Artificial Neural Networks and RL The role of exploration, novelty, and surprise in RL

Objectives for today:

- understand surprise
- understand difference of novelty and surprise
- use of surprise to modulate learning rate
- use of novelty to guide exploration

velty and surprise learning rate oration

Novelty and Surprise

Q1: What is novelty? Q2: What is surprise? Q3: What is the difference between the two? Q4: Why are they useful?

Q5: Why should we talk about it in an RL class?

Enjoy the images!

Novelty is not Surprise Surprise is against models (beliefs)

Novelty and Surprise

Q3: What is the difference between the two? First answer – novelty and surprise are not the same.

Second answer (more precise): Surprise is 'against beliefs' or 'against expectations' whereas novelty is not.

Novelty and Surprise

Surprise is 'against expectations': an example

. . .

Artificial Neural Networks and RLWulfram GerstnerEPFL, Lausanne, SwitzerlandThe role of exploration, novelty, and surprise in RL

1. Definitions of Novelty and Surprise (tabular environment)

Novelty in a tabular environment: discrete states

events = states s (e.g., one image). Total number is |s| Novelty *n*: 1) count events of type s up to time t: $C^{t}(s)$

2) a higher count gives lower novelty.

3) the agent has spent a time t in the environment

Definition: The 'Novelty' of a state s at time t is $n_t(s) = -\log p_N(s)$

- 4) the empirical observation frequency is $p_N(s) = \frac{C^t(s) + 1}{t + |s|}$

Surprise in a tabular environment: discrete states and actions

events = transitions $(s,a \rightarrow s')$ given action a in state s.

Surprise S:

- 1) count events of type $(s,a \rightarrow s')$ up to time t: $C^t(s, a \rightarrow s')$ 2) a higher count gives lower surprise.
- 3) the agent has spent a time t in the environment
- 4) the empirical observation frequency is

$$p^t (s_{t+1} = s' | s_t, a_t) = \frac{C^t (s, a \to s')}{\widetilde{C}^t (s, a) + \widetilde{C}^t (s$$

Definition: The 'Surprise' of a transition is prior $S_{RF}^{t+1}(s')$

$$p_s^t(s_{t+1} = s' | s_t, a_t)$$

- +1
- S

Bayes Factor Surprise

Definitions of Novelty and Surprise

Q1: What is novelty?

Definition: The 'Novelty' of a state s is

Q2: What is surprise?

Definition: The 'Surprise' of a transition is $= \frac{prior}{p_s^t(s_{t+1}=s')}$ $S_{BF}^{t+1}(s') =$

There are 17 different definitions of surprise. This here is the Bayes-Factor surprise.

$n^t(s) = -\log p_N(s)$

$$|s_t,a_t)$$

Modirshanechi et al. (2022)

Artificial Neural Networks and RLWulfram GerstnerEPFL, Lausanne, SwitzerlandEPFL, Lausanne, SwitzerlandThe role of exploration, novelty, and surprise in RL

1.Definitions of Novelty and Surprise (tabular environment) 2. Why is Surprise useful?

When are we surprises?

397397397397394397

Surprise against expectations from your current belief

- Expectations arise from models of the world
- We always make models
- We know that the models are not perfect
- Surprise enables us to adapt the models
- → Hypothesis: Surprise boosts plasticity (3rd factor)/ increases the learning rate

Note: no reward!!!!

Review: Neuromodulators

- 4 or 5 neuromodulators
- near-global action
- internally created signals

Dopamine/reward/TD: Schultz et al., 1997, Schultz, 2002

Image: Biological Psychology, Sinauer

Dopamine (DA)

Noradrenaline (NE)

BIOLOGICAL PSYCHOLOGY 7e, Figure 4.5

Review: Formalism of Three-factor rules with eligibility trace

- x_i = activity of presynaptic neuron
- φ_i = activity of postsynaptic neuron
- Step 1: co-activation sets eligibility trace

$$\Delta z_{ij} = \eta f(\varphi_i) g(x_j)$$

Step 2: eligibility trace decays over time $z_{ii} \leftarrow \lambda z_{ii}$

Step 3: eligibility trace translated into weight change $\Delta w_{ij} = \eta M(S(\vec{\phi}, \vec{x})) Z_{ij}$

Artificial Neural Networks and RL The role of exploration, novelty, and surprise in RL

1.Definitions of Novelty and Surprise (tabular environment) 2. Why is Surprise useful? 3. Change-point detection by Bayes-Surprise

Wulfram Gerstner EPFL, Lausanne, Switzerland

generative model = nonstationary stochastic process here: - mean of Gaussian is fixed for many steps - mean jumps at 'change points' : probability << 1

- - variance is fixed

Volatile environment: abrupt changes with small probability \rightarrow 'change points'

→ you have to reset model after a change point

- task is to estimate momentary mean of Gaussian

in volatile environment, best approach (Bayesian): reset your belief to prior, if observation does not make sense plasticity of system must increase if 'surprising observation'

$$S_{\rm BF}(y_{t+1};\pi^{(t)}) = \frac{P(y_{t+1};\pi^{(0)})}{P(y_{t+1};\pi^{(t)})}$$

\rightarrow reset your belief to prior, if observation y does not make sense

$$\pi^{\text{new}}(\theta) = (1 - \gamma)\pi^{\text{integration}}(\theta|y^{\text{new}},$$

 \rightarrow 'exact Bayesian inference' in volatile environment modulates update with factor γ

Probability of observation y under prior belief $\pi^{(0)}$

Probability of observation y under current belief $\pi^{(t)}$

$$S_{\rm BF}(y_{t+1};\pi^{(t)}) = \frac{P(y_{t+1};\pi^{(0)})}{P(y_{t+1};\pi^{(t)})}$$

\rightarrow reset your belief to prior, if observation y does not make sense

Exact update rule not implementable, but Bayes-Factor Surprise plays crucial role in approximate methods:

- Particle Filter with N particles,
- Message-Passing with N messages,
- Published approximations

Probability of observation y under prior belief $\pi^{(0)}$

Probability of observation y under current belief $\pi^{(t)}$

V. Liakoni et al., Neural Computation 2021

Artificial Neural Networks and RL The role of exploration, novelty, and surprise in RL

1.Definitions of Novelty and Surprise (tabular environment) 2. Why is Surprise useful? 3. Change-point detection by Bayes-Factor Surprise 4. Why is Novelty useful?

Wulfram Gerstner EPFL, Lausanne, Switzerland

Review: TD-learning in the general sense Q(s,a) $Q(s,a) = \sum_{s'} P^a_{s \to s'} \left| R^a_{s \to s'} + \gamma \sum_{s'} \pi(s',a') Q(s',a') \right|$ SARSA $\Delta Q(s,a) = \eta [r_t + \gamma Q(s',a') - Q(s,a)]$ (s',a') Expected SARSA $\Delta Q(s, a) = \eta[r_t + \gamma\{\sum_{a'} \pi(s', a')Q(s', a')\} - Q(s, a)]$ a' Q-learning $\Delta Q(s,a) = \eta[r_t + \gamma \max_{a'} Q(s',a') - Q(s,a)]$

Review: Eligibility Traces, SARSA(λ)

Idea:

- keep memory of previous state-action pairs memory decays over time
- update eligibility trace for all state-action pairs

- $e(s,a) \leftarrow e(s,a) + 1$ if action a chosen in state s
- update all Q-values at all time steps t: $\Delta Q(s,a) = \eta \left[r_t + \gamma Q(s_{t+1},a_{t+1}) - Q(s_t,a_t) \right] e(s,a)$

 $e(s,a) \leftarrow \lambda e(s,a)$ decay of **all** traces

- $RPE = TD error \delta_t$
- Note: $\lambda = 0$ gives standard SARSA

Review: Model-based

versus

- learns model of environment 'transition matrix'
 knows 'rules' of game
- planning ahead is possible
- can update Bellman equation in 'background' without action
 can simulate action sequences (without taking actions)
- is not

Model-free

- does not
- does not
- cannot plan ahead
- cannot
- cannot
- Eligibility traces and V-values keep memory of past
 completely online, causal, forward in time.

Reward-based learning

versus Novelty-based learning

novelty n_t

Q-values $Q_N^{(t)}(s,a)$

Bellman eq. estimation/update

Model-based

Model-free

prioritized sweeping $Q_{MB,N}^{(t)}(s,a)$ eligibility traces $Q_{MF,N}^{(t)}(s,a)$

Initial exploration of an environment Environment with 10 states (+ goal) 4 actions per state

Start in state 1: With random policy, how many actions on average before finding goal? 100-500 1000 - 5000[] more than 10000

Improve exploration of an environment Focus on 1st episode, before any reward.

- Improve exploration! Solutions?
- 1. Optimistic initialization?

Initialize $Q_R(s, a) = 10$ for all s,a

 $\Delta Q_R(s,a) = \eta [r_t + \gamma \max_{a'} Q_R(s',a') - Q_R(s,a)]$

 \rightarrow Possible but comparatively slow. \rightarrow Does not generalize well for episode 2.

Novelty encourages exploration of an environment

Focus on 1st episode, before any reward. Improve exploration! Solutions?

2. Novelty at time t is n_t

Novelty Prediction Error (NPE) $\Delta Q_N(s,a) = \eta [n_t + \gamma \max_{a'} Q_N(s',a') - Q_N(s,a)]$

 \rightarrow Separate Q-value for novelty!

Novelty encourages exploration of an environment

Focus on 1st episode, before any reward; with some policy

novelty of goal

Artificial Neural Networks and RL The role of exploration, novelty, and surprise in RL

1.Definitions of Novelty and Surprise (tabular environment) 2. Why is Surprise useful? 3. Change-point detection by Bayes-Factor Surprise 4. Why is Novelty useful? 5. Hybrid Model with Novelty, Surprise, and Reward

Wulfram Gerstner EPFL, Lausanne, Switzerland

Artificial Neural Networks and RL The role of exploration, novelty, and surprise in RL

1.Definitions of Novelty and Surprise (tabular environment) 2. Why is Surprise useful? 3. Change-point detection by Bayes-Factor Surprise 4. Why is Novelty useful? 5. Hybrid Model with Novelty, Surprise, and Reward 6. An Experiment

Wulfram Gerstner EPFL, Lausanne, Switzerland

Environment: Markov Decision Process

Participants need about 150 actions in episode 1

In episode 2, participants go straight to goal

Volatile Environment: Switch after episode 5

Comparison of Models: Surprise, Novelty, Reward Finding 4) Rapid relearning needs surprise

- Turn off novelty
- Turn off surprise
- Turn off model-based \rightarrow MF
- Turn off model-free \rightarrow MB
- OI = Optimistic Initialization

Relative importance of model-based versus model-free

Finding 5) Model-free dominates Human behavior!

surprise-modulated learning rate

Surprise is used modulate learning in RL

Finding 6) Surprise is against expectations. Hence surprise needs a world model.

However, world model is

- Not used to do planning!
- Only used to extract surprise!

World-model not used for planning!

Reward-based learning versus Surprise-based learning Reward-Prediction Error \rightarrow Surprise defined as defined as \rightarrow **TD** error stimulated by stimulated by observations chocolate, money, \rightarrow praise, ... nodel of environment modulates modulates learning rate \rightarrow

- **Bayes Factor Surprise**

- not consistent with momentary
- learning rate

Current Research in Reinforcement Learning:

- Exploration
- Novelty
- Surprise

- \rightarrow Novelty supports exploration

 \rightarrow not exploration bonus, but separate modules → Surprise detects changes/adapts learning

Thanks!

... of part 1 for today. We talk about exam p

We talk about exam procedures next week.