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Logistic Regression is Better
than the Perceptron
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Outliers Can Cause Problems

e Logistic regression tries to minimize
the error-rate at training time.

e (Can result in poor classification rates

at test time.
.. ... A A .
Ve & A4 —> Sometimes, we should accept to
@ A . . e
e .AAAAA .A‘ misclassify a few training samples.
A
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margin

The orthogonal distance between the decision boundary
and the nearest sample is called the margin.

P-L Bishop, Chapter 7.1 A




Maximizing the Margin

Bad Best

e The larger the margin, the better!
e The logistic regression does not guarantee the largest.

How do we maximize it? ﬁ
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Reminder: Sighed Distance

@x=1[1x,...,xy] h=0: Point 1s on the decision boundary.
A « h>0: Point on one side.
~ h<0: Point on the other side.

w=I[w,...,w]

N
W = [wy, wy, ..., w,] With Zwiz =1
i=1

\4

Hyperplane: x € RN, W . % =0, withx =[1]x].

Signed distance: w - X, with w = [w,|w] and | |w|| = 1.

e
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Binary Classification in N Dimensions

Hyperplane: x € RY, W - X = 0, with X = [1|x].

Signed distance: W - X, with W = [w,|w] and | |w|| = 1.

Problem statement: Find w such that
« for all or most positive samples w - X > 0,

« for all or most negative samples w - X < 0.
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Reformulating the Signed Distance Again

@x=1[1x,...,xy] h=0: Point 1s on the decision boundary.
A « h>0: Point on one side.
~ h<0: Point on the other side.

W =[wg...,wyl

\4

Hyperplane: x € RN, W . % =0, withx =[1]x].

Signed distance: w - X, with w = [1|w] and | |W]|]| = 1.
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Reformulated Signed Distance

@x=[1x,...,x] h=0: Point 1s on the decision boundary.
A « h>0: Point on one side.
~ h<0: Point on the other side.

w=I[w,...,w]

W = [w,|w] € RN*!

- w Wo \%\%

W' = = | |
[ [w]] [Iwl]  [Iw]]

\4

Signed distance: W' - X = , VYW € RVt
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Maximum Margin Classifier

« Given a training set {(X,,,#,);<,<y} With ¢, € {—1,1} and solution
such that all the points are correctly classified, we have

Vn, t(w,-X)>=0.
* We can write the unsigned distance to the decision boundary as
(W-X,)

n

T llwl]

—> A maximum margin classifier aims to maximize this distance for
the point closest to the boundary, that, 1s maximize the minimum
such distance.

] (- (WX,
W* = argmaxg min
Iwl

n

-
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Maximum Margin Classifier

tn-(\Tv-Xn)>

o .
W* = argmaxy min <

« Unfortunately, this 1s a difficult optimization problem to solve.

* We will convert 1t into an equivalent, but easier to solve, problem.
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Maximum Margin Classifier

* The signed distance 1s invariant to a scaling of w:
B . (AW - X)) (W-X)
W AW:d =t — =1 — .
|1 AW ]| [wl]

« We can choose A so that for the point m closest to the boundary, we
have

t,-(W-x )=1,
 For all points we therefore have
L-(w-x)>1,

and the equality holds for at least one point.




Linear Support Vector Machine

Vn, t(w-x)2>1
dn (W-x,) =1
I (W-X,) 1

. . n
= min,d, = min, =

* To maximize the margin, we only need to maximize 1/||w]||.

1
 This is equivalent to minimizing 5 | | w| |2.

We can find max margin classifier as

wW* = argmin —||W||23ub'ectto Vn, t-(W-x)>1

 This 1s a quadratic program, which 1s a convex problem.

—> It can be solved to optimality. A

nl
v
"1
r




nl
"1

LR vs Linear SVM

Logistic regression Linear SVM

e The LR decision boundary can come close to some
of the training examples.

e The SVM tries to prevent that.

.




From Perceptron and LR
to Linear SVM
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Are we done yet?
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Logistic Regression
No!
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Maximum Margin Classifier

Rarely achievable in practice.

« Given a training set {(X,,,%,);<,<y} With ¢, € ,1} and solution
such that all the points are correctly classified, we have

Vn, t(W-%X)>=1.

* We can write the unsigned distance to the decision boundary as
(W-X,)

n

T llwl]

—> A maximum margin classifier aims to maximize this distance for
the point closest to the boundary, that, 1s maximize the minimum
such distance.

] (- (WX,
W* = argmaxg min
Iwl

n
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Overlapping Classes
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The data rarely looks like this. It generally looks like that.

—> Must account for the fact that not all training samples can be correctly classified!
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Relaxing the Constraints

* The original problem

1
w* = argminwzl | w | |zsubject t t-(W-x)2>1,

cannot be satistied.

 We must allow some of the constraints to violated, but as few as
possible.

-
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Slack Variables

- We introduce an additional slack variable &, for each sample.
- We rewrite the constraintsasz, - (W-x,) > 1 —¢&,.

- £, > 0 weakens the original constraints.

- If0 < &, <1, sample n lies inside the
margin, but 1s still correctly classified

- If £, > 1, then sample i 1s misclassified
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Naive Formulation

Wk = argminwzl | w | |2

subjectto Vn, ¢, -(W-x,)>1—-¢& and&, >0

 This would simply allow the model to violate all the original
constraints at no cost.

e This would result in a useless classifier.
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Improved Formulation

. I PR \
Wk = argmm(w,{gn})al lw||”+ CZ ¢,
n=1

subjectto Vn, ¢, -(W-x,)>1—-¢& and&, > 0.

- C 1s constant that controls how costly constraint violations are.

« The problem 1s still convex.
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Large margin but potential Smaller margin but fewer
L misclassifications. misclassifications.

nl
1
"1




Choosing the C Parameter

400 A 400 -

300 A 300 -

200 A 200 A

100 ~ 100 4

0 100 200 300 400

C=1: C=100:
e Large margin. e Small margin.
e Many training samples misclassified. e Few training samples misclassified.

Which is best?
e [t depends.

e Must use cross-validation, as we did for k-Means. ﬂ
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Linear SVM Trade Off

e The points can be linearly
separated but the margin is still
very small.

e At test time the two circles will be
misclassified.

e The margin is much larger but one
training example is misclassified.

e At test time the two circles will be
classified correctly.

—> Tradeoff between the number of mistakes on the training
data and the margin.
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Support Vector Machines

0% 10% 20% 30% 40% 50% 60%

Logistic Regression
Decision Trees
Random Forests
Neural Networks
Bayesian Techniques
Ensemble Methods
B w
Gradient Boosted Machines
CNNs
RNNs
Other

Evolutionary Approaches - 5.5%

HMMs [ 5.4%

Markov Logic Networks - 4.9%

GANs [} 2.8%
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