Linear Classification

Pascal Fua
|C-CVLab

=PrL



Reminder: Linear 2D Model

Some algorithm bri g htness
g length

A y(x; w) = sign(w,b + wyl + w)
length
X = [b,!]
W = [Wxa Wya W()]
o —2> +1
@ > -1
\Y~" brightness >
How do we find w?
EPEL i




Reminder: Training vs Testing

Supervised training:

Given a training set {(x,,t,)1<n<nN} minimize: A o .
- length o 0 O
® o 09
al o ®0 500 g°
E(w) = ZL(y(XmW)atn) o)
(¢) o © O
n=1 9 @)
N o  0°
= S Iy w) £ 4 o e o
n=1 brightness
Testing: A
length 0
O
Given a test set {(xy,tn)1<n<n} compute the error rate:
N o °
1/N Z[y(XnS W) 7 tn]
n=1 >

nl
1
"1
r

brightness 5




Desired Problem Formulation

O
~ ~ @) T

0.8 -

0.6 -

Oxz

0.4

0.2

X2

-0.2 -

0.4

-0.6 -

-0.8 -

- 05 0 05 ! DeC|S|On boundary

Find w such that:
 For all or most positive samples y(X; W) = w - X > 0.
0

« For all or most negative samples y(X; W) = W - X <

— > Let’s talk about hyperplanes. A

M
v
"1
r




Parameterizing Lines

Equation of a line Normal vector

~
7

>u 1 u
2 _ n= [a, D]
(u,v) e R, au+bv+c=0 \/a2+b2
1 . .
[a, b, c] and [a, b, c] define the same line.

Va2 + b2

M
v
"
r




Normalized Parameterization

Equation of a line Normal vector

v

>
u u

(u,v) € R*>,au+bv+c=0 n = [a,b]
with a? + b? = 1

M
v
"
r




Signed Distance to Line

A :’ [ulavl]

Signed distance: 4 =mn - [u; — uy, v; — ]
= a(u; —ug) + b(v; — vp)
= au, + bv; — (auy — bvy)
= au; + bv, +c — (auy— bvy—c)

=au; +bv, +c

M
v
"1
r

h=0: Point is on the line.
h>0: Point on one side.
h<0: Point on the other side.

-




Signhed Distance Reformulated

h=0: Point 1s on the line.
A ‘. X =[1,x,x,] h>0: Point in the normal’s direction.
h<O0: Point in the other direction.

n= [Wl, W2]

W = [wg, wy, wyl With w? +wy =1

>

Notation: X =[x, X5]

i — [1,X1,X2]

Signed distance: & = wy + wix; + Wy,

=W-X ﬁ

M
v
"1
r




Reminder: Binary Classification

O
~ @) T

0.8 -

0.6 -

0.4

0.2

-0.2

04

-0.6 -

-0.8 -

4 05 X(1) 05 1 Decision boundary

Two classes shown as different colors:

e Thelabelye {-1,1} ory e {0,1}.

e The samples with label 1 are called positive samples.

e The samples with label -1 or 0 are called negative samples.

=PrL A




Problem Statement in 2D

o
~ @)

W — [NWI, W2, WO] o©

0.8 -
06 =[xy, X5, X
04+t

0.2

0.2

0.4
Q

-0.6 @

-0.8 -

p 05 E 05 ' Decision bou ndary

Find w such that:
 For all or most positive samples w - X > 0.

 For all or most negative samples w - X < 0.




Signed Distance in 3D

[WO, W], Wza W3]

W =

7a\

\)‘\\“ .'

4

5

ax+by+cz+d

xR0

fw12 w22 w32= 1.

=W-X1

Signed distance &

=PrL



Signed Distance in N Dimensions

h=0: Point is on the decision boundary.
h>0: Point on one side.
h<0: Point on the other side.

‘. X=[1x,...,xy]

Wyl

W = [Wl"'

N
W = [wy, wy, ..., wy] With Zwiz =1

> i=1

Notation: X =[x, ..., Xy]
X =[lx),....xy]

~ ~

Hyperplane: xeR", 0=w-X

Signed distance: h=w-X A
PrL

nl
"




nl

Problem Statement in N Dimensions

Hyperplane: x € RY, W - X = 0, with X = [1|x].

Signed distance: W - X, with W = [w,|w] and | |w|| = 1.

Find w such that
« for all or most positive samples w - X > 0,

« for all or most negative samples w - X < 0.




Perceptron

X
X X
X
X
X X 29 x %
X X X X X
X X X
X X Xx X »
x X X XX X 1
X X x X X X x X
X o . X
% Xx %
K xy o
X
X X X X7 x 0
% XX X x)( X x)«
X x X XX
X X
xX xx
xX X X X -1
X X
X X
X x %
x X X
X wx
X X X —21
X
T -3
-2 -1 0 1 2 -3 -2 -1 0 1 2 3

N
Minimize: F (W) = — Z sign(w - X, )tn
n=1

e det wq to 0.

e Iteratively, pick a random index n.

— If x,, is correctly classified, do nothing.
— Otherwise, Wiy = Wt + £,Xy,. A




Test Time

(W) — 1 if w.x>0,
S - —1 otherwise.

x = |[l,xq,..., :rN]

=PrL




nl
"1

Centered Perceptron

The two populations can be translated so that the decision
boundary goes through the origin.

Given a training set {(X,, 7 ){<,<y} Minimize:
" <n<

E(w)=— Z sign(w - Xy, )ty

n=1

e Center the x,,s so that wyg = 0.
o Set wy to 0.

e Iteratively, pick a random index n.

— If x,, is correctly classified, do nothing.

— Otherwise, Wit = Wy + tan. @




Convergence Theorem

y is the margin

If there is a number y > 0 and a parameter vector w*, with | | w*|| = 1, such
that
Vn,t,(Ww*-x)> v,

RZ
the perceptron algorithm makes|at most —- errors, where R = max, | |x,||.

=PrL : A




What if y is Small?

for n in range(nIt): for n in range(nIt):

for i in range(ns): inds=list(range(ns))
e If x,, is correctly classified, do nothing. ra ndom.Sh Uffle(lndS)
e Otherwise, Wy 1 = Wy + t,X,,. for i in range(inds):

e If x,, is correctly classified, do nothing.

Randomizing helps!
e Otherwise, wy11 = Wy + 1,X,,.

PFL A

nl




What if g Does Not Exist?

3 3

20% of outliers °]

-2 -2 4

-3 T T T T T -3 T T T T T

30% of outliers

Still works up to a point but no guarantee!

=PrL




Optional: Python Implementation (1)

def perceptronRand(xs,ys,nlt=200,randP=True):

N, D = xs.shape # Get data shape.
w = np.zeros(D) # Init weights.
for it in range(nlt): # Train.

allCorrect = True # Generate indices.

inds = np.random.permutation(N) if randP else np.arange(N)

for 1 in inds:

x = xs]i] # Pick one sample. Call to numpy. Mostly
y = 2*(np.inner(x,w) > 0)-1 # Predict the label. coded 1n C or Fortran.
ify 1= ysJ[i]: # Misclassified.
w +=ys[i] * x # Update weights.
w /=np.linalg.norm(w)  # Normalize length.
allCorrect = False # Something has changed.
print('It {}: {}'.format(it + 1,linearAccuracy(xs, ys, w)))
if allCorrect:
break # Finish training.
return w

def linearAccuracy(xs,ys,ws):

L return(sum(ys == (2 * (xs @ ws >0)) - 1) * 100/len(ys)) A

M
v
"




Optional: Python Implementation (2)

def perceptronRand(xs,ys,nlt=200,randP=True):

N, D = xs.shape # Get data shape.
w = np.zeros(D) # Init weights.
bestW = None
bestA = 0.0
for it in range(nlt): # Train.

allCorrect = True # Generate indices.

inds = np.random.permutation(N) if randP else np.arange(N)

for 1 in inds: Record best solution.
X = xs[1] # Pick one sample.
y = 2*(np.inner(x,w) > 0)-1 # Predict the label.
ify !=ys[i]: # Misclassified.
w +=ys[i] * x # Update weights.
w /=np.linalg.norm(w)  # Normalize length.
allCorrect = False # Something has changed.
acc = linearAccuracy(xs, ys, w)
if(acc>bestA):
bestW =w
bestA = acc
print('It {}: {}'.format(it + 1,bestA))
if allCorrect:

break # Finish training.
[ L return bestW




Optional: JAVA Implementation

import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4;j;
import java.lang.Float;

class Perceptron {
public Perceptron() {}

public static INDArray perceptronRand(INDArray xs, INDArray ys, int nlt, boolean randP){ public static String linearAccuracy(INDArray xs,INDArray ys,INDArray w){
long[] shape = xs.shape(); /I Get data shape INDArray y = (xs.mmul(w).gt(0)).mul(2).sub(1);
long N = shapel0]; return Nd4j.sum((y.eq(ys))).div(4).toString();
long D = shape[1]; }
INDArray w = Nd4j.zeros(D,1); // Init weights public class Main{

public static void main (String[] args){
for (int it = O; it < nlt; it++){

boolean allCorrect = true; INDArray xs = Nd4j.create(new float[][]{{1,0},{0,1},{1,1},{0,0}});
INDArray inds = Nd4j.arange(0,D); /I Generate samples indices. INDArray ys = Nd4j.create(new float[][I[{{1}.{1}.{1}.{-1}});
int nlt = 200;
if (randP) boolean randP = true;
Nd4j.shuffle(inds); INDArray weights = Perceptron.perceptronRand(xs, ys, nlt, randP);
}
for (inti=0;i < N;i++){ }
INDArray x = xs.getRow(i); /I Pick one sample.
INDArray y = (x.mmul(w).gt(0)).mul(2).sub(1) ; Il Predict the label.
if (y.data().asFloat()[0] != ys.getRow(i).data().asFloat()[0]){ // Misclassified.
w = x.mul(ys.getRow(i)).add(w.transpose()); /I Update weights.
w = w.div(w.norm2().add(1e-3)).transpose(); /I Unit normal length.

allCorrect = false;
}
}
System.out.printin("It " + it + ": " + linearAccuracy(xs, ys, w));

if (allCorrect){
break;
}

}

return w;

}

More verbose!

nl
v
"1
r




NumPy/SciPy

The time-critical loops are usually implemented in C, C++ or
Fortran. Parts of SciPy are thin layers of code on top of the
scientific routines that are freely available at http://
www.netlib.org/. Netlib is a huge repository of incredibly valuable
and robust scientific algorithms written in C and Fortran.

One of the design goals of NumPy was to make it buildable
without a Fortran compiler, and if you don’t have LAPACK available
NumPy will use its own implementation. SciPy requires a Fortran
compiler to be built, and heavily depends on wrapped Fortran
code.

https://www.scipy.org/scipylib/fag.html A

M
v
"
r



http://www.netlib.org/
http://www.netlib.org/

Optional: Pacman Apprenticeship

e Examples are state s.
e Correct actions are those taken by experts.
o Feature vectors defined over pairs f(a,s).

* Score of a pair taken to be w - f(a,s).
e Adjust w so that

\V/@, W - ¢((J,*, S) > W - ¢(CL, S)

when a* is the correct action for state s.
L http://ai.berkeley.edu/project overview.html




The Problem with the Perceptron

e Two different solutions among
infinitely many.

e The perceptron has no way to
favor one over the other.

The culprit

[

N
E(W)=—) sign(W - %,)t,
n=1

8

M
v
"
r




The Problem with the Perceptron

| This is bad!

Position of x

Decision boundary

e There is no difference between close and far from the decision
boundary.

e We want the positive and negative examples to be as far as
possible from it.

=PrL A




From Perceptron to Logistic Regression

o(X-W)
Replace the step function (black)
>
o by a smoother one (red).
Position of x

Decision boundary

e Replace the step function by a smooth function o.
e The prediction becomes y(x; W) = o(W - X).

e Given the training set {(x,,tn)1<n<n} where ¢, € {0,1}, minimize the
cross-entropy

E(fvvv) - = Z{tn In Yn + (1 - tn) ln(l - yn)}

’]’L == Xn; W . . ]

/ u( ) This is a convex function of w!

“PEL with respect to w. g
[ |




nl

P

=
u

Sigmoid Function

— s(a) ' 1.0

0.8 ( )_ 1
0.6 = 1+ exp(—a)
Oo

° %20(1—0)

0.2

e It is infinitely differentiable.
o Its derivatives are easy to compute.
e It is asymptotically equal to zero or one.

L

—> Can be understood as a smoothed step functionA




Cross Entropy

n

Yp = 0(W - Xp,)

e —(t,Iny, + (1 —¢)In(1 —y,)) 1s close to 0 if £, =1 andy, is
close to 1 or if £, = 0 and y, 1s close to zero. Minimizing E(w)
encourages that.

« —(t,Iny, + (1 —¢)In(1 —y,)) is larger if ¢z, =1l andy, < 0.5 or
t, =0andy, > 0.5. Minimizing E(w) discourages that.

« E(w) 1s a convex function whose gradient is easy to compute.

—> The global optimum can be found very effectively.

8

nl
v
"1
r




Probabilistic Interpretation

y(X; W) = o(W - X)
- 1
1+ exp(—W - X)

*0<yx;w) <1
*y(x;w) = 0.51f w-X =0, 1.e. x is on the decision boundary.
* y(x; w) = 0.0 or 1.0 if x far from the decision boundary.

= y(X; W) can be interpreted as the probability that x belongs to one
class or the other.

Logistic regression finds what 1s called the maximum likelihood
solution under the assumption that the noise 1s Gaussian.

PrL Bishop, Chapter 4.3.2. A

nl




Perceptron vs Logistic Regression

e Two different solutions among
infinitely many.

e The perceptron has no way to
favor one over the other.

e Logistic regression does.

nl
v
"1
r




Example

300

Female
Male

Weight (1bs.)

150

100

50 5 a0 65 70 75 80
Height (in.)

e The algorithm does the best it can.
cpEL e Some samples can be misclassified.




Kaggle Survey (2019)

90%
80%
70%
oo  Logistic regression is and is likely to
remain the most used technique for the
50%
foreseeable future.
40%
30%
20%
10% I
. ) .
Linear or Decision Gradient Convo- Bayeian Do se Recurrent Transformer Ge ea Evolution Other
kogretsson Rr:e;o?r: Eﬂ?mng lN:::IlI :roaches Netwo ks Notwaolk Netwarks esa lal pyoa’::’:les
Forests chines Networks Networks

What data science methods do you use at work?
=PrL




Outliers Can Cause Problems

e Logistic regression tries to minimize
the error-rate at training time.

e Can result in poor classification
rates at test time.

® o
e P —> We will talk about ways to prevent
e AAREA this in the next lecture.
2 AsAA
] ® A AA
A

=PrL A




rom Binar

e k classes.

o Simply using k (k-1)/2 binary classifiers results in
ambiguities.

PrL Bishop, Chapter 4.1.2




nl
"1

Linear Discriminant

Decision region

Decision boundary

Given K linear classifiers of the form y,(x) = w, - X:
« Decision boundaries y,(X) = y;(X) © (W — W) - X = 0.
e These boundaries define decision regions.

« Decision regions are convex:
(V~Vk—V~Vl)-)~(A > O
=> V1€ [0,1], if x = Ax,+(1 — A)Xp, then
In other words, if two points are on the same side of a decision boundary
so are all point between them.

gt




Multi-Class Logistic Regression

. K linear classifiers of the form y*(x) = a(wk X).
» Assign x to class k if y¥(x) > y/(x)VI # k.

e Still a linear problem.
* Because the sigmoid
function 1S monotonic, the

Y1

YK

formulation 1s almost
unchanged.

e Only the objective function
being minimized need to be
reformulated.

Matrix with K lines and the dimension of w columns.

j
Bishop, Chapter 4.3.4 A




Multi-Class Cross Entropy

Let the training set be {(X,, [£,, .., IX]); <,<n} Where £} € {0,1} is the
probability that sample x, belongs to class k.

Activation: ak(x) = W,{i
Probability that x belongs to class k:  y*(x) = exp(a’(x))
’ ° | Y exp(a/(x))
Multi-class entropy: E(W,,...,Wg) = — Z z £ In(y(x, )
n k
Gradient of the entropy: VE, = Z ix,) — t9x

 This 1s a natural extension of the binary case.
« The multi-class entropy i1s still convex and its gradient is easy to

compute.
=PrL Bishop, Chapter 4.3.4 A




Multi-Class Results

Multiclass logistic regression is a very natural extension of binary
logistic regression and has many of the same properties.

=PrL A




