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The role of exploration, novelty, and surprise in RL

Objectives for today:

- understand surprise

- understand difference of novelty and surprise

- use of surprise to modulate learning rate

- use of novelty to guide exploration



Novelty and Surprise

Q1: What is novelty?

Q2: What is surprise?

Q3: What is the difference between the two?

Q4: Why are they useful?

Q5: Why should we talk about it in an RL class? 



Novelty is not Surprise

Surprise is against models (beliefs)

Enjoy the images!



Novelty and Surprise

Q3: What is the difference between the two?

First answer – novelty and surprise are not the same.

Second answer (more precise):

Surprise is ‘against beliefs’ or ‘against expectations’

whereas novelty is not.



Novelty and Surprise

Surprise is ‘against expectations’: an example

… and this is why jokes work
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1. Definitions of Novelty and Surprise (tabular environment)



Novelty in a tabular environment: discrete states

Novelty n: 

1) count events of type s up to time t:

2) a higher count gives lower novelty.

3) the agent has spent a time t in the environment

4) the empirical observation frequency is 

events = states s  (e.g., one image). Total number is |s|

Definition: The ‘Novelty’ of a state s at time t is

𝑛𝑡 𝑠 = −log 𝑝𝑁 𝑠

𝑝𝑁 𝑠 =
𝐶𝑡 𝑠 + 1

𝑡 + |𝑠|

𝐶𝑡 𝑠



Surprise in a tabular environment: discrete states and actions

Surprise  S: 

1) count events of type (s,as’) up to time t:

2) a higher count gives lower surprise.

3) the agent has spent a time t in the environment

4) the empirical observation frequency is 

events = transitions  (s,as’) given action a in state s. 

Definition: The ‘Surprise’ of a transition is       

𝑆𝐵𝐹
𝑡+1 𝑠′ =

𝑝𝑟𝑖𝑜𝑟

𝑝𝑠
𝑡 𝑠𝑡+1 =𝑠′|𝑠𝑡,𝑎𝑡

𝐶𝑡 𝑠, 𝑎 → 𝑠′ + 1

 𝐶𝑡 𝑠, 𝑎 + |𝑠|

𝐶𝑡 𝑠, 𝑎 → 𝑠′

𝑝𝑡 𝑠𝑡+1 = 𝑠′|𝑠𝑡 , 𝑎𝑡 =

Bayes

Factor 

Surprise



Q1: What is novelty?

Q2: What is surprise?

Definitions of Novelty and Surprise

Definition: The ‘Novelty’ of a state s is

𝑛𝑡 𝑠 = −log 𝑝𝑁 𝑠

Definition: The ‘Surprise’ of a transition is       

𝑆𝐵𝐹
𝑡+1 𝑠′ =

𝑝𝑟𝑖𝑜𝑟

𝑝𝑠
𝑡 𝑠𝑡+1 =𝑠

′| 𝑠𝑡,𝑎𝑡

There are 17 different definitions of surprise. 

This here is the Bayes-Factor surprise. 
Modirshanechi et al. 

(2022)
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1.Definitions of Novelty and Surprise (tabular environment)

2. Why is  Surprise useful?



• Expectations arise from models of the world

• We always make models

• We know that the models are not perfect

• Surprise enables us to adapt the models

 Hypothesis: 

Surprise boosts plasticity (3rd factor)/ increases the learning rate

Note: no reward!!!! 

3 9 7 3 9 7 3 9 7 3 9 7 3 9 4 3 9 7

Surprise against expectations from your current belief

When are we surprises? 



- 4 or 5  neuromodulators

- near-global action

- internally created signals

(reward – exp. reward)

(surprise)
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Dopamine/reward/TD:

Schultz et al., 1997,

Schultz, 2002

Review: Neuromodulators

Image:

Fremaux and Gerstner, 

Frontiers (2016) 

Image: Biological Psychology, Sinauer

Dopamine (DA)

Noradrenaline (NE)

[r+g V(s’)-V(s)]       



Review: Formalism of  Three-factor rules with eligibility trace

D𝑧𝑖𝑗 =h  𝑓(𝜑𝑖) 𝑔(𝑥𝑗) 

𝑀 𝑆  𝜑,  𝑥 𝑧𝑖𝑗

Stimulus
pre

post
ij

Modulator signal

𝑀(𝑆  𝜑,  𝑥 )
𝑥𝑗 = activity of presynaptic neuron

𝜑𝑖 = activity of postsynaptic neuron

D𝑤𝑖𝑗 =h

Step 1: co-activation sets eligibility trace

Step 2: eligibility trace decays over time

𝑧𝑖𝑗 ← l 𝑧𝑖𝑗

Step 3: eligibility trace translated into weight change

𝑀 𝑆 :
- TD-error

- surprise
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1.Definitions of Novelty and Surprise (tabular environment)

2. Why is  Surprise useful?

3. Change-point detection by Bayes-Surprise



Surprise boosts plasticity in volatile environments

generative model =  nonstationary stochastic process

here:  - mean of Gaussian is fixed for many steps
- mean jumps at ‘change points’ : probability << 1
- variance is fixed

- task is to estimate momentary mean of Gaussian

Volatile environment:

abrupt changes with small probability

 ‘change points’

 you have to reset model after a change point



Surprise boosts plasticity in volatile environments

Surprise, S
0

1

reset/

earning rate

Task: estimate momentary mean q

in volatile environment, best approach (Bayesian):

- reset your belief to prior, if observation does not make sense

- plasticity of system must increase if ‘surprising observation’ 



Surprise boosts plasticity in volatile environments

Probability of observation y

under prior belief 𝜋(0)

Probability of observation y

under current belief 𝜋(𝑡)

reset your belief to prior, if observation y does not make sense

Surprise, SBF
0

1

g

’exact Bayesian inference’ 

in volatile environment modulates

update with factor g



Surprise boosts plasticity in volatile environments

Probability of observation y

under prior belief 𝜋(0)

Probability of observation y

under current belief 𝜋(𝑡)

reset your belief to prior, if observation y does not make sense

Exact update rule not implementable, but

Bayes-Factor Surprise plays crucial role in approximate methods:

- Particle Filter with N particles,

- Message-Passing with N messages,

- Published approximations

V. Liakoni et al., Neural Computation 2021
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1.Definitions of Novelty and Surprise (tabular environment)

2. Why is  Surprise useful?

3. Change-point detection by Bayes-Factor Surprise

4. Why is Novelty useful?



Review: TD-learning in the general sense 𝑠

𝑠′

a

Q(s,a)

a’

Q(s’,a’)

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]h

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾max𝑎′ 𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]h

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾{ 𝑎′𝜋 𝑠′, 𝑎′ 𝑄 𝑠′, 𝑎′ } − 𝑄 𝑠, 𝑎 ]

SARSA

Expected SARSA

Q-learning

h
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Review: Eligibility Traces,   SARSA(l)

Idea: 

- keep memory of previous state-action pairs

- memory decays over time

- update eligibility trace for all state-action pairs

𝑒 𝑠, 𝑎 ← 𝑒 𝑠, 𝑎 + 1 if action a chosen in state s

𝑒 𝑠, 𝑎 ← 𝑒 𝑠, 𝑎l decay of all traces

- update all Q-values at all time steps t:

DQ(s,a) =  h  [rt + g Q(st+1,at+1) - Q(st,at)] e(s,a)

Note: l=0 gives standard SARSA

RPE = TD error dt



Review: Model-based               versus                                 Model-free

- learns model of environment

‘transition matrix’

- knows ‘rules’ of game

- planning ahead is possible

- can update Bellman equation

in ‘background’ without action

- can simulate action sequences

(without taking actions)

- does not 

- does not

- cannot plan ahead

- cannot 

- cannot

- Eligibility traces and V-values         

keep memory of past

- completely online, causal,

forward in time. 
- is not



Reward-based learning     versus Novelty-based learning

rewards

Q-values

Bellman eq. 

𝑟𝑡

𝑄𝑅
(𝑡)

𝑠, 𝑎

novelty

Q-values

Bellman eq. 

𝑛𝑡

𝑄𝑁
(𝑡)

𝑠, 𝑎

estimation/update

Model-based Model-free

prioritized

sweeping

eligibility 

traces

estimation/update

Model-based Model-free

prioritized

sweeping

eligibility 

traces

𝑄𝑀𝐵,𝑅
(𝑡)

𝑠, 𝑎 𝑄𝑀𝐹,𝑅
(𝑡)

𝑠, 𝑎 𝑄𝑀𝐵,𝑁
(𝑡)

𝑠, 𝑎 𝑄𝑀𝐹,𝑁
(𝑡)

𝑠, 𝑎



Initial exploration of an environment

Environment with 10 states (+ goal)

4 actions per state

Actions are deterministic.

Fixed random assignment. 

Start in state 1:

With random policy, 

how many actions 

on average before 

finding goal?

[ ] 100-500

[ ] 1000 – 5000

[ ] more than 10000



Improve exploration of an environment

Focus on 1st episode, before any reward. 

Improve exploration! Solutions?

1.  Optimistic initialization? 

∆𝑄𝑅 𝑠, 𝑎 = 𝜂[𝑟𝑡 + 𝛾max𝑎′ 𝑄𝑅 𝑠′, 𝑎′ − 𝑄𝑅 𝑠, 𝑎 ]

Initialize 𝑄𝑅 𝑠, 𝑎 = 10 for all s,a

 Possible but comparatively slow.

Does not generalize well for episode 2. 



Novelty encourages exploration of an environment

Focus on 1st episode, before any reward. 

Improve exploration! Solutions?

2. Novelty at time t is 𝑛𝑡

Novelty Prediction Error (NPE)

∆𝑄𝑁 𝑠, 𝑎 = 𝜂[𝑛𝑡 + 𝛾max𝑎′ 𝑄𝑁 𝑠′, 𝑎′ − 𝑄𝑁 𝑠, 𝑎 ]

 Separate Q-value for novelty! 



Novelty encourages exploration of an environment

Focus on 1st episode, before any reward; with some policy 

first encounter of  state 7
novelty of goal

novelty of state 7

 use novelty values 𝑄𝑁
(𝑡)

𝑠, 𝑎 for action  policy! 
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1.Definitions of Novelty and Surprise (tabular environment)

2. Why is  Surprise useful?

3. Change-point detection by Bayes-Factor Surprise

4. Why is Novelty useful?

5. Hybrid Model with Novelty, Surprise, and Reward



Hybrid model with separate paths for Novelty and Reward

(learning rate controlled by Surprise)

RPE =  [𝑟𝑡 + 𝛾max𝑎′ 𝑄𝑅 𝑠′, 𝑎′ − 𝑄𝑅 𝑠, 𝑎 ]

NPE =  [𝑛𝑡 + 𝛾max𝑎′ 𝑄𝑁 𝑠′, 𝑎′ − 𝑄𝑁 𝑠, 𝑎 ]
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1.Definitions of Novelty and Surprise (tabular environment)

2. Why is  Surprise useful?

3. Change-point detection by Bayes-Factor Surprise

4. Why is Novelty useful?

5. Hybrid Model with Novelty, Surprise, and Reward

6. An Experiment



Environment: Markov Decision Process

Finding 1)

Participants need about 150 actions in episode 1

Finding 2)

In episode 2, participants go straight to goal        



Volatile Environment: Switch after episode 5

Finding 3)

In episodes 5 and 6, participants rapidly relearn! 

Questions: 

- Is Surprise necessary to explain relearning?

- Are humans model-based or model-free?

- Is novelty a good explanation of results?



Review: Hybrid model with separate paths

Surprise, Novelty, Reward (SurNoR)

RPE =  [𝑟𝑡 + 𝛾max𝑎′ 𝑄𝑅 𝑠′, 𝑎′ − 𝑄𝑅 𝑠, 𝑎 ]

NPE =  [𝑛𝑡 + 𝛾max𝑎′ 𝑄𝑁 𝑠′, 𝑎′ − 𝑄𝑁 𝑠, 𝑎 ]



Comparison of Models: Surprise, Novelty, Reward

- Turn off novelty

- Turn off surprise

- Turn off model-based MF

- Turn off model-free  MB

- OI = Optimistic Initialization MB MF

Finding 4)

Rapid relearning needs surprise



Relative importance of model-based versus model-free

Finding 5)

Model-free dominates

Human behavior! 

Surprise

surprise-modulated learning rate



Surprise is used modulate learning in RL

Finding 6)

Surprise is against expectations.

Hence surprise needs a world model.

However, world model is 

- Not used to do planning!

- Only used to extract surprise!

World-model not used for planning! 



Reward-based learning versus Surprise-based learning

Reward-Prediction Error   Surprise 

defined as                        defined as 

TD error                                       Bayes Factor Surprise

stimulated by

chocolate, money,            

praise, …

stimulated by observations

not consistent with momentary

nodel of environment

modulates 

learning rate                     
modulates 

learning rate



brain

behavior
algorithms

Current Research in Reinforcement Learning:  

- Exploration

- Novelty

- Surprise

 not exploration bonus, but separate modules

 Novelty supports exploration

 Surprise detects changes/adapts learning 



Thanks!

The END
… of part 1 for today. 

We talk about exam procedures next week.


