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Logistic Regression is Better 
than the Perceptron

Perceptron Logistic

But ….
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Outliers Can Cause Problems

• Logistic regression tries to minimize 
the error-rate at training time.


• Can result in poor classification rates 
at test time. 


—> Sometimes, we should accept to 
misclassify a few training samples.  
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Margin

The orthogonal distance between the decision boundary 
and the nearest sample is called the margin. 

Bishop, Chapter 7.1
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• The larger the margin, the better!

• The logistic regression does not guarantee the largest. 

Maximizing the Margin

How do we maximize it? 

BadBetter Best
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Reminder: Signed Distance

w = [w1, …, wn]
h

h=0: Point is on the decision boundary.

h>0: Point on one side.

h<0: Point on the other side.

x̃ = [1,x1, …, xN]

Signed distance: , with  and  w̃ ⋅ x̃ w̃ = [w0 |w] | |w | | = 1.

Hyperplane:  0, with .x ∈ RN, w̃ ⋅ x̃ = x̃ = [1 |x]

w̃ = [w0, w1, …, wn] with 
N

∑
i=1

w2
i = 1
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Binary Classification in N Dimensions

Signed distance: , with  and  w̃ ⋅ x̃ w̃ = [w0 |w] | |w | | = 1.

Hyperplane:  0, with .x ∈ RN, w̃ ⋅ x̃ = x̃ = [1 |x]

Problem statement: Find  such that

• for all or most positive  samples ,

• for all or most negative samples . 

w̃
w̃ ⋅ x̃ > 0
w̃ ⋅ x̃ < 0
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Reformulating the Signed Distance Again

w = [w1, …, wN]
h

h=0: Point is on the decision boundary.

h>0: Point on one side.

h<0: Point on the other side.

x̃ = [1,x1, …, xN]

w̃ = [w0, w1, …, wN] with 
N

∑
i=1

w2
i = 1

Signed distance: , with  and  w̃ ⋅ x̃ w̃ = [1 |w] | |w | | = 1.

Hyperplane:  0, with .x ∈ RN, w̃ ⋅ x̃ = x̃ = [1 |x]
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Reformulated Signed Distance

w = [w1, …, wn]
h

h=0: Point is on the decision boundary.

h>0: Point on one side.

h<0: Point on the other side.

x̃ = [1,x1, …, xN]

w̃ = [w0 |w] ∈ RN+1

w̃′￼=
w̃

| |w | |
= [

w0

| |w | |
|

w
| |w | |

]

Signed distance: , .w̃′￼⋅ x̃ =
w̃ ⋅ x̃
| |w | |

∀w̃ ∈ RN+1

Hyperplane:  0, with .x ∈ RN, w̃ ⋅ x̃ = x̃ = [1 |x]
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Maximum Margin Classifier

• Given a training set  with  and solution 
such that all the points are correctly classified, we have


 .

• We can write the unsigned distance to the decision boundary as 





—> A maximum margin classifier aims to maximize this distance for 
the point closest to the boundary, that, is maximize the minimum 
such distance.





{(xn, tn)1≤n≤N} tn ∈ {−1,1}

∀n, tn(w̃n ⋅ x̃n) > = 0

dn = tn
(w̃ ⋅ x̃n)
| |w | |

w̃* = argmaxw̃ min
n ( tn ⋅ (w̃ ⋅ xn)

∥w∥ )
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Maximum Margin Classifier




• Unfortunately, this is a difficult optimization problem to solve.

• We will convert it into an equivalent, but easier to solve, problem. 


w̃* = argmaxw̃ min
n ( tn ⋅ (w̃ ⋅ xn)

∥w∥ )
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Maximum Margin Classifier

• The signed distance is invariant to a scaling of :


 .


• We can choose  so that for the point m closest to the boundary, we 
have 


 .

• For all points we therefore have


 ,

and the equality holds for at least one point. 


w̃

w̃ → λw̃ : dn = tn
(λw̃ ⋅ x̃n)
| |λw | |

= tn
(w̃ ⋅ x̃n)
| |w | |

λ

tm ⋅ (w̃ ⋅ xm) = 1

tn ⋅ (w̃ ⋅ xn) ≥ 1
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Linear Support Vector Machine




• To maximize the margin, we only need to maximize .


• This is equivalent to minimizing .


• We can find max margin classifier as


 subject to 


• This is a quadratic program, which is a convex problem.


—> It can be solved to optimality.  


∀n, tn(w̃ ⋅ xn) ≥ 1
∃n tn(w̃ ⋅ xn) = 1

⇒ minndn = minn
tn(w̃ ⋅ xn)

| |w | |
=

1
| |w | |

1/ | |w | |
1
2

| |w | |2

w* = argminw
1
2

| |w | |2 ∀n, tn ⋅ (w̃ ⋅ xn) ≥ 1
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LR vs Linear SVM

• The LR decision boundary can come close to some 
of the training examples. 


• The SVM tries to prevent that. 

Logistic regression Linear SVM
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From Perceptron and LR 
to Linear SVM

Perceptron

Linear SVM

Are we done yet? 

No! 
Logistic Regression
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Maximum Margin Classifier

• Given a training set  with  and solution 
such that all the points are correctly classified, we have


 .

• We can write the unsigned distance to the decision boundary as 





—> A maximum margin classifier aims to maximize this distance for 
the point closest to the boundary, that, is maximize the minimum 
such distance.





{(xn, tn)1≤n≤N} tn ∈ {−1,1}

∀n, tn(w̃ ⋅ x̃n) > = 1

dn = tn
(w̃ ⋅ x̃n)
| |w | |

w̃* = argmaxw̃ min
n ( tn ⋅ (w̃ ⋅ xn)

∥w∥ )

Rarely achievable in practice.
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Overlapping Classes
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The data rarely looks like this. It generally looks like that.

—> Must account for the fact that not all training samples can be correctly classified!



18

Relaxing the Constraints

• The original problem


subject to ,


cannot be satisfied. 


• We must allow some of the constraints to violated, but as few as 
possible.  

w* = argminw
1
2

| |w | |2 ∀n, tn ⋅ (w̃ ⋅ xn) ≥ 1
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Slack Variables
• We introduce an additional slack variable  for each sample.


• We rewrite the constraints as .


•  weakens the original constraints.

ξn

tn ⋅ (w̃ ⋅ xn) ≥ 1 − ξn

ξi ≥ 0

• If , sample  lies inside the 
margin, but is still correctly classified


• If , then sample  is misclassified

0 < ξn ≤ 1 n

ξn ≥ 1 i
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Naive Formulation

 


subject to 


• This would simply allow the model to violate all the original 
constraints at no cost.


• This would result in a useless classifier.

w* = argminw
1
2

| |w | |2

∀n, tn ⋅ (w̃ ⋅ xn) ≥ 1 − ξn and ξn ≥ 0
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Improved Formulation

 ,


subject to .


• C is constant that controls how costly constraint violations are.

• The problem is still convex.

w* = argmin(w,{ξn})
1
2

| |w | |2 + C
N

∑
n=1

ξn

∀n, tn ⋅ (w̃ ⋅ xn) ≥ 1 − ξn and ξn ≥ 0

Large margin but potential 
misclassifications.

Smaller margin but fewer 
misclassifications.
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Choosing the C Parameter

C=1:

• Large margin.

• Many training samples misclassified.

C=100:

• Small margin.

• Few training samples misclassified.

Which is best?

• It depends. 

• Must use cross-validation, as we did for k-Means.  
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Linear SVM Trade Off

• The points can be l inear ly 
separated but the margin is still 
very small. 


• At test time the two circles will be 
misclassified. 

• The margin is much larger but one 
training example is misclassified. 

• At test time the two circles will be 
classified correctly. 

—> Tradeoff between the number of mistakes on the training 
data and the margin.   
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Support Vector Machines


