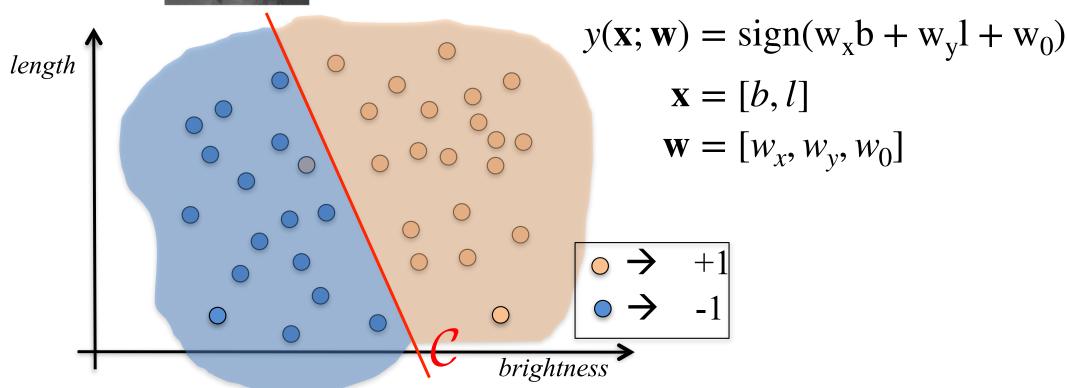
Linear Classification

Pascal Fua IC-CVLab

Reminder: Linear 2D Model



How do we find w?

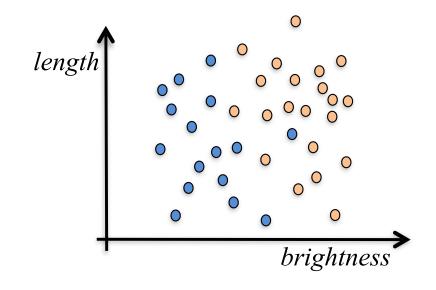
Reminder: Training vs Testing

Supervised training:

Given a **training** set $\{(\mathbf{x}_n, t_n)_{1 \leq n \leq N}\}$ minimize:

$$E(\mathbf{w}) = \sum_{n=1}^{N} L(y(\mathbf{x}_n; \mathbf{w}), t_n)$$

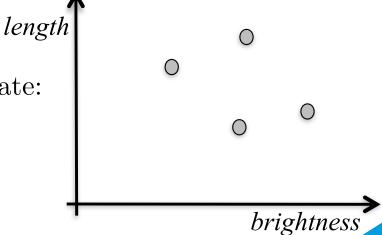
$$= \sum_{n=1}^{N} [y(\mathbf{x}_n; \mathbf{w}) \neq t_n]$$



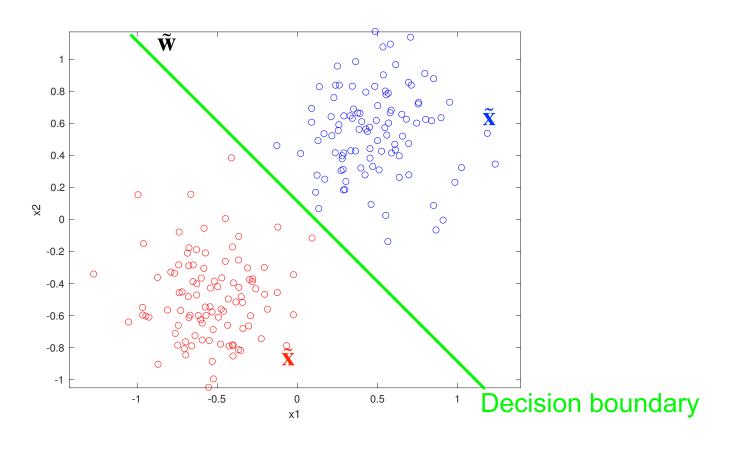
Testing:

Given a **test** set $\{(\mathbf{x}_n, t_n)_{1 \leq n \leq N}\}$ compute the error rate:

$$1/N \sum_{n=1}^{N} [y(\mathbf{x}_n; \mathbf{w}) \neq \mathbf{t}_n]$$



Desired Problem Formulation



Find $\tilde{\mathbf{w}}$ such that:

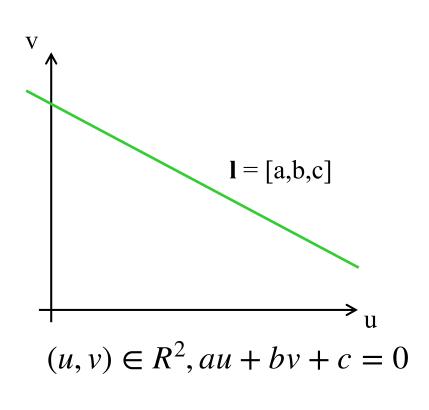
- For all or most positive samples $y(\tilde{\mathbf{x}}; \tilde{\mathbf{w}}) = \tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} > 0$.
- For all or most negative samples $y(\tilde{\mathbf{x}}; \tilde{\mathbf{w}}) = \tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} < 0$

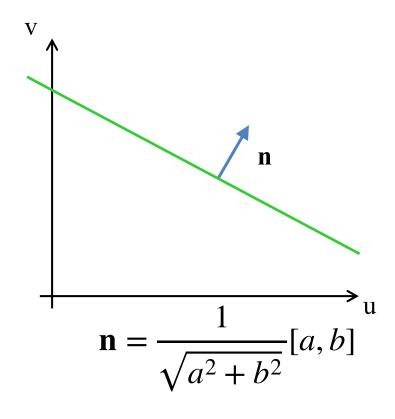
— > Let's talk about hyperplanes.

Parameterizing Lines

Equation of a line

Normal vector

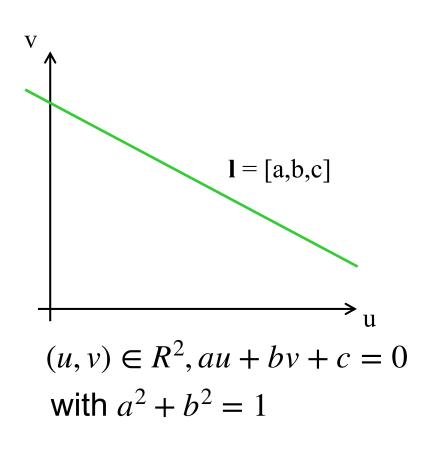


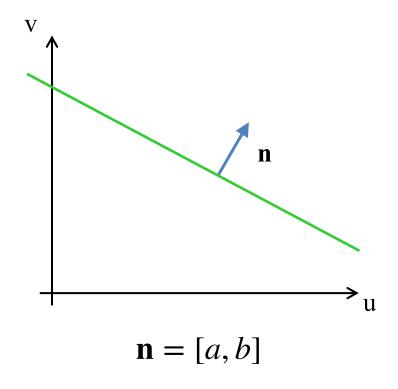


$$[a,b,c]$$
 and $\frac{1}{\sqrt{a^2+b^2}}[a,b,c]$ define the same line.

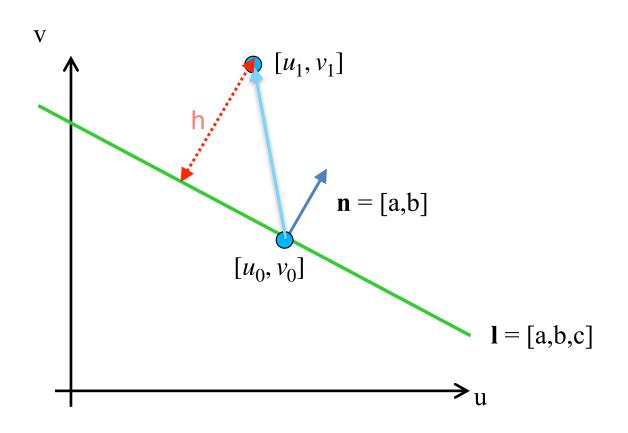
Normalized Parameterization

Equation of a line





Signed Distance to Line



Signed distance:
$$h = \mathbf{n} \cdot [u_1 - u_0, v_1 - v_0]$$

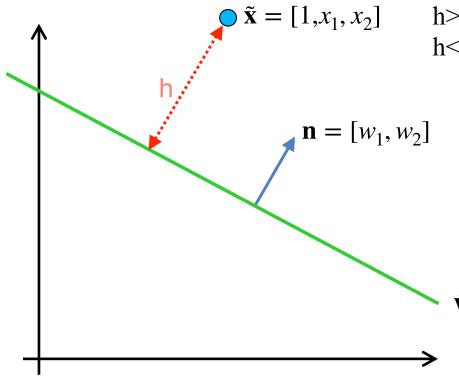
 $= a(u_1 - u_0) + b(v_1 - v_0)$
 $= au_1 + bv_1 - (au_0 - bv_0)$
 $= au_1 + bv_1 + c - (au_0 - bv_0 - c)$
 $= au_1 + bv_1 + c$

h=0: Point is on the line.

h>0: Point on one side.

h<0: Point on the other side.

Signed Distance Reformulated



h=0: Point is on the line.

h>0: Point in the normal's direction.

h<0: Point in the other direction.

$$\tilde{\mathbf{w}} = [w_0, w_1, w_2] \text{ with } w_1^2 + w_2^2 = 1$$

Notation:

$$\mathbf{x} = [x_1, x_2]$$

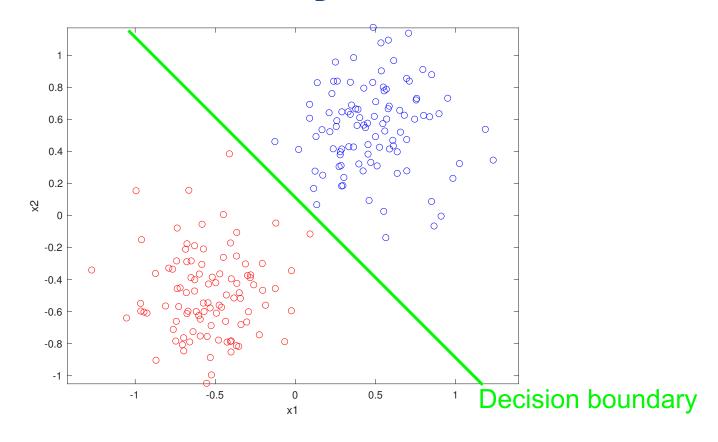
$$\tilde{\mathbf{x}} = [1, x_1, x_2]$$

Signed distance:

$$h = w_0 + w_1 x_1 + w_2 x_2$$

$$= \tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}$$

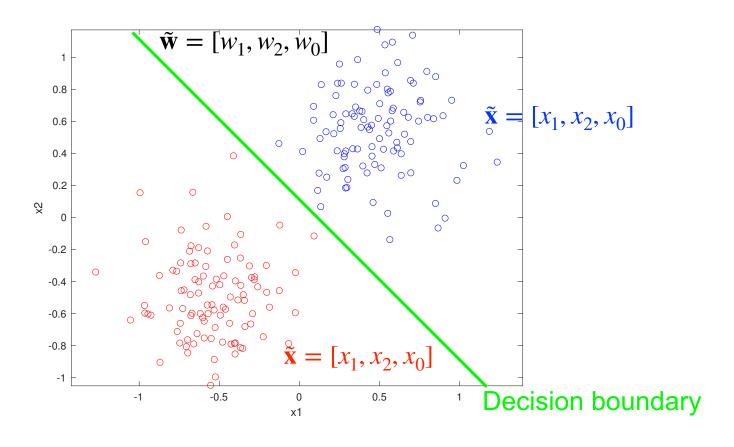
Reminder: Binary Classification



Two classes shown as different colors:

- The label $y \in \{-1,1\}$ or $y \in \{0,1\}$.
- The samples with label 1 are called positive samples.
- The samples with label -1 or 0 are called negative samples.

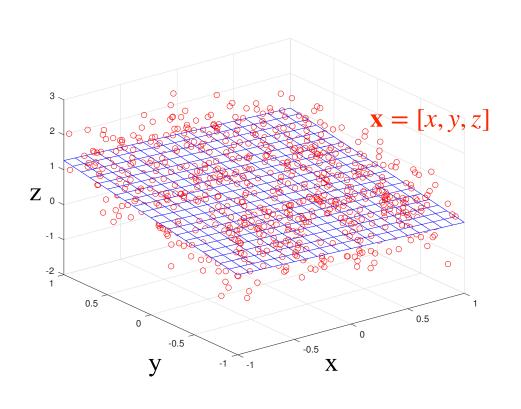
Problem Statement in 2D

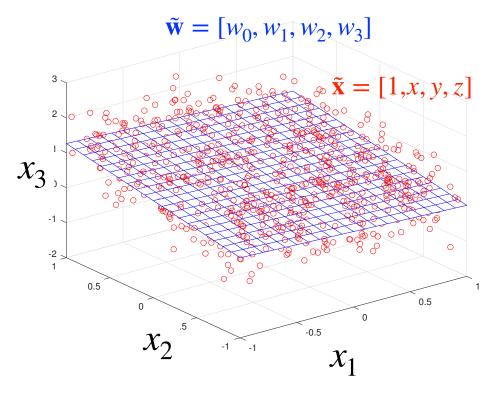


Find $\tilde{\mathbf{w}}$ such that:

- For all or most positive samples $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} > 0$.
- For all or most negative samples $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} < 0$.

Signed Distance in 3D



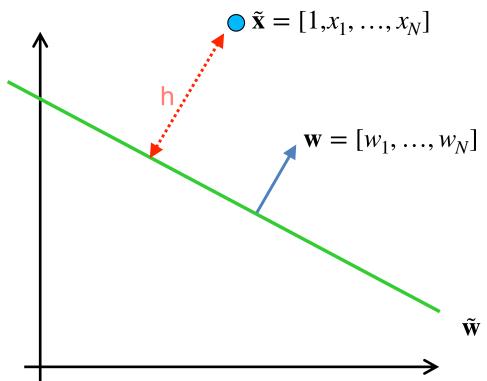


$$\mathbf{x} \in R^3$$
, $0 = ax + by + cz + d$

$$\tilde{\mathbf{x}} \in R^4, \, \tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} = 0$$

Signed distance $h = \tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}$ if $w_1^2 + w_2^2 + w_3^2 = 1$.

Signed Distance in N Dimensions



h=0: Point is on the decision boundary.

h>0: Point on one side.

h<0: Point on the other side.

$$\tilde{\mathbf{w}} = [w_0, w_1, ..., w_N] \text{ with } \sum_{i=1}^N w_i^2 = 1$$

Notation:

$$\mathbf{x} = [x_1, ..., x_N]$$

$$\tilde{\mathbf{x}} = [1, x_1, \dots, x_N]$$

Hyperplane:

$$\mathbf{x} \in R^n, \quad 0 = \tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}$$
$$= w_0 + w_1 x_1 + \dots w_N x_N$$

Signed distance: $h = \tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}$

$$h = \tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}$$

Problem Statement in N Dimensions

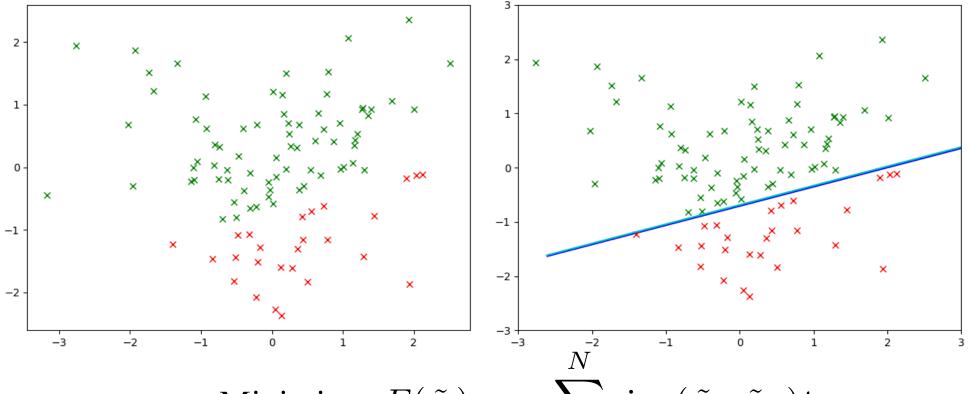
Hyperplane: $\mathbf{x} \in R^N$, $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} = 0$, with $\tilde{\mathbf{x}} = [1 \mid \mathbf{x}]$.

Signed distance: $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}$, with $\tilde{\mathbf{w}} = [w_0 | \mathbf{w}]$ and $||\mathbf{w}|| = 1$.

Find w such that

- for all or most positive samples $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} > 0$,
- for all or most negative samples $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} < 0$.

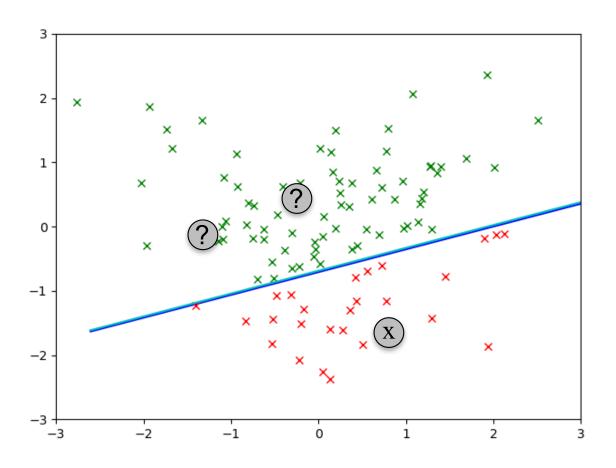
Perceptron



Minimize:
$$E(\tilde{\mathbf{w}}) = -\sum_{n=1} \operatorname{sign}(\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}_n) t_n$$

- Set $\tilde{\mathbf{w}}_1$ to $\mathbf{0}$.
- Iteratively, pick a random index n.
 - If $\tilde{\mathbf{x}}_n$ is correctly classified, do nothing.
 - Otherwise, $\tilde{\mathbf{w}}_{t+1} = \tilde{\mathbf{w}}_t + t_n \tilde{\mathbf{x}}_n$.

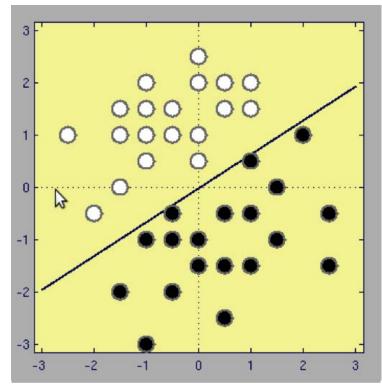
Test Time



$$y(\mathbf{x}; \tilde{\mathbf{w}}) = \begin{cases} 1 & \text{if } \tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} \ge 0, \\ -1 & \text{otherwise.} \end{cases}$$

 $\tilde{\mathbf{x}} = [1, x_1, ..., x_N]$

Centered Perceptron



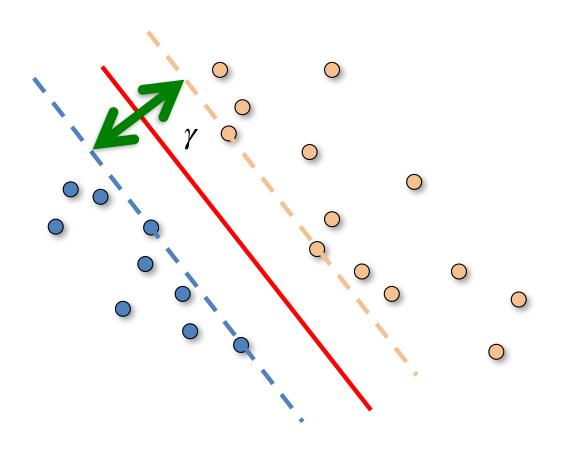
The two populations can be translated so that the decision boundary goes through the origin.

Given a **training** set $\{(\mathbf{x}_n, t_n)_{1 \le n \le N}\}$ minimize:

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \operatorname{sign}(\mathbf{w} \cdot \mathbf{x}_n) t_n$$

- Center the \mathbf{x}_n s so that $w_0 = 0$.
- Set \mathbf{w}_1 to $\mathbf{0}$.
- Iteratively, pick a random index n.
 - If \mathbf{x}_n is correctly classified, do nothing.
 - Otherwise, $\mathbf{w}_{t+1} = \mathbf{w}_t + t_n \mathbf{x}_n$.

Convergence Theorem



 γ is the margin

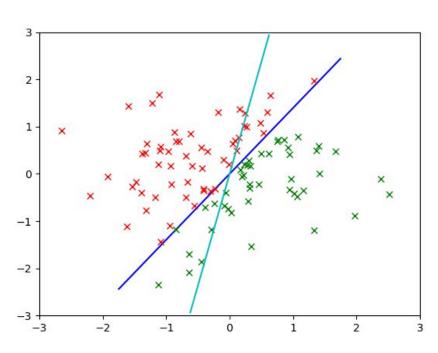
If there is a number $\gamma > 0$ and a parameter vector \mathbf{w}^* , with $||\mathbf{w}^*|| = 1$, such that

$$\forall n, t_n(\mathbf{w}^* \cdot \mathbf{x}_n) > \gamma,$$

$$R^2$$

the perceptron algorithm makes at most $\frac{R^{-}}{\gamma^{2}}$ errors, where $R = max_{n} ||\mathbf{x}_{n}||$.

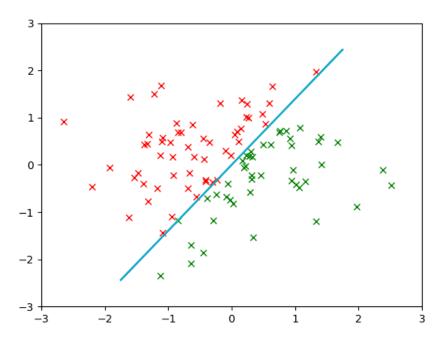
What if γ is Small?



for n in range(nIt): for i in range(ns):

- If \mathbf{x}_n is correctly classified, do nothing.
- Otherwise, $\mathbf{w}_{t+1} = \mathbf{w}_t + t_n \mathbf{x}_n$.

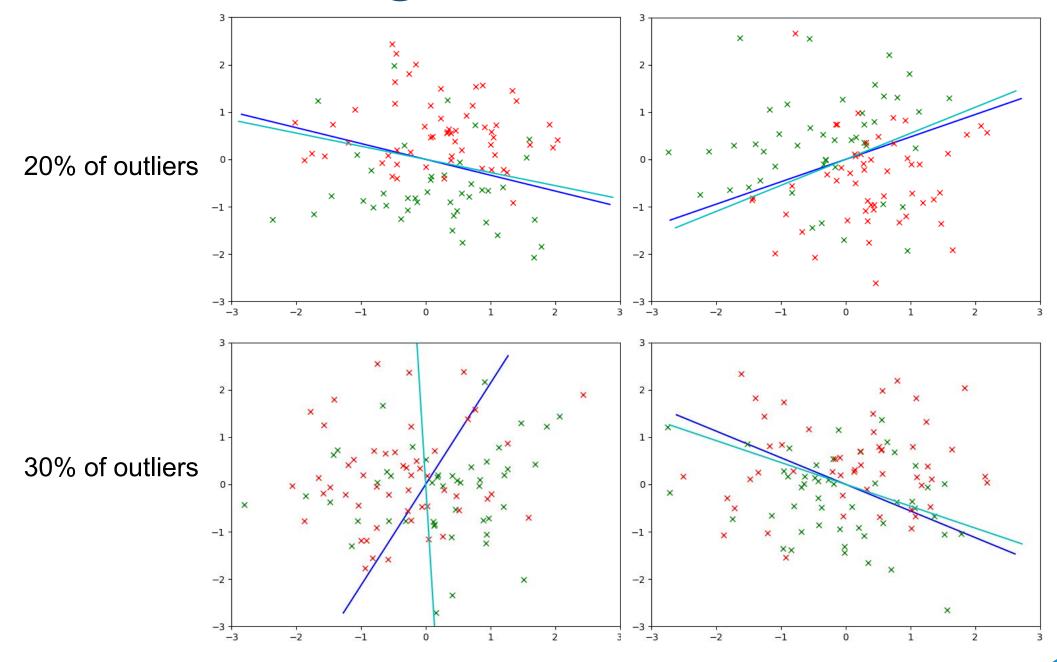
Randomizing helps!



for n in range(nIt): inds=list(range(ns)) random.shuffle(inds) for i in range(inds):

- If \mathbf{x}_n is correctly classified, do nothing.
- Otherwise, $\mathbf{w}_{t+1} = \mathbf{w}_t + t_n \mathbf{x}_n$.

What if g Does Not Exist?



Still works up to a point but no guarantee!

Optional: Python Implementation (1)

```
def perceptronRand(xs,ys,nIt=200,randP=True):
  N, D = xs.shape
                                 # Get data shape.
  w = np.zeros(D)
                                 # Init weights.
  for it in range(nIt):
                                 # Train.
    allCorrect = True
                                 # Generate indices.
    inds = np.random.permutation(N) if randP else np.arange(N)
    for i in inds:
      x = xs[i]
                                  # Pick one sample.
                                                                        Call to numpy. Mostly
                                                                        coded in C or Fortran.
       y = 2*(np.inner(x,w) > 0)-1 # Predict the label.
                                  # Misclassified.
      if y != ys[i]:
         w += ys[i] * x
                         # Update weights.
         w /= np.linalg.norm(w) # Normalize length.
         allCorrect = False
                                   # Something has changed.
    print('It {}: {}'.format(it + 1,linearAccuracy(xs, ys, w)))
    if allCorrect:
       break
                                   # Finish training.
  return w
```

def linearAccuracy(xs,ys,ws):

```
return(sum(ys == (2 * (xs @ ws > 0)) - 1) * 100/len(ys))
```


Optional: Python Implementation (2)

```
def perceptronRand(xs,ys,nIt=200,randP=True):
  N, D = xs.shape
                                  # Get data shape.
  w = np.zeros(D)
                                  # Init weights.
  bestW = None
  bestA = 0.0
  for it in range(nIt):
                                  # Train.
    allCorrect = True
                                  # Generate indices.
    inds = np.random.permutation(N) if randP else np.arange(N)
    for i in inds:
                                                                         Record best solution.
       x = xs[i]
                                   # Pick one sample.
       y = 2*(np.inner(x,w) > 0)-1 # Predict the label.
       if y != ys[i]:
                                   # Misclassified.
         w += ys[i] * x
                                   # Update weights.
         w /= np.linalg.norm(w)
                                   # Normalize length.
         allCorrect = False
                                    # Something has changed.
         acc = linearAccuracy(xs, ys, w)
         if(acc>bestA):
            bestW = w
            bestA = acc
    print('It {}: {}'.format(it + 1,bestA))
    if allCorrect:
       break
                                    # Finish training.
  return bestW
```


Optional: JAVA Implementation

```
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import java.lang.Float;
class Perceptron {
  public Perceptron() {}
  public static INDArray perceptronRand(INDArray xs, INDArray ys, int nlt, boolean randP){
     long[] shape = xs.shape();
                                                                     // Get data shape
     long N
                = shape[0];
     long D
                = shape[1];
     INDArray w = Nd4j.zeros(D,1); // Init weights
     for (int it = 0; it < nIt; it++)\{
       boolean allCorrect = true:
       INDArray inds = Nd4j.arange(0,D);
                                                                      // Generate samples indices.
       if (randP)
          Nd4j.shuffle(inds);
       for (int i = 0; i < N; i++){
          INDArray x = xs.getRow(i);
                                                                       // Pick one sample.
          INDArray y = (x.mmul(w).gt(0)).mul(2).sub(1);
                                                                       // Predict the label.
          if (v.data().asFloat()[0] != vs.getRow(i).data().asFloat()[0]){ // Misclassified.
            w = x.mul(ys.getRow(i)).add(w.transpose());
                                                                       // Update weights.
            w = w.div(w.norm2().add(1e-3)).transpose();
                                                                       // Unit normal length.
            allCorrect = false;
       System.out.println("It" + it + ":" + linearAccuracy(xs. vs. w)):
       if (allCorrect){
          break;
     return w;
```

```
public static String linearAccuracy(INDArray xs,INDArray ys,INDArray w){
    INDArray y = (xs.mmul(w).gt(0)).mul(2).sub(1);
    return Nd4j.sum((y.eq(ys))).div(4).toString();
}

public class Main{
    public static void main (String[] args){

    INDArray xs = Nd4j.create(new float[][]{{1,0},{0,1},{1,1},{0,0}});
    INDArray ys = Nd4j.create(new float[][]{{1},{1},{1},{-1}});
    int nlt = 200;
    boolean randP = true;
    INDArray weights = Perceptron.perceptronRand(xs, ys, nlt, randP);
    }
}
```

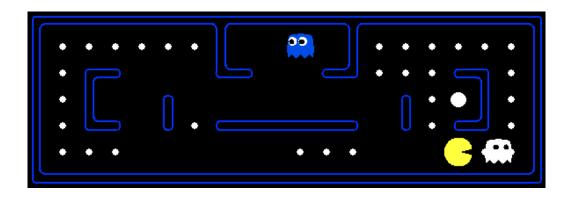
More verbose!

NumPy/SciPy

The time-critical loops are usually **implemented in C, C++ or Fortran**. Parts of SciPy are thin layers of code on top of the scientific routines that are freely available at http://www.netlib.org/. Netlib is a huge repository of incredibly valuable and robust scientific algorithms written in C and Fortran.

One of the design goals of NumPy was to make it buildable without a Fortran compiler, and if you don't have LAPACK available NumPy will use its own implementation. SciPy requires a Fortran compiler to be built, and **heavily depends on wrapped Fortran code**.

Optional: Pacman Apprenticeship

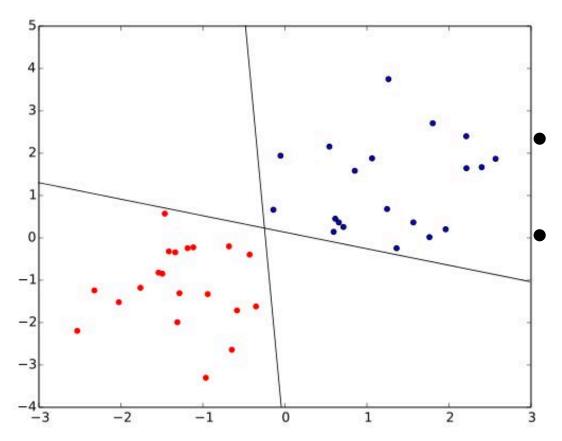


- Examples are state s.
- Correct actions are those taken by experts.
- Feature vectors defined over pairs f(a,s).
- Score of a pair taken to be $\mathbf{w} \cdot f(a,s)$.
- Adjust w so that

$$\forall a, \mathbf{w} \cdot \phi(a^*, s) \ge \mathbf{w} \cdot \phi(a, s)$$

when a* is the correct action for state s.

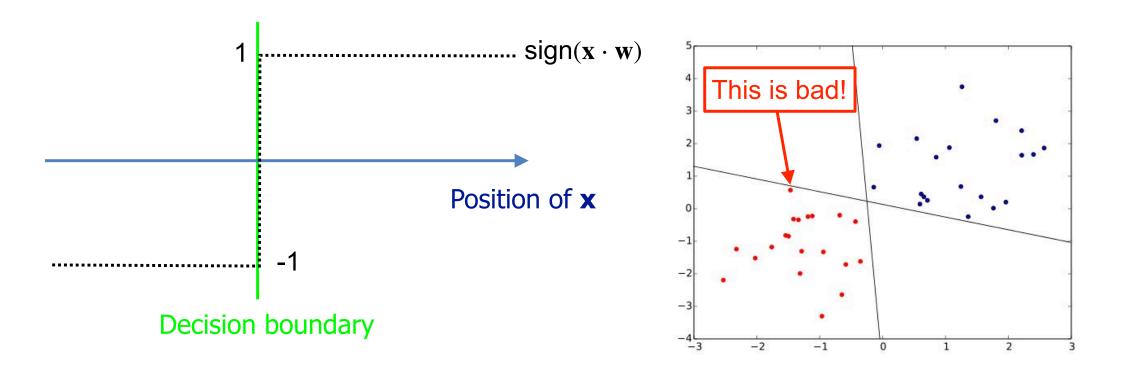
The Problem with the Perceptron



- Two different solutions among infinitely many.
- The perceptron has no way to favor one over the other.

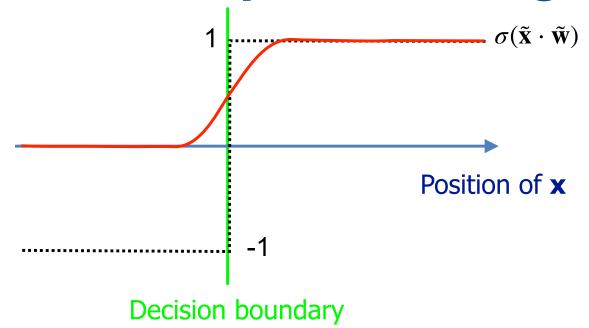
The culprit
$$E(\tilde{\mathbf{w}}) = -\sum_{n=1}^{N} \operatorname{sign}(\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}_n) t_n$$

The Problem with the Perceptron



- There is no difference between close and far from the decision boundary.
- We want the positive and negative examples to be as far as possible from it.

From Perceptron to Logistic Regression



Replace the step function (black) by a smoother one (red).

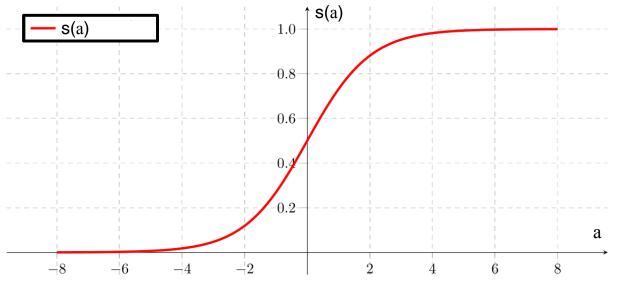
- Replace the step function by a smooth function σ .
- The prediction becomes $y(\mathbf{x}; \widetilde{\mathbf{w}}) = \sigma(\widetilde{\mathbf{w}} \cdot \widetilde{\mathbf{x}})$.
- Given the training set $\{(\mathbf{x}_n, t_n)_{1 \leq n \leq N}\}$ where $t_n \in \{0, 1\}$, minimize the cross-entropy

$$E(\widetilde{\mathbf{w}}) = -\sum_{n} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}\$$
$$y_n = y(\mathbf{x}_n; \widetilde{\mathbf{w}})$$

This is a convex function of w!

with respect to $\tilde{\mathbf{w}}$.

Sigmoid Function



$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$
$$\frac{\partial \sigma}{\partial a} = \sigma(1 - \sigma)$$

- It is infinitely differentiable.
- Its derivatives are easy to compute.
- It is asymptotically equal to zero or one.

—> Can be understood as a smoothed step function.

Cross Entropy

$$E(\tilde{\mathbf{w}}) = -\sum_{n} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$

$$\nabla E(\tilde{\mathbf{w}}) = \sum_{n} (y_n - t_n) \tilde{\mathbf{x}}_n$$

$$y_n = \sigma(\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}_n)$$

- $-(t_n \ln y_n + (1 t_n) \ln(1 y_n))$ is close to 0 if $t_n = 1$ and y_n is close to 1 or if $t_n = 0$ and y_n is close to zero. Minimizing $E(\mathbf{w})$ encourages that.
- $-(t_n \ln y_n + (1 t_n) \ln(1 y_n))$ is larger if $t_n = 1$ and $y_n < 0.5$ or $t_n = 0$ and $y_n > 0.5$. Minimizing E(w) discourages that.
- E(w) is a convex function whose gradient is easy to compute.
 - —> The global optimum can be found very effectively.

Probabilistic Interpretation

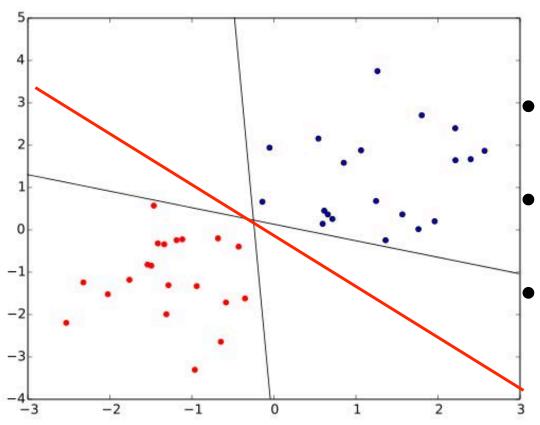
$$y(\mathbf{x}; \tilde{\mathbf{w}}) = \sigma(\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}})$$
$$= \frac{1}{1 + \exp(-\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}})}$$

- $0 \le y(\mathbf{x}; \mathbf{w}) \le 1$
- $y(\mathbf{x}; \mathbf{w}) = 0.5$ if $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}} = 0$, i.e. \mathbf{x} is on the decision boundary.
- $y(\mathbf{x}; \mathbf{w}) = 0.0$ or 1.0 if \mathbf{x} far from the decision boundary.

 \Rightarrow $y(\mathbf{x}; \tilde{\mathbf{w}})$ can be interpreted as the probability that x belongs to one class or the other.

Logistic regression finds what is called the **maximum likelihood solution** under the assumption that the noise is Gaussian.

Perceptron vs Logistic Regression

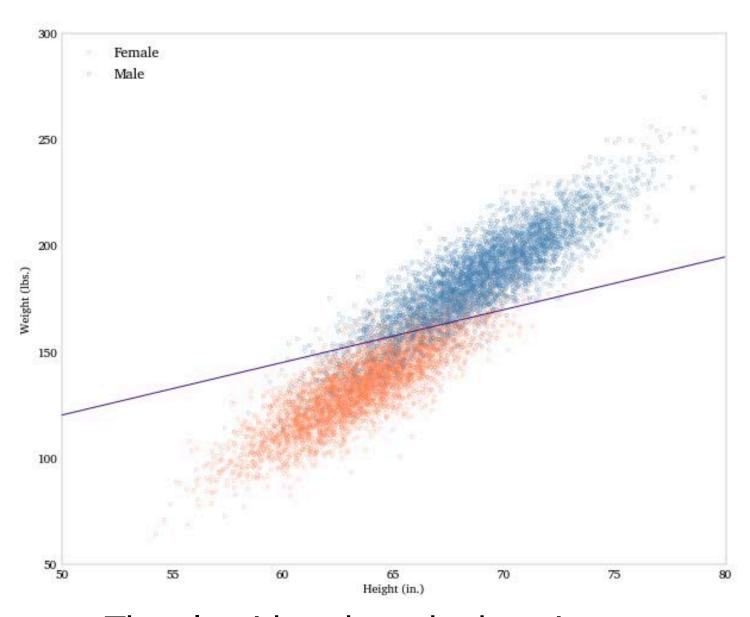


- Two different solutions among infinitely many.
- The perceptron has no way to favor one over the other.
- Logistic regression does.

$$E(\tilde{\mathbf{w}}) = -\sum_{n=1}^{N} \operatorname{sign}(\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}_n) t_n$$

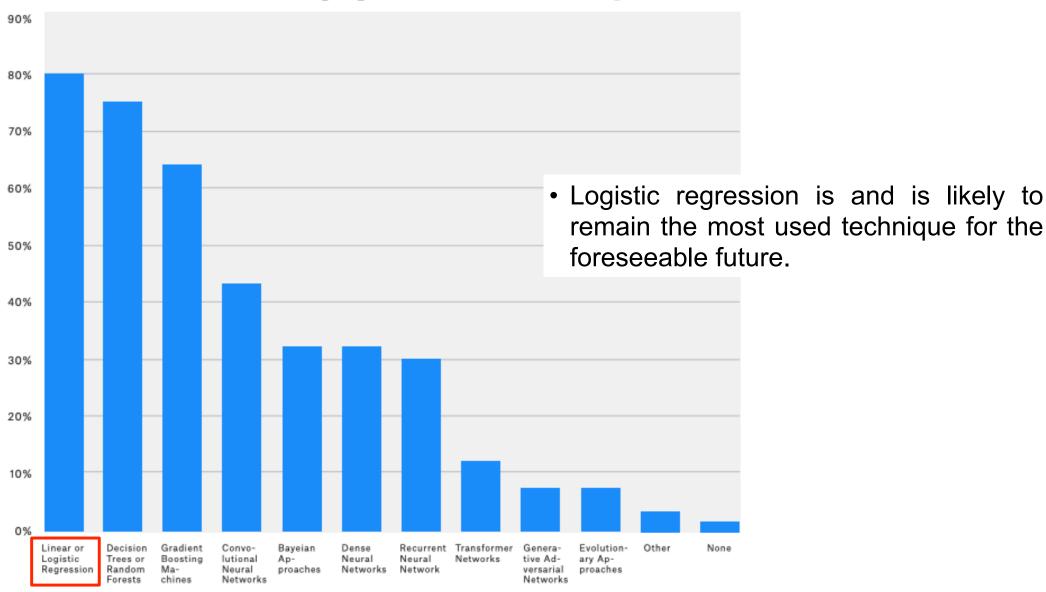
$$E(\tilde{\mathbf{w}}) = -\sum \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$

Example



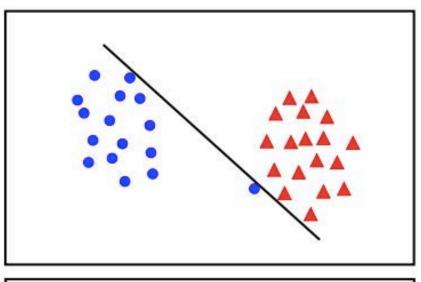
- The algorithm does the best it can.
- Some samples can be misclassified.

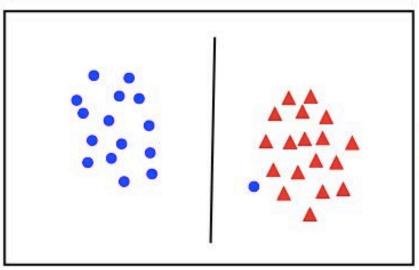
Kaggle Survey (2019)



What data science methods do you use at work?

Outliers Can Cause Problems

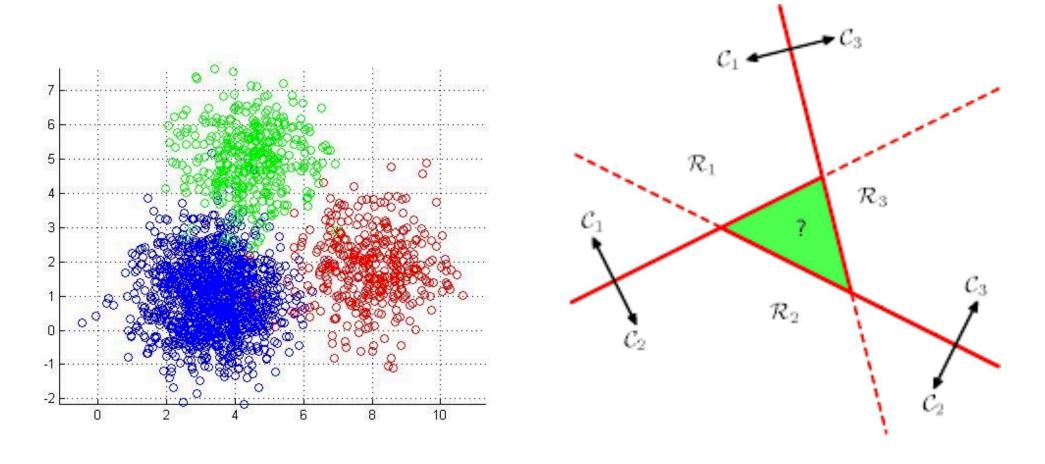




- Logistic regression tries to minimize the error-rate at training time.
- Can result in poor classification rates at test time.

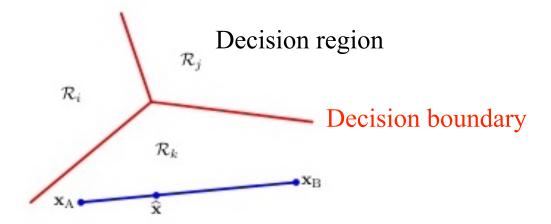
—> We will talk about ways to prevent this in the next lecture.

From Binary to Multi-Class



- k classes.
- Simply using k (k-1)/2 binary classifiers results in ambiguities.

Linear Discriminant



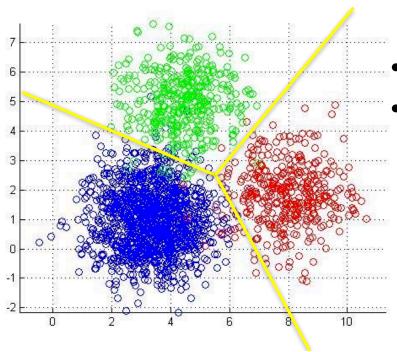
Given K linear classifiers of the form $y_k(\mathbf{x}) = \tilde{\mathbf{w}}_k \cdot \tilde{\mathbf{x}}$:

- Decision boundaries $y_k(\mathbf{x}) = y_l(\mathbf{x}) \Leftrightarrow (\tilde{\mathbf{w}}_k \tilde{\mathbf{w}}_l) \cdot \tilde{\mathbf{x}} = 0$.
- These boundaries define decision regions.
- Decision regions are convex:

$$\begin{split} (\tilde{\mathbf{w}}_k - \tilde{\mathbf{w}}_l) \cdot \tilde{\mathbf{x}}_A &> 0 \\ (\tilde{\mathbf{w}}_k - \tilde{\mathbf{w}}_l) \cdot \tilde{\mathbf{x}}_B &> 0 \\ \Rightarrow \forall \lambda \in [0,1], \text{ if } \mathbf{x} = \lambda \mathbf{x}_A + (1 - \lambda) \mathbf{x}_B, \text{ then} \\ (\tilde{\mathbf{w}}_k - \tilde{\mathbf{w}}_l) \cdot \tilde{\mathbf{x}} &> 0 \end{split}$$

In other words, if two points are on the same side of a decision boundary so are all point between them.

Multi-Class Logistic Regression



$$k = \underset{j}{\operatorname{arg\,max}} \ y_k(\mathbf{x})$$

$$\begin{bmatrix} y_1 \\ \vdots \\ y_K \end{bmatrix} = \begin{bmatrix} \tilde{\mathbf{w}}_1^T \\ \vdots \\ \tilde{\mathbf{w}}_K^T \end{bmatrix} \tilde{\mathbf{x}}$$

$$k = \arg\max y_j$$

- K linear classifiers of the form $y^k(\mathbf{x}) = \sigma(\mathbf{w}_k^T \mathbf{x})$.
- Assign x to class k if $y^k(\mathbf{x}) > y^l(\mathbf{x}) \forall l \neq k$.
 - Still a linear problem.
 - Because the sigmoid function is monotonic, the formulation is almost unchanged.
 - Only the objective function being minimized need to be reformulated.

Matrix with K lines and the dimension of $\tilde{\mathbf{w}}$ columns.

Multi-Class Cross Entropy

Let the training set be $\{(\mathbf{x}_n, [t_n^1, ..., t_n^K])_{1 \le n \le N}\}$ where $t_n^k \in \{0, 1\}$ is the probability that sample \mathbf{x}_n belongs to class k.

Activation:

$$a^k(\mathbf{x}) = \tilde{\mathbf{w}}_k^T \tilde{\mathbf{x}}$$

Probability that **x** belongs to class k:

$$y^{k}(\mathbf{x}) = \frac{\exp(a^{k}(\mathbf{x}))}{\sum_{j} \exp(a^{j}(\mathbf{x}))}$$

Multi-class entropy:

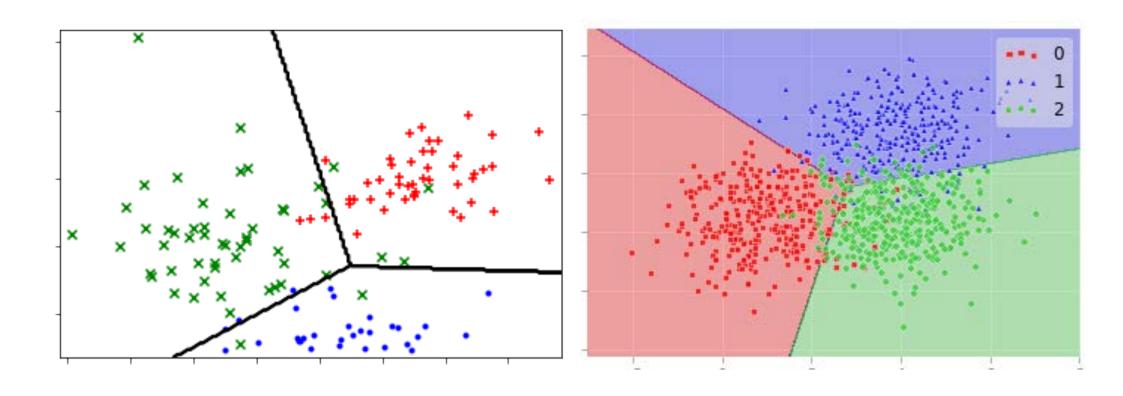
$$E(\tilde{\mathbf{w}}_1, ..., \tilde{\mathbf{w}}_K) = -\sum_n \sum_k t_n^k \ln(y^k(\mathbf{x}_n))$$

Gradient of the entropy:

$$\nabla E_{\mathbf{w_j}} = \sum_{n} (y^k(\mathbf{x}_n) - t_n^k) \mathbf{x}_n$$

- This is a natural extension of the binary case.
- The multi-class entropy is still convex and its gradient is easy to compute.

Multi-Class Results



Multiclass logistic regression is a very natural extension of binary logistic regression and has many of the same properties.

