Wulfram Gerstner

Artificial Neural Networks and RL o
The role of expioration, noveity, and surprise in Rl

ODbjectives for today:
- understand surprise
- understand difference of novelty and surprise
- use of surprise to modulate learning rate
- use of novelty to guide exploration



Novelty and Surprise

Q1: What Is novelty?

Q2: What Is surprise?

Q3: What Is the difference between the two?
Q4: Why are they useful?

Q5: Why should we talk about it iIn an RL class?



Enjoy the images!

Novelty Is not Surprise
Surprise Is against models (beliefs)




Novelty and Surprise

Q3: What is the difference between the two?
First answer — novelty and surprise are not the same.

Second answer (more precise):
Surprise Is ‘against beliefs’ or ‘against expectations’
whereas novelty Is not.



Novelty and Surprise

Surprise is ‘against expectations’: an example
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1. Definitions of Novelty and Surprise (tabular environment)



Novelty in a tahular environment: discrete states

events = states s (e.g., one image). Total number Is |s]

Novelty n:
1) count events of type s up to time t: C%(s)

2) a higher count gives lower novelty.

3) the agent has spent a time t In the environment

Ct(s) +1
t + |s|

4) the empirical observation frequency is pn(s) =

Definition: The ‘Novelty’ of a state s attime t Is

n:(s) = —logpy(s)



surprise in a tabular environment: discrete states and actions
events = transitions (s,a->s’) given action a In state s.

Surprise S:
1) count events of type (s,a=>s’) up to time t: C*(s,a —» s')
2) a higher count gives lower surprise.
3) the agent has spent a time t In the environment
4) the empirical observation frequency Is
Ct(s,a—>s")+1

Et(s, a) + |s|
Definition: The ‘Surprise’ of a transition Is Bayes
PTiOT Factor
Surprise

t _
P° (Sty1 = S'|St, ap)=

S51(") =

p§(5t+1 =5’\5t»at)



Definitions of Novelty and Surprise

Q1: What Is novelty?
Definition: The ‘Novelty’ of a state s Is
n‘(s) = —logpy(s)
Q2: What Is surprise?

Definition: The ‘Surprise’ of a transition Is
PTLOT

S51(") =

p§(5t+1 =s'| Se,¢)

There are 17 different definitions of surprise.  wmodirshanechi et al
This here Is the Bayes-Factor surprise. (2022)
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1.Definitions of Novelty and Surprise (tabular environment)
2. Why Is Surprise useful?



When are we surprises?
397397397397394397

Surprise against expectations from your current belief

®* Expectations arise from models of the world
®* We always make models
®* We know that the models are not perfect

® Surprise enables us to adapt the models

- Hypothesis:
Surprise boosts plasticity (3"d factor)/ increases the learning rate

Note: no reward!!!!



Review: Neuromodulators

-4 or 5 neuromodulators
- near-global action

- Internally created signals

Dopamine/reward/TD:
Schultz et al., 1997,
Schultz, 2002

(surprise)
novelty
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Fremaux and Gerstner, ,
Frontiers (2016) [r+y V(s')-V(s)]

noradrenaline
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Review: Formalism of Three-factor rules with eligibility trace

x; = activity of presynaptic neuron Modulator signal

Stimulus

@; = activity of postsynaptic neuron pre ZM (5(, %))
\

Step 1: co-activation sets eligibility trace POSt

Az;; =n f(@;) 9(x)) o
Step 2: eligibility trace decays over time

Zij < Nz
Step 3: eligibility trace translated into weight change

g =M@ D)z | M(S): e
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2. Why Is Surprise useful?
3. Change-point detection by Bayes-Surprise



surprise hoosts plasticity in volatile environments

Volatile environment:

abrupt changes with small probability
-> ‘change points’

observation

-> you have to reset model after a change point

Y Al

generative model = nonstationary stochastic process
here: - mean of Gaussian Is fixed for many steps
- mean jumps at ‘change points' : probabillity << 1
- variance Is fixed
- task Is to estimate momentary mean of Gaussian



Surnrlse hoosts nlastlcltv |n volatile environments

observation

| Task: estimate momentary mean 0 reset/
learning rate

Surprise, S

| | |
550 600 ‘650 mP 750 801 YSTO

INn volatile environment, best approach (Bayesian):

reset your belief to prior, If observation does not make sense
plasticity of system must increase if ‘surprising observation’



surprise hoosts plasticity in volatile environments

Probability of observation y
P(ysiq:7®)  under prior belief 7(®

S ( :_ﬂ’(t} — . . -
Y127 P(ypq;m®) Probability of observation y

under current belief ¢ (t)

—>reset your belief to prior, If observation y does not make sense

WneW(Q) _ (1 ‘@ﬂ_i11‘5~9,gr;51tin:m(6;‘ynuewj ﬂ_old) @reset(g‘yHEEETj ﬂ.(U))_

Y.
—>’exact Bayesian inference’ 1 J—— -
: : : ey = 7 € [0,
N volatile environment modulates 1+ mSy;
update with factor y 0 Surprise, SBF



surprise hoosts plasticity in volatile environments

Probability of observation y
iy (Y1 (O under prior belief 7(®
Ser(Ysr1: ™)

P(y;c1:7®) " Probability of observation y
under current belief (9

—>reset your belief to prior, If observation y does not make sense

Exact update rule not implementable, but

Bayes-Factor Surprise plays crucial role in approximate methods:
- Particle Filter with N particles,

- Message-Passing with N messages,
- Published approximations

V. Liakoni et al., Neural Computation 2021
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3. Change-point detection by Bayes-Factor Surprise

4. Why Is Novelty useful?



Review: TD-learning in the general sense s

Q(s,a) :Z‘PS:S' Re s +7/;7z(s’,a')Q(s’,a’) Qs,9) —-
SARSA

AQ(s, @) = M[re +vQ(s',a’) — Q(s,a)] A&
Expected SARSA s a’)

AQ(s,@) = N[y + y{Za (s, a)0(s', a)} — Q(s, a)] L a_
Q-learning L)

AQ(S, Cl) — n[rt T Y Maxg, Q(S,, a’) T Q(S, Cl)]




Review: Eligibility Traces, SARSA().)
O O C Idea:

) (=++=) - keep memory of previous state-action pairs
(b (hy - memory decays over time
[ - update eligibility trace for all state-action pairs

OO d

e(s,a) < he(s,a) decay of all traces
OO OO e(s,a) <« e(s,a)+ 1 ifactionachosen in state s

- update all Q-values at all time steps t:

O QD«@ <

AQ[; ]: [t T Q( t+1, t+1] ) Q( L t]] ’
Q Q@ S,d n\r vQ(s 7 SCI} e(s,a)
QI% O ©

RPE = TD error ot
Note: A=0 gives standard SARSA



- learns model of environment
transition matrix’
- knows ‘rules’ of game

- planning ahead Is possible
- can update Bellman equation
In "background’ without action

- can simulate action sequences
(without taking actions)

- IS not

Model-free
does not

does not
cannot plan ahead
cannot
cannot
Eligibility traces and V-values
keep memory of past

completely online, causal,
forward In time.



Reward-based learning versus Novelty-based learning

rewards It

Q-values Q(t) (s,a)

Bellman eq.
estimation/update
/ N\
Model-based| [Model-free
prioritized eligibility
sweeping traces

Qi@ Qi (s, @)

novelty ny

Q-values Q(t) (s,a)

Bellman eq.
estimation/update
/ N\
Model-based| |Model-free
prioritized eligibility
sweeping traces
L L
IE/I;,N (S' a) 1&/11)&',1\/ (5: a)



Environment with 10 states (+ goal)
4 actions per state

action 2 action 3 action 4

9,0,0.0.0.0:0;

2 actions from each state

3 actions from
each state

1 action from
each state

Trap states

Actions are deterministic.
Fixed random assignment.

Start In state 1.
With random policy,
how many actions
on average before
finding goal?

[ ] 100-500

[ ] 1000 — 5000

| | more than 10000



Focus on 15t episode, before any reward.

action 2 action 3 action 4

Improve exploration! Solutions?

o 5@
1 . Optl m IStIC In Itlal IZathn7 2 actions from each state

3 actions from
each state

1 action from
each state

Initialize 0 (s,a) = 10 for all s,a

AQr(s,a) = nlry + ymaxg, Qr(s,a’) — Qr(s,a)]

-> Possible but comparatively slow.
-> Does not generalize well for episode 2.



Novelty encourages explioration of an environment

Focus on 15t episode, before any reward.

Improve exploration! Solutions?

2 . N Ove Ity a,t tl m e t IS nt 2 actions from each state

1 action from
each state

Novelty Prediction Error (NPE)
AQy(s,a) = n[n; + y maxy, Qy(s’,a’) — Qn(s, a)]

3 actions from
each state

- Separate Q-value for novelty!



Novelty encourages explioration of an environment

Focus on 18t episode, before any reward; with some policy

novelty of goal

first encounter of state 7 novelty of state 7

9.9 ;

N D
g O

o

Number of visits
— — N
(@)] o
Novelty
(&%)
)

"_,—"' | , L Trap states
- : ' 15 WV =,
0 100t 200 5 00 ¢ 200 B

Trials Trials 2.0 2.5 3.0 3.5 4.0

o O,

State 8 State9 State 10 State4  State7  Goal Novelty Value

—> use novelty values Qﬁ,t) (s, a)for action policy!
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Hybrid model with separate paths for Novelty and Reward

(learning rate controllied by Surprise}

C e e ———————
' Internal Model Surprise
Model-based
(World-model)
St .
: £ Surprise
'rt : (Internal motivation)
l Model-free

(St R >nt) (TD-learner)

NPE and RPE

--------------------------------------------------

-------------------------

(@pr Qi)

(t) (t)
(QMF,R ) QMF,N

-------------------------

RPE = [r; + Yy maxg, Qr(s’,a’) — Qr(s,a)]

- At (
Hybrid policy - >
: e

Environment

\

/

NPE = [n; +ymaxg, Qy(s’,a’) —Qu(s,a)]

St-

T+
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3. Change-point detection by Bayes-Factor Surprise

4. Why Is Novelty useful?

5. Hybrid Model with Novelty, Surprise, and Reward

6. An Experiment



action 2 action 3 action 4

Goal state
Real time .

s L o

250 -

200 -

100

Number of actions

50

150 -

%— 1700 ms

*

E1 E2 E3 E4 E5

e each state
550 M 700 - 1700 ms Trap states

(EEG) A/U;alimited response time

650 ms 2 actions from each state
(EEG) End of the episode

3 actions from
each state

1 action from

Finding 1)
Participants need about 150 actions In episode 1

Finding 2)
In episode 2, participants go straight to goal




Finding 3)
In eplsodes 5 and 6, participants rapldly relearn!

—— (T A A A AT HE)

Number of actions

250 -

200 -

150 -

¥ ~
i ’ 2 actions from each state
- - ' 1 action from 3 actions from
e — - each state
j -i:- * * each state

100

50

650 mj
(EEG)

e

.- Is Surprise necessary to explain relearning? ...

Questions:

state

- Are humans model-based or model-free?
- Is novelty a good explanation of results?

mm Block 1

* = Block 2 action 2 action 3 action 4

3 (4 B 0 £ G 4
2 A 4 p{ S5

o 3 2O

E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

Trap states



Review: Hybrid model with separate paths
surprise, Novelty, Reward (SurNoR)

Environment

\

/

B ee———————————————————————————————————————
;" Internal Model Surprise E
Model-based (Q&)BvR’ QSI)B,N) i
(World-model) '
(St ) ! Surprise E at @
'rt : (Internal motivation) ybrid policy . s
: Model-free § =

(TD-learner)
Plaln (@bhen > Qe

NPE and RPE

---------------------------------------------------------------------------

RPE = [r; + Yy maxg, Qr(s’,a’) — Qr(s,a)]

NPE = [n; +ymaxg, Qy(s’,a’) —Qu(s,a)]

St-

T+



Gomparison of Models: Surprise, Novelity, Reward

Finding 4)

Rapid relearning needs surprise z

Model-based (Qgtl)BR- ng)a N) Exceedence probability = 0.99
ei-Dase ks '

(World-model)
Hybrid policy
Model-free

(TD-leamer) (Q(;,)F . &)F N

0.6-

0.4-

0.2-

NPE and RPE

- Turn off novelty

Expected prior

Expected model posterior probability

0.0

- Turn off surprise 02 %3037%3:93735¢8
- Turn off model-based >MF tda3i=0%57F3
= - = = E:I:?I

- Turn off model-free >MB ‘ |
- Ol = Optimistic Initialization VB ME




Finding 5)
Model-free dominates
Human behavior!
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surprise is used modulate learning in RL

Finding 6)
Surprise Is against expectations.
Hence surprise needs a world model.

However, world model Is
- Not used to do planning!
- Only used to extract surprise!




Reward-Prediction Errorg - Surprise

defined as - defined as
TD error Bayes Factor Surprise

stimulated by stimulated by observations

chocolate, money, 2 not consistent with momentary
praise, ... nodel of environment
modulates : modulates

learning rate 2

learning rate



N

brain -
Hehavior algorithms

_/

- Exploration - not exploration bonus, but separate modules
- Novelty -> Novelty supports exploration
- Surprise —> Surprise detects changes/adapts learning




Thanks!

The END

... of part 1 for today:.
We talk about exam procedures next week.




