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Pascal Fua
(Taught by Mathieu Salzmann)
IC-CVLab




Simple Heuristic

Some algorithm ( bri g htness )
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Basic intuition:
o If a @ is close to many e, it's probably one.
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Nearest-Neighbor Classifier

Simplest algorithm:

* Given a new Xx to be classified, find the nearest neighbor in the training set.

« Classify the point according to the label of this nearest neighbor.
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2D Voronoi Diagram

Given the set of N training samples {x, }1<n<n, we can define:

e N Voronoi cells

Cn ={x e X|Vj #n, d(x,x,) < d(x,%;)}

e and the Voronoi diagram

V ={Ch}i<n<n -

Euclidean distance Manhattan distance
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Nearest-Neighbor Classifier

Voronoi diagram Decision boundary Classification

—> The decision boundary is formed by selected edges of
the Voronoi Diagram.
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NN: Properties

e The results may be sensitive to outliers

— A point close to the outlier will be misclassified
— Solution: Look at multiple neighbors instead of just one
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K-Nearest-Neighbor Classifier

Improved algorithm:

« Given a new Xx to be classified, find its k nearest neighbors in the
training set.

« C(Classify the point according to the majority of labels of its nearest
neighbors.
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Red or Blue?

1: red
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5: blue
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http://vision.stanford.edu/teaching/cs231n-demos/knn/

Reminder: Supervised Learning

Train using an annotated training set:

{( - face), ( face), (lr::, face), ...,

~_—

( &, non-face), ( , non-face), ( & , non-
o)
.}

Run on images that do not belong to the training set:

—> face or non-face?
N7,
=EPFEL Mt



Working in D-Dimensional Spaces

* In our fish example, the samples x; are 2-D vectors.

 In the case of faces, the samples are whole images. For a WxH
images, Xil1s of size WH and is therefore high-dimensional.

When the samples are of dimension D, we write:

X = [x{, ...,xD]T ,

X =[x, ...,xl’)]T ,

D
d,(X,X") = \J 2 (x, — x))* , (L2 or Euclidean Distance)
d=1
D
d|(x,x") = Z | x;— x| . (L1 or Manhattan Distance)
d=1

—> The formulation remains essentially unchanged A



Key Assumption

* The training set and the test set are drawn
from the same statistical distribution.

* Otherwise, there is no reason for a decision
boundary learned on the training set to be
useful on the test set.

* For example, in the face detection example,
the training set must be representative of all
faces the system is likely to,ncounter




Training set vs test set

e Assumption: Training and test samples are
drawn from the same statistical distribution

— E.g., synthetic data: 2D inputs with 2 classes (colors)

Test data from Test data from
same distribution different distribution

=PrL A
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Training and Test Sets
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Training set Test set

Two classes shown as different colors.
e Use the training set to learn a classifier.
e Use the test set to gauge its performance.




Classification Error, k=1

Decision boundary
1.2
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Training set Test set

error = 0.0 error = 0.15

This is known as overfitting.
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Classification Error, k = 3

Smoother decision boundary
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Training set Test set
error = 0.0760 error = 0.1340

The boundary becomes smoother. The training
error increases, but the testing error decreases. ﬁ



Classification Error, k = 7
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Training set Test set
error = 0.1320 error = 0.1110

The boundary becomes smoother. The training
error increases, but the testing error decreases. @



Classification Error, k = 21
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Training set Test set
error = 0.1120 error = 0.0920

The testing error decreases again but would start
increasing if we chose k even larger.
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Choosing k to Avoid Overfitting

Validation set
.
Training set

>
Model complexity

e Split the training set into a real training set and
a validation set.

e Choose k that minimizes the classification error
on the validation set.

Error

This is known as cross-validation and is used
in most supervised algorithms.
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Underfitting and Overfitting
in a Different Context

; .
« We have noisy training observations (blue circles, 1D input, 1D
output) coming from the true green curve.

« We seek to find a polynomial function that approximates the true
curve using these observations.

This is known as polynomial curve fitting.

=PrL Optional Bishop Chapter I.IA



Polynomia'l Curve Fitting (1)
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Such a polynomial function of degree M can be written as
M
y =Wy + WX + W2.X2 + .- + WMXM — 2 ij]
J=0
where the wj are the coefficients of the different terms.

- For M = 0, we have the constant function y = w

- For M = 1, we have the line y = wy + wx

- For M = 2, we have the quadratic function y = wy + w;x + w,x”
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Polynomial Curve Fitting (2)

' tn

1 P
T 4

For each value of M, find the coefficients w = [w,, ..., w,,] that

make the curve closest to the observations in terms of the sum of
square differences

2 (y(xrv W) — tn)z

=prL Optional .



M=0 -> Underfitting

Approximates the observations poorly and is
far from the unknown true curve

=prL Optional



M=1 -> Underfitting

Still approximates the observations poorly and
is far from the unknown true curve.

=prL Optional -



M=3 -> Good Fit

0 O
Approximates the observations well and is
close to the unknown true curve.

=prL Optional



M=9 -> Overfitting

e Approximates the observations perfectly but
is far from the unknown true curve.
e \alidation data is required to detect that!

=prL Optional -



Moral of the Story

1 : : : :
—©6— Training
—6— Test

0 3y 6 9

« While the training curve always decreases as the degree
increases, the test curve eventually increases again.

« Virtually all ML algorithms behave in this way.
 We will revisit all these issues when we talk about Non

Linear ML later in the class.
EPFL L



Reminder: Nearest-Neighbor Classifier

Simplest algorithm:

* Given a new Xx to be classified, find the nearest neighbor in the training set.

« Classify the point according to the label of this nearest neighbor.
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Reminder: k-Nearest Neighbors

Stanford Demo



http://vision.stanford.edu/teaching/cs231n-demos/knn/

Rosenbrock Function

r(z,y) = 100x* (y —2%)* + (1 — z)*
B -1 ifr(x,y) < T
fay) = 1  otherwise

=PrL



Noisy Training Data
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L The test data should not be used during training!
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—> Split the training set and use some of it for validation
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Train for different values of K
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e Run K-NN for k from
1 to 20.

e Use only the training
and validation sets.




Pick Best K

1.00
—— Training
—— Validation
Testing
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Pick the k value that yields the highest accuracy on the validation set.

=PrL A



Reminder: Underfitting and Overfitting
in a Different Context

; .
« We have noisy training observations (blue circles, 1D input, 1D
output) coming from the true green curve.

« We seek to find a polynomial function that approximates the true
curve using these observations.

This is known as polynomial curve fitting.

=PrL Optional Bishop Chapter I.IA



Reminder: Moral of the Story

—©6— Training
—6— Test

« While the training curve always decreases as the degree
increases, the test curve eventually increases again.

« Virtually all ML algorithms behave in this way.
 We will revisit all these issues when we talk about Non

Linear ML later in the class.
=EPFEL P



Trouble at the Border

Depending on the how the training set is sampled, classification
results may change.

PFL P



Trouble at The Border

2.0 - - — 2.0 < -
oo o0 * e L] e Ce g .
. * o L) . .
o ity Qe :' . . * : . : . . L
e ° * . e° o . o o %o, ° o °* . o g0 . .
131 o? o .:... ..'.... o ° L ® . 151 . . by T e ... . : o« ’
o c . . oo PO L P . ® e *% h * o ° o o '.‘. ® o
. . ¢ ML ° « % &. ® ° L4 '.. . * « ° LAY . . .
- & « o .‘ o: e e e, LI M .\ . | L o . ., ® . e
. ... . S ‘. : :'. . %, ... P :. e o . . :. [} e® o © .
101 Lood GO‘ vl 10 - . o @ @ . Lo
. \ -»e . . Y ° L] L] L] . ‘. ,. L] . LR ]
:. ' : l... : - gi ﬂ":. 0.: & R P e, b . @-‘ .0.. e, o @‘. o, * ° . *
] o’ *. - e o o gl tee o * ,° 1 2 . . o ©%e 00 ., 0«8 e R o
. e I E o ; .’. . o o ..0 . o U \‘o") .- Y . o o
i . ° e ' L0 e’ S . i ° 4 . o .
03 : @ B iy TR AN i L P G IR ..o, S e ST
RIS RN L D A i T A S P
* . :'.‘..‘n . 0’ N ( ‘.t).. L * . K . oot e * :. . . °° :.:v: .-‘. .'} ( .. ®. - °°
. . <’ . 3 . o o o
o ° M) o B23°, 0%, 2 o080 ) 3 . . . o o° &, ° o &% 3 . e o °
* b p’ i ".... .”.. g.‘ ‘ ‘ oon PR AN S * e c 2 j ‘..h: °c o* e o
0.09 ¢ e’ ®.3 RN S P ol w .. o 0.0 1 ... R M s I ) o0 o ° * e
. ’ oo ..'0.0.0 ..#'. ‘o’o % R S ° . ) LIRS . \.\ o* *eee .. oo s ¢ .
- o L V3 .o.\ oo B | *° ° . 0 °g fee (9 .o'~:.' e ee . .
Ce o o‘ A o: ..‘ LY add t WA ’t....*...‘:\' o3 * F ] P z . \. ° . ":r % %0 Py g ° o« ®0° .
- % ¢ Ll ® . e o %00 . o . ?
] * LA P o - - % ° ° . . . .
-0.5 AT . o '}'}}"t'.,.”,ov T oo ! -0.5 et N8 Sem St et < . . .
° o o 9 e e .\:s.a'n ] LA e "% e et et Ts I TR
' o’ °s o o0 3. %o . ° * e ®e . .o o ¢ o e e
ad * “ efe Nt :... n;. - 3 N . % S e P O :
. o o» oo ° e . * ° . . °
' ¢ ® o . ® *Te%g » .o U . o8’ . ° °
-1.04 c .4 °° . . LU el -1.0 L . e .
= . ° 3 o ee 3, T . o - e ... .. .
[ 4 .'.-'. ... o .- M ® o ®e o .. had e
. S o, .
. . . t A
-1.5 - N o0 e, Co : -1.5 ‘
el % o 8 .
. oo °
L 3 L S .
o:. o - . .‘o
-2.0 T T -2.0 T T T T T T T
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 15 2.0

Training set

Test set

The Knn algorithm is prone to misclassifying points near the

decision boundary.
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Unbalanced Training Set

What happens when there are more training examples of one kind
than the other?

1D

2D

-20 -15 -1.0 -05 00 05 1.0 15 2.0 -20 -15 -1.0 -05 0.0 0.5 1.0 15 2.0

—> The better represented class is unduly favored. A



Imbalanced Trammq Set
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Imbalanced classes appear in many domains, including:

Fraud detection.
Spam filtering.

Disease screening.

Potential remedies:

Weighing neighbors by the inverse of their class size converts neighbor counts

into the fraction of each class that falls in your K nearest neighbors.

Under-sampling the dominant class.

Augmenting the other class by generating synthetic examples.
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Multi-Class k-NN

Training set Test set

—> The decision boundary is still formed by selected edges
of the Voronoi Diagram.
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Multi-Class k-NN
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Classification errors occur mostly near the decision surface.

-



Multi-Class k-NN

Stanford Demo



http://vision.stanford.edu/teaching/cs231n-demos/knn/
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Distance Between Two Samples

dist(A, B) = |» (A(i,5) — B(i,4))?

2,]




Validation

o Simple but effective classification method: On
MNIST, 60k training samples, 10k validation
samples, 96.8% accuracy.

e Only one single meta-parameter k, which can
easily be tuned using cross-validation.

eL .-



k-Nearest Neighbors: MNIST

e MNIST classification

Method Preprocessing Error Reference

K-nearest-neighbors, Euclidean (L2) none 5.0 |LeCun et al. 1998
K-nearest-neighbors, Euclidean (L2) none 3.09 | Kenneth Wilder, U. Chicago
IK-nearest-neighbors, L3 |nonc | 2.83 (Kenneth Wilder, U. Chicago

| K-nearest-neighbors, Euclidean (L2) | deskewing | 2.4 |LeCun et al. 1998
K-nearest-neighbors, Euclidean (L2) deskewing, noise removal, blurring 1.80 | Kenneth Wilder, U. Chicago
K-nearest-neighbors, L3 deskewing, noise removal, blurring 1.73 | Kenneth Wilder, U. Chicago
K-nearest-neighbors, L3 deskewing, noise removal, blurring, 1 pixel shift 1.33 (Kenneth Wilder, U. Chicago
’K-nearest-neighbors, L3 Ideskewing, noise removal, blurring, 2 pixel shift I 1.22 |Kcnncth Wilder, U. Chicago
|K-NN with non-linear deformation (IDM) |shiftable edges | 0.54 Keysers et al. [EEE PAMI 2007
K-NN with non-linear deformation (P2DHMDM) shiftable edges 0.52 |Keysers et al. IEEE PAMI 2007
K-NN, Tangent Distance subsampling to 16x16 pixels 1.1 |LeCun et al. 1998

’K-NN, shape context matching lshape context feature extraction I 0.63 |Bclongic et al. IEEE PAMI 2002

=PrL



Data Reduction

* Do we really need all the
points in the training set?

« Can we replace them by a
smaller set of prototypes?

* How do we find them?
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Data Reduction

2.0
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In this case we could use the
centers of gravity ...

-2.0
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-1.5
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... but not in this one.
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Condensed Nearest Neighbors

3 Initialization: X ={2,3,4,5}
(2) P = {1)
@ 4 lteration 1: X = {2,4,5}
P={1,3}
lteration 2: X ={2,4}
ﬁ P={1,3,5}

Let X be the set of training samples and P the set of prototypes:
e Initialize
e Repeat
1. Look for x in X such that its nearest prototype in P has a different
label than itself.
2. Remove x from X and add it to P.

=PrL A



Condensed Multi-Class 1-NN

Training set Test set

e There are only three cells in the Voronoi diagram.
e Classifying a point only requires comparing it to the three
prototypes.

—> Fast computation at inference time. "



Condensed Multi-Class k-NN

Training set Test set
How about more complicated data?
-

2.0




Condensed Multi-Class 1-NN
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Training set Test set

The 1-NN algorithm on the prototypes has about
the same accuracy than the k-NN algorithm on
the original training set and is much faster. a



Condensed Binary 1-NN

Training set Test set

The 1-NN algorithm on the prototypes has about
the same accuracy than the k-NN algorithm on
the original training set and is much faster.




Multi-Class 1-NN
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Application Example: Recommender Systems

Feature vector: Predictor:
e What films have you watched? e List of films to propose.

e Did you like them?

F L A.-M. Kermarrec A



k-NN Graph Construction

Recommendatlons
Alice j& Bob

Profile of Alice S =" - Profile of Bob

Entities: Users Similarity function
Distance: Similarity in movie choices
Goal: For each user find k closest ones.

Complexity: O(N2)
—> This does not scale up!

A.-M. Kermarrec A



Greedy k-NN Graph Construction
Q Gerald

Carl

Dave @
Parallel-iterative algorithm:

Given a random graph, each node looks for
potential new neighbors:

1. Among random nodes (optional).

= P " L A.-M. Kermarrec



Greedy k-NN Graph Construction

CarI Yann

AI|ce

o @

Parallel-iterative algorithm:

Given a random graph, each node looks for
potential new neighbors:

1. Among random nodes (optional).
2. Among "friends of friends”.

Xavier

= P " L A.-M. Kermarrec



Repeat for all users until #changes < €

r

\_

@ New neighborhood

Greedy Procedure
b

Current Neighboring candidates
neighborhood from (1) & (2)

\g — G Similarity computation
=5 | 228 8888

sim -) 3
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o (d ] Rankmgﬂ
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Gossip Based Computing

* Highly parallel.

* Creates a random graph.

* Robust to churn, partition, breakdowns.
—> Well adapted to peer-to-peer networks.

A.-M. Kermarrec A



Number of Neighbors

* More neighbors: More coverage.
* Fewer Neighbors: Better accuracy.

—> In practice, between 25 and 100 for
practical recommender systems.

EPFL A.-M. Kermarrec




Knn Limitations

 Performance issues: Must load all of the training data
and calculate distances to all training samples. It can be
done in a naive way or using fancier data structures such
as K-D trees. However, this is still slow for large datasets.

e Distance metric: The vanilla version is used with the
simple Euclidean distance, which is a problematic distance
metric in high dimensions as well as with noisy features or
features of different type.

=PrL A



Distribution of Distances in 2-D

Probability density function

Distances

Uniformly distributed points Normalized histogram of pairwise distances

PFL Lt



Distribution of Distances in N-D

1.6

1.4 -

1.2 1

1.0

0.8

0.6

0.4 1

0.2

0.0 A

(‘) 2' 4 6 8 10
Distances for dim 500.

e In a high-dimensional space, everything is far from everything
else.

e The Euclidean distance becomes less and less meaningful as the
dimensionality increases.
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The Curse of Dimensionality

To guarantee the effectiveness of an estimator, the distance between neighboring
training samples must be less than some value d that depends on the problem.

‘172“

d
<+>

| 'Dlzlllrf D=2 o D=3
d=1/n
n=1/d n=(1/d)2 n=(1/d)3

In D dimensions, n=(1/d)P. Assuming that each dimension is
coded by 32-bit floating point number, storing the training set
would require 4*D*(1/d)P bytes.

10 d=0.05 —> 4.10 1014 bytes = 0.41 petabytes.
20, d=0.05 —> 8.38 1027 bytes = billions of hexabytes.

Yet, in practice it often works!!




Images

e The Mnist Images are 28x28 and are represented by 784-D vectors.

e But we never see images like this one.

epel T Real data often lies in much smaller subspaces. A



Dimensionality Reduction
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Four and Nines 2D Visualization

e The MNIST images are 28x28 arrays.
e They are not uniformly distributed in R784,
e In fact they exist on a low dimensional manifold.
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http://colah.github.io/posts/2014-10-Visualizing-MNIST/

Face Images

e The same can be said about face images.
e And of many other things.
—> k-NN classification can be used in practice.
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A Potential Take on ML

Machine Learning algorithms are designed to do what k-NN does but
without the computational explosion.

Machine Learning can be thought of as “glorified nearest neighbors”.

This is much less trivial than it sounds because the larger the
training database is, the better the algorithms work.

Companies such as Google or Meta offer extreme examples of this
philosophy put into practice because they have the means to collect
and process the required IMMENSE databases.
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