)

In a replay buffer, a(k)
t ∼ πθt (a|s). Therefore, if we want to compute the gradient at t′, we

should use samples from πθt′
(a|s) and cannot naively use the old samples from πθt (a|s);

unless we correct for it with the “importance weight”
πθt′

(a(k)
t |s)

πθt (a(k)
t |s)

.

1. line Replace the integral by a sum, if the action space is discrete.

2. line We used∇π = π∇ logπ.
≈ in 3. line Sample (Monte Carlo) estimate of the full expectation.

last line There is no equality, if the actions are sampled from another distribution. As the policy

distribution chonges during learning, the old actions in the replay buffer are not anymore

samples from the same distribution. Hence, one cannot naively use the old samples.

• The correction with importance weights works in theory, but there is one such factor for each

time step of an episode (we presented the problem for a single state). The product of all

importance weights for entire episodes has usually high variance (this is a known issue for

so-called importance sampling, where one samples from a ‘wrong’ distribution and corrects

with an importance weight). Therefore, more sophisticated approaches are usually used in

practice, see e.g. ACER [Wang et al., 2016].

• Although we presented the problem here with a policy gradient method, the same problem

appears in all on-policy methods.

Pros and Cons of On- and Off-Policy Deep RL

Off-Policy Deep RL On-Policy Deep RL

+ lower sample complexity
i.e. fewer interactions with the environment

are needed, because experiences in the re-

play buffer can be used multiple times

- higher sample complexity
because old experiences cannot be used to

update a policy that has already changed.

- higher memory complexity
need to store many experiences in the replay

buffer.

+ lower memory complexity
only the current observations, actions and re-

wards of the parallel agents are kept to update

the policy.

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
15

Quiz

Which statement is correct?

�

3

If we use the SARSA loss rj + Q̂(sj+1, aj+1) – Qθ(sj , aj) in the DQN algorithm, we
just need to include also the next action aj+1 in the replay buffer and everything
will work.

�

3

We could use multiple actors instead of a replay memory with Q-Learning.

�

3

In A2C, if all parallel workers K start together in the first step of the episode and

every episode has the same length, we do not get the desired effect of iid

minibatches.

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
16

Table of Contents

1. Mini-Batches in On- and Off-Policy Deep Reinforcement Learning

Temporally Correlated Weight Updates Can Cause Instabilities

Deep Q-Network (DQN) and Advantage Actor-Critic (A2C)

Pros and Cons of On- and Off-Policy Deep RL

2. Deep Reinforcement Learning for Continuous Control.

Deep Deterministic Policy Gradient (DDPG)

Proximal Policy Optimization

Comparison of Algorithms in Simulated Robotics

3. Other Success Stories of Model-Free RL

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
17

Deep Reinforcement Learning for Continuous Control

Suggested reading: [Kakade, 2002, Schulman et al., 2015, Schulman et al., 2017, Lillicrap et al., 2015]

I High-dimensional continuous action spaces

(e.g. forces and torques). and observation

spaces (e.g. positions, angles and velocities).

I Standard policy gradient could be applied, but it

is difficult to find hyper-parameter settings such

that learning is neither unstable nor very slow.

I Standard DQN cannot be applied, because it is

designed for discrete actions.

In this section you will learn about

1. proximal policy optimization (PPO) methods that

improve standard policy gradient methods and

2. an adaptation of DQN to continuous action

spaces (DDPG).

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
18

Deep Deterministic Policy Gradient (DDPG) 1

In DQN for discrete actions the Q-values for Na actions are given as the activity of Na output
neurons of a neural network with parameters θ and input given by the state s .

For continuous actions there are infinitely many values; obviously we do not want Na =∞.

Proposed solution: use a policy network πψ(s) that maps deterministically states s to
continuous actions a.

[Lillicrap et al., 2015]

1The name is confusing: DDPG is more closely related to DQN than to PG!

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
19

Deep Deterministic Policy Gradient (DDPG)

1: Initialize neural networks Qθ, πψ and empty replay buffer R .
2: Set target Q̂ ← Qθ, π̂ ← πψ, counter t ← 0, observe s0.
3: repeat
4: Take action at = πψ(st) + ε and observe reward rt and next state st+1
5: Store (st , at , rt , st+1) in R
6: Sample random minibatch of transitions (sj , aj , rj , sj+1) from R
7: Update θ with gradient of

∑
j
(
rj + Q̂(sj+1, π̂(sj+1)) – Qθ(sj , aj)

)2
8: Update ψ with gradient of

∑
j Qθ(sj ,πψ(sj)).

9: Increment t and reset Q̂ ← Qθ, π̂ ← πψ every C steps.
10: until some termination criterion is met.
11: return Qθ

[Lillicrap et al., 2015]
Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL

20

Notes

Deep Deterministic Policy Gradient (DDPG)

1: Initialize neural networks Qθ, πψ and empty replay buffer R .
2: Set target Q̂ ← Qθ, π̂ ← πψ, counter t ← 0, observe s0.
3: repeat
4: Take action at = πψ(st) + ε and observe reward rt and next state st+1
5: Store (st , at , rt , st+1) in R
6: Sample random minibatch of transitions (sj , aj , rj , sj+1) from R
7: Update θ with gradient of

∑
j
(
rj + Q̂(sj+1, π̂(sj+1)) – Qθ(sj , aj)

)2
8: Update ψ with gradient of

∑
j Qθ(sj ,πψ(sj)).

9: Increment t and reset Q̂ ← Qθ, π̂ ← πψ every C steps.
10: until some termination criterion is met.
11: return Qθ

[Lillicrap et al., 2015]

1: If the dimensionality of the state is ns and the dimensionality of the action is na (e.g. na different
joints of a robot), the Q-network takes as input a ns + na-dimensional vector and outputs a scalar
number: the Q-value for this state and action. The policy network πψ takes states as input and is
supposed to return the greedy action.

4: Here at is a na-dimensional vector and ε is a random vector of na dimensions. This random
vector (sampled e.g. independently at each time step from a multivariate Gaussian or, for

temporally correlated exploration, from an Ornstein-Uhlenbeck process) drives exploration

around the greedy action πψ(st).

7: Note that themax operation is not needed here, because π̂(sj+1) ≈ arg maxa Q̂(sj+1, a) (see line
8).

8: The gradient ascent procedure in this line moves ψ such that πψ(sj)moves closer to
arg maxa Qθ(sj+1, a).

How Big a Step Can WeMake in Policy Gradient?

In simple Policy Gradient, the parameters θ of a neural network change according to

θ′ = θ + α∇J(θ)

J(θ) = Es0∼p(s0)[Vθ(s0)] = Est ,at∼pθ,πθ

 ∞∑
t=0

γtRatst→st+1

 (2)

=
∞∑

t=0

∑
st ,st+1,at

γtRatst→st+1P
atst→st+1πθ(at ; st)pθ(st) (3)

with pθ(st) =
∑

s0,...,st–1,a0,...,at–1

p(s0)
t–1∏
τ=0

Paτsτ→sτ+1πθ(aτ ; sτ).

We actually want J(θ′) – J(θ) to be as large as possible.

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
21

Notes

How Big a Step Can WeMake in Policy Gradient?

In simple Policy Gradient, the parameters θ of a neural network change according to

θ′ = θ + α∇J(θ)

J(θ) = Es0∼p(s0)[Vθ(s0)] = Est ,at∼pθ,πθ

 ∞∑
t=0

γtRatst→st+1

 (2)

=
∞∑

t=0

∑
st ,st+1,at

γtRatst→st+1P
atst→st+1πθ(at ; st)pθ(st) (3)

with pθ(st) =
∑

s0,...,st–1,a0,...,at–1

p(s0)
t–1∏
τ=0

Paτsτ→sτ+1πθ(aτ ; sτ).

We actually want J(θ′) – J(θ) to be as large as possible.

• The objective function J(θ) is the expected future discounted return given parameters θ and
distribution over initial states p(s0).

• The notation Est ,at∼pθ ,πθ is a short-hand for
∑

s0,s1,...,a0,a1,...
p(s0)

∏
τ

Paτ
sτ→sτ+1πθ(aτ ; sτ)

(replace sums by integrals for continuous spaces).

• To obtain the second line we interchange the sum signs, define pθ(st) (the policy-dependent
probability of reaching state st) and note that the reward Ratst→st+1 does not depend on the future

and therefore all sums over future states and actions (st+2, st+3, . . . , at+1, at+2, . . .) evaluate to 1,
because of the normalization of the probabilities.

• The optimal learning rate α would be the one that maximizes
J(θ′) – J(θ) = J(θ + α∇J(θ)) – J(θ).

How Big a Step Can WeMake in Policy Gradient?

J(θ′) – J(θ) = J(θ′) – Es0∼p(s0)[Vθ(s0)] (4)

= J(θ′) – Est ,at∼pθ′ ,πθ′ [Vθ(s0)] (5)

= J(θ′) – Est ,at∼pθ′ ,πθ′

[∞∑
t=0

γtVθ(st) –
∞∑
t=1

γtVθ(st)
]

(6)

= J(θ′) + Est ,at∼pθ′ ,πθ′

[∞∑
t=0

γt(γVθ(st+1) – Vθ(st)
)]

(7)

= Est ,at∼pθ′ ,πθ′

[∞∑
t=0

γt(Rat
st→st+1 + γVθ(st+1) – Vθ(st)

)]
(8)

= Est ,at∼pθ′ ,πθ′

[∞∑
t=0

γtAθ(st , at)
]

=
∞∑

t=0
Est ,at∼pθ′ ,πθ

[
πθ′(at ; st)
πθ(at ; st) γ

tAθ(st , at)
]

(9)

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-9.pdf
Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL

22

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-9.pdf

Notes

How Big a Step Can WeMake in Policy Gradient?

J(θ′) – J(θ) = J(θ′) – Es0∼p(s0)[Vθ(s0)] (4)

= J(θ′) – Est ,at∼pθ′ ,πθ′ [Vθ(s0)] (5)

= J(θ′) – Est ,at∼pθ′ ,πθ′

[∞∑
t=0

γtVθ(st) –
∞∑
t=1

γtVθ(st)
]

(6)

= J(θ′) + Est ,at∼pθ′ ,πθ′

[∞∑
t=0

γt(γVθ(st+1) – Vθ(st)
)]

(7)

= Est ,at∼pθ′ ,πθ′

[∞∑
t=0

γt(Rat
st→st+1 + γVθ(st+1) – Vθ(st)

)]
(8)

= Est ,at∼pθ′ ,πθ′

[∞∑
t=0

γtAθ(st , at)
]

=
∞∑

t=0
Est ,at∼pθ′ ,πθ

[
πθ′(at ; st)
πθ(at ; st) γ

tAθ(st , at)
]

(9)

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-9.pdf

(3) We plug in the definition for the second term.

(4) We take the expectation also over all future state action pairs (see previous slide for the

definition of this notation). These expectations do not change the expression, because Vθ(s0)
does not depend on future state-action pairs. (e.g.

EX ,Y [X] =
∑

X ,Y P(X , Y)X =
∑

X ,Y P(X)P(Y |X)X =
∑

X P(X)X
∑

Y P(Y |X) = EX [X]).
(5) We write Vθ(s0) as to difference of two infinite sums. Note that the second sum runs from t = 1,

whereas the first one runs from t = 0.

(6) We write the second sum as
∑∞

t=1 γ
tVθ(st) =

∑∞
t=0 γ · γtVθ(st+1) and swap the order of the

two sums in the square bracket (note the change of sign in front of the second term).

(7) We plug in the definition of the first term and get the advantage for θ (note that the expectation is
taken over pθ′ ,πθ′).

(8) We swap the sum with the expectation and take the expectation with respect to πθ while

correcting with the importance weight
πθ′ (at ;st)
πθ(at ;st) .

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-9.pdf

Proximal Policy Optimization: Idea

J(θ′) – J(θ) =
∞∑

t=0
Est ,at∼pθ′ ,πθ

[πθ′(at ; st)
πθ(at ; st)︸ ︷︷ ︸
=rθ′ (st ,at)

γtAθ(st , at)
]

As long as pθ′ is close to pθ such that
Est ,at∼pθ′ ,πθ

[
rθ′(st , at)γtAθ(st , at)

]
≈ Est ,at∼pθ,πθ

[
rθ′(st , at)γtAθ(st , at)

]
we can take the samples st , at ∼ pθ,πθ obtained with the old policy and optimize the

objective function

L̂(θ′) =
∞∑

t=0
rθ′(st , at)γtAθ(st , at)

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
23

Notes

Proximal Policy Optimization: Idea

J(θ′) – J(θ) =
∞∑

t=0
Est ,at∼pθ′ ,πθ

[πθ′(at ; st)
πθ(at ; st)︸ ︷︷ ︸
=rθ′ (st ,at)

γtAθ(st , at)
]

As long as pθ′ is close to pθ such that
Est ,at∼pθ′ ,πθ

[
rθ′(st , at)γtAθ(st , at)

]
≈ Est ,at∼pθ,πθ

[
rθ′(st , at)γtAθ(st , at)

]
we can take the samples st , at ∼ pθ,πθ obtained with the old policy and optimize the

objective function

L̂(θ′) =
∞∑

t=0
rθ′(st , at)γtAθ(st , at)

There is still pθ′ (the probability of reaching state st under policy πθ′) in J(θ′) – J(θ). We cannot easily
sample from this probability as long as we do not have θ′. But we can sample from pθ and if pθ′ is
sufficiently close to pθ , we have approximately L̂(θ′) ≈ J(θ′) – J(θ).

Instead of searching for an optimal learning rate α, the idea is now to optimize L̂(θ′) for a few steps

(with gradient ascent, ADAM, RMSProp, or similar) while making sure that pθ′ does not move too far
away from pθ , before taking further actions in the environment.

Proximal Policy Optimization: Losses

L̂(θ′) =
∞∑

t=0
rθ′(st , at)γtAθ(st , at)

Trust-Region Policy Optimization (TRPO)

Maximize L̂(θ′) subject to KL[πθ‖πθ′] ≤ δ.

Clipped Surrogate Objectives (PPO-CLIP)

Maximize L̂CLIP(θ′) =
∞∑

t=0
min(rθ′γtAθ, clip(rθ′ , 1 – ε, 1+ ε)γtAθ).

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
24

Notes

Proximal Policy Optimization: Losses

L̂(θ′) =
∞∑

t=0
rθ′(st , at)γtAθ(st , at)

Trust-Region Policy Optimization (TRPO)

Maximize L̂(θ′) subject to KL[πθ‖πθ′] ≤ δ.

Clipped Surrogate Objectives (PPO-CLIP)

Maximize L̂CLIP(θ′) =
∞∑

t=0
min(rθ′γtAθ, clip(rθ′ , 1 – ε, 1+ ε)γtAθ).

One way to keep pθ′ close to pθ is to make sure the policy πθ′ does not move far away from πθ by
explicitly constraining the KL divergence from original policy to new policy to be smaller than δ.

Another way is to clip the objective function such that the gradient becomes zero when r moves out of
the interval [1 – ε, 1+ ε]. The clip function is defined as

clip(x , l, u) =

u x > u
x x ∈ [l, u]
l x < l

Its derivative is 0 when x < l or x > u. See exercise 2 for details.

Proximal Policy Optimization

1: Initialize neural networks πθ and Vφ.
2: Set counter t ← 0, observe s0.
3: repeat
4: for all workers k = 1, . . . , K do
5: Take action a(k)

t and observe reward r (k)
t and next state s(k)

t+1
6: Compute R(k)

t = r (k)
t + γVφ(s(k)

t+1) and advantage A(k)
t = R(k)

t – Vφ(s(k)
t)

7: end for
8: Optimize surrogate objective

∑
k min

(
r (k)
θ′ A(k)

t , clip(r (k)
θ′ , 1 – ε, 1+ ε)A(k)

t
)

in θ′ with

gradient ascent for M epochs. r (k)
θ′ = πθ′ (s

(k)
t ,a(k)

t)
πθ(s(k)

t ,a(k)
t)

.

9: Update φ with gradient of
∑

k
(
R(k)

t – Vφ(s(k)
t)

)2.
10: Increment t.
11: until some termination criterion is met.
12: return πθ and Vφ

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
25

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

Notes

Proximal Policy Optimization

1: Initialize neural networks πθ and Vφ.
2: Set counter t ← 0, observe s0.
3: repeat
4: for all workers k = 1, . . . , K do
5: Take action a(k)

t and observe reward r (k)
t and next state s(k)

t+1
6: Compute R(k)

t = r (k)
t + γVφ(s(k)

t+1) and advantage A(k)
t = R(k)

t – Vφ(s(k)
t)

7: end for
8: Optimize surrogate objective

∑
k min

(
r (k)
θ′ A(k)

t , clip(r (k)
θ′ , 1 – ε, 1+ ε)A(k)

t
)

in θ′ with

gradient ascent for M epochs. r (k)
θ′ = πθ′ (s

(k)
t ,a(k)

t)
πθ(s(k)

t ,a(k)
t)

.

9: Update φ with gradient of
∑

k
(
R(k)

t – Vφ(s(k)
t)

)2.
10: Increment t.
11: until some termination criterion is met.
12: return πθ and Vφ

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

As in A2C, the workers send their experiences back to the learner before starting to optimize the sur-

rogate objective in line 8. In contrast to A2C that does a single gradient ascent update step in line 8,

PPO uses each observation multiple times to optimize the surrogate objective in line 8. Instead of the

PPO-CLIP objective one can also use the TRPO objective.

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

Quiz

Which statement is correct?

�

3

With the update of policy gradient, θ′ = θ + α∇J(θ) and a fixed learning rate α,
J(θ′) – J(θ) will always be positive.

�

3

In proximal policy optimization methods we want to keep the ratio

rθ′(st , at) = πθ′(at ;st)
πθ(at ;st) close to one, such that the state visitation probabilities

pθ(st) and pθ′(st) are roughly the same.
�

3

A2C uses each minibatch once to update the policy, whereas proximal policy

methods use each minibatch multiple times, usually.

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
26

Comparison of Algorithms in Simulated Robotics

[Henderson et al., 2017]
Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL

27

Summary

I One can improve the stability and sample efficiency of policy gradient methods

by maximizing in an inner loop a surrogate objective function,

like the one of TRPO or PPO-CLIP.

I DQN can be adapted to domains with continuous actions by training an

additional policy network πψ (DDPG).

I Which algorithm works best depends on the problem, usually.

I We did not discuss sufficient and efficient exploration, but it usually has a

strong impact on the learning curve. A simple strategy for Policy Gradient

methods is to add entropy regularization such that the policy does not become

deterministic too quickly, but there are more advanced methods (see e.g. soft

actor-critic SAC [Haarnoja et al., 2018]).

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
28

Table of Contents

1. Mini-Batches in On- and Off-Policy Deep Reinforcement Learning

Temporally Correlated Weight Updates Can Cause Instabilities

Deep Q-Network (DQN) and Advantage Actor-Critic (A2C)

Pros and Cons of On- and Off-Policy Deep RL

2. Deep Reinforcement Learning for Continuous Control.

Deep Deterministic Policy Gradient (DDPG)

Proximal Policy Optimization

Comparison of Algorithms in Simulated Robotics

3. Other Success Stories of Model-Free RL

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
29

Agent 57

I Super-human on 57 Atari games.

I Prioritized replay for efficient learning from

the replay buffer.

I LSTM to deal with partial observability;

similar to Recurrent Replay Distributed

DQN (R2D2).

I Intrinsic motivation for efficient exploration;

similar to Never Give Up (NGU).

Q(s, a) = Qr (s, a) + βQ i (s, a), where Qr is
trained with standard reward and the

intrinsic part Q i is given a novelty signal as
reward (think of 1/(visitation count)).

[Badia et al., 2020]
Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL

30

AlphaStar

I Grandmaster level in StarCraft II.

I Supervised pre-training to imitate

human players.

I Transformer & LSTM.

I V-trace (version of actor-critic with

off-policy corrections)

I distributed training (multiple TPUs)

[Vinyals et al., 2019]
Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL

31

OpenAI Five

I Defeated world champion in Dota 2

I LSTM with shared weights for all 5

“heros”

I PPO

I distributed training (thousands of GPUs

for many months)

[OpenAI et al., 2019a]
Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL

32

Solving Rubik’s Cube with a Robot Hand

I Solves Rubik’s cube with a robot hand

I Vision model based on ResNet50 &

LSTM controller

I PPO

I Automated Domain Randomization:

training on simulator with a distribution of

environments (slightly different physics).

[OpenAI et al., 2019b]
Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL

33

Magnetic control of tokamak plasmas

I Controls nuclear fusion plasma

I Maximum a posteriori policy

optimization (MPO); an

actor-critic algorithm.

I Training on simulator.

[Degrave et al., 2022]

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
34

References I

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin, J., Abbeel, P., and Zaremba, W. (2017).

Hindsight Experience Replay.

arXiv e-prints, page arXiv:1707.01495.

Badia, A. P., Piot, B., Kapturowski, S., Sprechmann, P., Vitvitskyi, A., Guo, Z. D., and Blundell, C. (2020).

Agent57: Outperforming the Atari human benchmark.

In III, H. D. and Singh, A., editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine

Learning Research, pages 507–517. PMLR.

Bellemare, M. G., Dabney, W., and Munos, R. (2017).

A Distributional Perspective on Reinforcement Learning.

arXiv e-prints, page arXiv:1707.06887.

Corneil, D., Gerstner, W., and Brea, J. (2018).

Efficient model–based deep reinforcement learning with variational state tabulation.

In Dy, J. and Krause, A., editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine

Learning Research, pages 1057–1066, Stockholmsmässan, Stockholm Sweden. PMLR.

Dabney, W., Rowland, M., Bellemare, M. G., and Munos, R. (2017).

Distributional Reinforcement Learning with Quantile Regression.

arXiv e-prints, page arXiv:1710.10044.

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
35

References II

Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., de las Casas, D., Donner, C., Fritz, L.,

Galperti, C., Huber, A., Keeling, J., Tsimpoukelli, M., Kay, J., Merle, A., Moret, J.-M., Noury, S., Pesamosca, F., Pfau, D., Sauter, O., Sommariva, C.,

Coda, S., Duval, B., Fasoli, A., Kohli, P., Kavukcuoglu, K., Hassabis, D., and Riedmiller, M. (2022).

Magnetic control of tokamak plasmas through deep reinforcement learning.

Nature, 602(7897):414–419.

Fujimoto, S., van Hoof, H., and Meger, D. (2018).

Addressing Function Approximation Error in Actor-Critic Methods.

arXiv e-prints, page arXiv:1802.09477.

Ha, D. and Schmidhuber, J. (2018).

World Models.

ArXiv e-prints.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018).

Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor.

In Dy, J. and Krause, A., editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine

Learning Research, pages 1861–1870, Stockholmsmässan, Stockholm Sweden. PMLR.

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
36

References III

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D. (2017).

Deep Reinforcement Learning that Matters.

arXiv e-prints, page arXiv:1709.06560.

Kakade, S. M. (2002).

A natural policy gradient.

In Dietterich, T. G., Becker, S., and Ghahramani, Z., editors, Advances in Neural Information Processing Systems 14, pages 1531–1538. MIT Press.

Liang, Y., Machado, M. C., Talvitie, E., and Bowling, M. (2015).

State of the Art Control of Atari Games Using Shallow Reinforcement Learning.

ArXiv e-prints.

Lillicrap, T. P., Hunt, J. J., Pritzel, A. e., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. (2015).

Continuous control with deep reinforcement learning.

arXiv e-prints, page arXiv:1509.02971.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and Kavukcuoglu, K. (2016).

Asynchronous methods for deep reinforcement learning.

In Balcan, M. F. and Weinberger, K. Q., editors, Proceedings of The 33rd International Conference on Machine Learning, volume 48 of

Proceedings of Machine Learning Research, pages 1928–1937, New York, New York, USA. PMLR.

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
37

References IV

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., and et al.

(2015).

Human-level control through deep reinforcement learning.

Nature, 518(7540):529–533.

OpenAI, :, Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse, C., Józefowicz, R., Gray,

S., Olsson, C., Pachocki, J., Petrov, M., Pinto, H. P. d. O., Raiman, J., Salimans, T., Schlatter, J., Schneider, J., Sidor, S., Sutskever, I., Tang, J., Wolski, F.,

and Zhang, S. (2019a).

Dota 2 with Large Scale Deep Reinforcement Learning.

arXiv e-prints, page arXiv:1912.06680.

OpenAI, Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew, B., Petron, A., Paino, A., Plappert, M., Powell, G., Ribas, R., Schneider, J.,

Tezak, N., Tworek, J., Welinder, P., Weng, L., Yuan, Q., Zaremba, W., and Zhang, L. (2019b).

Solving Rubik’s Cube with a Robot Hand.

arXiv e-prints, page arXiv:1910.07113.

Racanière, S., Weber, T., Reichert, D., Buesing, L., Guez, A., Jimenez Rezende, D., Puigdomènech Badia, A., Vinyals, O., Heess, N., Li, Y., Pascanu,

R., Battaglia, P., Hassabis, D., Silver, D., and Wierstra, D. (2017).

Imagination-augmented agents for deep reinforcement learning.

In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information

Processing Systems 30, pages 5690–5701. Curran Associates, Inc.

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
38

References V

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015).

Prioritized Experience Replay.

ArXiv e-prints.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis, D., Graepel, T., Lillicrap, T., and Silver,

D. (2019).

Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model.

arXiv e-prints, page arXiv:1911.08265.

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and Abbeel, P. (2015).

Trust Region Policy Optimization.

ArXiv e-prints.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017).

Proximal Policy Optimization Algorithms.

arXiv e-prints, page arXiv:1707.06347.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., and

et al. (2016).

Mastering the game of go with deep neural networks and tree search.

Nature, 529(7587):484–489.

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
39

References VI

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., and et al. (2018).

A general reinforcement learning algorithm that masters chess, shogi, and go through self-play.

Science, 362(6419):1140–1144.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D.,

Kroiss, M., Danihelka, I., Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M., Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V., Budden, D.,

Sulsky, Y., Molloy, J., Paine, T. L., Gulcehre, C., Wang, Z., Pfaff, T., Wu, Y., Ring, R., Yogatama, D., Wünsch, D., McKinney, K., Smith, O., Schaul, T.,

Lillicrap, T., Kavukcuoglu, K., Hassabis, D., Apps, C., and Silver, D. (2019).

Grandmaster level in starcraft ii using multi-agent reinforcement learning.

Nature, 575(7782):350–354.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., and de Freitas, N. (2016).

Sample Efficient Actor-Critic with Experience Replay.

ArXiv e-prints.

Mini-Batches in DRL (DQN & A2C) Continuous Control (PPO & DDPG) Other Success Stories of Model-Free RL
40

	Mini-Batches in On- and Off-Policy Deep Reinforcement Learning
	Temporally Correlated Weight Updates Can Cause Instabilities
	Deep Q-Network (DQN) and Advantage Actor-Critic (A2C)
	Pros and Cons of On- and Off-Policy Deep RL

	Deep Reinforcement Learning for Continuous Control.
	Deep Deterministic Policy Gradient (DDPG)
	Proximal Policy Optimization
	Comparison of Algorithms in Simulated Robotics

	Other Success Stories of Model-Free RL

