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Horseshoe crabs

Very old (∼ 450 million years), so sometimes called ‘living
fossils’

4 species

Not actually ‘crabs’, they are arachnids (like spiders)

Females ∼ 30% bigger than males

Few survive into adulthood

Important in biomedical research – their blood has good
anti-bacterial properties and is used in developing vaccines
and endotoxin testing

2 / 68



Mating affected by male’s condition
Males are either attached or unattached : satellites or more
distant
Attached males are :

– lighter in color
– more slime
– less fouling
– carapace, eyes and spine in better condition
– younger

than unattached males
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Sexual biology of horseshoe crabs

Migrate for spawning in shallow water

Nesting is synchronized and seasonal

Tend to nest in (small number of) protected areas

Reproductive competition in male Limulus polyphemus
horseshoe crabs

Operational sex ratio is usually male-biased :
competitive males per female ∼ 1 – 6
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Scientific aim
Suppose now that we are interested in investigating whether a
female horseshoe crab has a satellite or not
This is a binary response
Activity : think about how you might do this and what
information (variables) you could collect to study this
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Data for the study

BUT : what are we going to do with this information ? ?

⇒ need a (statistical) model
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Exploring the data : carapace width
Let’s first focus on the simplest case where there is only a
single variable : carapace width
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Statistical modeling

Goal : to capture important characteristics of the relationship
between one (or several) explanatory

Many models are of the form :
g(Y ) = f (x) + erreur

Differences between models : the forms of g , f and
distributional assumptions about the error term

Examples of models :

– Linear : Y = β0 + β1x + ε
– Linear Y = β0 + β1x + β2x

2 + ε
– (Intrinsically) nonlinear : Y = αxβ1 x

γ
2 x

δ
3 + ε

– Generalized linear model (e.g. Binomial) :
log p

1−p = β0 + β1x + β2x2
– Cox proportional hazards model (used in survival

analysis) : h(t) = h0(t) exp(βx)
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Linear models

A simple model : E (Y ) = β0 + β1x

Gaussian measurement model : Y = β0 + β1x + ε, ε N(0, σ2)

More generally : Y = Xβ + ε, où Y est n× 1, X is n× p, β is
p × 1, ε is n × 1, often supposed N(0, σ2In×n)

Important application : analysis of designed experiments :

– a design matrix X such that for the response variable
Y : E (Y ) = Xβ,
where β is a vector of parameters (ou contrastes)

– There are several ways to specify the matrix X for a
specific design (this corresponds to the parameterization
of the model)

– ⇒ ANOVA
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Linear regression model (again)

For all the linear models that we have seen this semester, the
reponse variable has been modeled as a Normal RV :

Y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε, ε ∼ N(0, σ2)

Equally :

Y ∼ N(µ, σ2), µ = β0 + β1x1 + β2x2 + · · ·+ βkxk

Suitable for a continuous response

NOT for a binary response

Generalized linear models (GLMs) : generalization of linear
models for modeling non-normal response variables

We will study logistic regression for a binary response variable
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Modification of the response

Instead of modeling the response directly, could instead model
the probability of obtaining the value ‘1’ (‘success’) (that is,
the expected value of the reponse)

Problems :

– could lead to fitted values outside of outside of [0, 1]
– normality assumption on errors is false

Instead of modeling the expected response directly as a linear
function of the predictors, model a suitable transformation

For binary data, this is generally taken to be the logit (or
logistic) transformation
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Generalized linear model : theory

GLMs allow unified treatment of statistical methods for
several important classes of models

The distribution of the response Y is supposed to belong to
an exponential family : f (x | η) = h(x) exp[ηTT (x)− A((η)].

(Many distributions can be respresented in this form,
including the binomial, Normal, Poisson, exponential)

GLMs are formed from three components :

– random component : the reponse variable Y , a
random component whose distribution belongs to the
exponential family

– deterministic component : the linear predictor
β0 + β1x1 + · · ·+ βkxk

– link function : describes the functional relation
between the linear predictor and the mathematical
expectation of the response variable Y
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Linear models : a new view

For a linear model :
Y = β0 + β1x1 + . . .+ βkxk + ε, where ε ∼ N(0, σ2)

The expected reponse is E [Y | x ] = β0 + β1x1 + . . .+ βkxk

Let η be the linear predictor η = β0 + β1x1 + . . .+ βkxk

For the (ordinary) linear model : E [Y | x ] = η

For a generalized linear model, there is a link function g that
relates η with the expected response : g(E [Y | x ]) = η

For the (ordinary) linear model, g(y) = y (link = identity)
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Link function

Generally more clear when we consider the inverse of the link
function :

E [Y |x ] = g−1(η)

For a binary response (values 0 or 1), then
E [Y | x ] = P(Y = 1 | x)

In this case, a practical function is

E [Y | x ] = P(Y = 1 | x) =
eη

1 + eη

The corresponding link functions (that is, the inverse of this
function) is called the logit

logit(x) = log

(
x

1− x

)
The logistic regression models the logit as a function of the
predictor variables
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Logit transformation

logit(π(x)) = log odds(π(x))) = log
π(x)

1− π(x)
=

β0 + β1x1 + β2x2 + · · ·+ βkxk

Then, π(x1, . . . xk) =
exp(β0 + β1x1 + β2x2 + · · ·+ βkxk)

1 + exp(β0 + β1x1 + β2x2 + · · ·+ βkxk)

Parameter estimation by maximum likelihood
Interpretation : the parameter βk is such that exp(βk) is the
OR (odds ratio) that the response takes value 1 when xk goes
up by 1, when the remaining variables are constant
⇒ β = logOR
For example, for binary X , we have

OR =

(
exp (β0 + β1)

1 + exp (β0 + β1)

)
/
(

1−
exp (β0 + β1)

1 + exp (β0 + β1)

)
(

expβ0

1 + expβ0

)
/
(

1−
expβ0

1 + expβ0

) =
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Logistic regression

Logistic regression is a natural choice for a binary reponse

Denote one of the 2 possibilities ‘success’, or Y = 1

We look for a model for estimating the probability of success
as a function of the explanatory variables

When using the logit transformation, la probabilité of
‘success’ is of the form :

E [Y | x ] = P(Y = 1 | x) =
eη

1 + eη
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Logistic modeling of horseshoe crab data : results 1
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Logistic modeling of horseshoe crab data : results 2

Now let’s estimate π(x) = probability (depending on x) of a
female crab having a satellite

Based on the output and the inverse logit function, we have :

π(x) =
exp(−12.351 + 0.497× x)

1 + exp(−12.351 + 0.497× x)

For the minimum sample value (21.0cm), π(x) =

For the maximum sample value (33.5cm), π(x) =
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Odds and the OR

For a probability p, the odds is defined as :

odds(p) =
p

1− p

For just one binary variable X , the odds ratio (OR) is the
ratio of the odds :

OR =
P(Y = 1 | X = 1)/(1− P(Y = 1 | X = 1))

P(Y = 1 | X = 0)/(1− P(Y = 1 | X = 0))

3 cases :

– OR = 1 : Y is independent of X
– OR > 1 : the condition represented by Y is more

frequent for individuals with X = 1
– OR < 1 : the condition represented by Y is more

frequent for individuals with X = 0
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Analogous to linear regression

The logit function g possesses many of the same good
properties of the linear regression model

Mathematically convenient and flexible – can include
covariates in the model

Can meaningfully interpret parameters

Linear in the parameters

A difference : Error distribution is binomial (not Normal)
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Model fitting

For linear regression, typicall fitting is done by the method of
least squares

But when the reponse est binary, the ‘good’ statistical
properties of the resulting estimators no longer hold

The general method that leads us to least squares (for
normally distributed errors) is our friend ( ! !) maximum
likelihood
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Revision : binomial distribution

Logistic regression is related to the binomial distribution

If there are multiple observations with the same value(s) of
the explanatory variable(s), then the individual responses can
be added and this sum has a binomial distribution

Binomial mass function : P(X = x) =

(
n

x

)
px(1− p)n−x

For a binomial RV with parameters n and p, then the
expected value is µ = np and the variance is σ2 = np(1− p)

Logistic regression belongs to the ‘binomial family’ of GLMs
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Maximum likelihood estimation

Likelihood : f (xi ) ∝ π(xi )
yi [1− π(xi )]1−yi

For independent observations, the likelihood is :
L(β) =

∏n
i=1 f (xi )

log likelihood :
l(β) = log[L(β)] =

∑n
i=1(log(π(xi )) + (1− yi ) log(1− π(xi )))

Find the βi that maximize the log likelihood by differentiating
with respect to each βi and setting all derivatives = 0

For linear regression, these equations are simple to solve

On the other hand, for logistic regression the equations are
nonlinear and do not have an analytic solution

They are solved using a numerical algorithm (notably
Newton-Raphson)
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Confidence intervals

From the estimated parameters β̂MLE
i , we obtain the MLE of

the linear predictor :

η̂MLE = β̂MLE
0 +

p∑
i=1

β̂MLE
i xi

In addition, due to the invariance of the MLE, we obtain the
MLE of the probability of ‘success’ :

π̂(x) =
e η̂

1 + e η̂

We use the asymptotic normality of the MLE in order to make
a CI at 100(1− α)% for η : η̂ ± z1−α/2 × ES(η̂) = (J,S)

The 100(1− α)% CI for π(x) is thus :

(
eJ

1 + eJ
,

eS

1 + eS

)
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BREAK
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Model fitting and checking

For the standard (fixed effects) linear model, estimation is
usually by least squares

Can be more complicated with random effects or when
x-variables are subject to measurement error as well

Checking model : examination of residuals

– Normality
– Time effects
– Nonconstant variance
– Curvature

Detection of influential observations
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Linear regression model (again)

Linear model

Y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε, ε ∼ N(0, σ2)

Another way to write this :

Y ∼ N(µ, σ2), µ = β0 + β1x1 + β2x2 + · · ·+ βkxk

Suitable for a continuous response

NOT suitable for a binary response

NOT suitable for a count data
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Modified model

Instead of modeling the response directly, could instead model
some function of the response

i.e., Instead of modeling the expected response directly as a
linear model, model a suitable transformation

For binary data, it is convenient to use the logit function

For count data, this is often taken to be the log transformation
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Modified model for binary data

Instead of modeling the 0/1 response directly, could instead
model the probability of ‘1’

Problems :

– could lead to fitted values outside of [0, 1]
– normality assumption on errors is wrong

Instead of modeling the expected response directly as a linear
function of the predictors, model a suitable transformation

For binary data, this is generally taken to be the logit (or
logistic) transformation
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Logit transformation

logit(p) = log
p

1− p
= β0 + β1x1 + β2x2 + · · ·+ βkxk

Therefore,

p(x1, . . . xk) =
exp(β0 + β1x1 + β2x2 + · · ·+ βkxk)

1 + exp(β0 + β1x1 + β2x2 + · · ·+ βkxk)

The parameter βk is such that exp(βk) is the odds ratio that
the response takes value 1 when xk increases by one, when
the remaining variables are constant

i.e. βk is a log-odds ratio (log OR)

Estimate parameters by maximum likelihood rather than least
squares
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Generalized linear model

In a standard linear model, the response variable is modeled as
a normally distributed

However, if the response variable is dichotomous or a count, it
does not make sense to model the outcome as normal

Generalized linear models (GLMs) are an extension of linear
models to model non-normal response variables

A GLM consists of three components :

– A random component, specifying the conditional
distribution of the response variable, Yi , given the
values of the explanatory variables in the model

– A linear predictor
– A smooth and invertible linearizing link function

We consider logistic regression for a count response

We can consider Poisson regression for a count response
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Generalized linear models : some theory

Allows unified treatment of statistical methods for several
important classes of models

Response Y assumed to have exponential family distribution :

f (y) = exp[a(y)b(θ) + c(θ) + d(y)]

For a standard linear model
Y = β0 + β1x1 + . . .+ βkxk + ε, with ε ∼ N(0, σ2)

The expected response is E [Y | x ] = β0 + β1x1 + . . .+ βkxk

Let η denote the linear predictor η = β0 + β1x1 + . . .+ βkxk

For a standard linear model, E [Y | x ] = η

In a generalized linear model, there is a link function g
between η and the expected response :

g(E [Y | x ]) = η

For a standard linear model, g(y) = y (identity link)
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Link function

When the response variable is binary (with values coded as 0
or 1), then E [Y | x ] = P(Y = 1 | x)

A convenient function in this case is

E [Y | x ] = P(Y = 1 | x) =
eη

1 + eη

The corresponding link function (inverse of this function) is
called the logit

logit(x) = log
x

1− x
Regression using this model is called logistic regression
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Link function : examples

Family Name
Link binomial Gamma gaussian inverse.gaussian poisson

logit D
probit •
cloglog •
identity • D •
inverse D
log • D
1/mu^2 D
sqrt •
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Analogous to linear regression

The logit function g has many of the desirable properties of a
linear regression model :

– Mathematically convenient and flexible
– Can meaningfully interpret parameters
– Linear in the parameters

A difference : Error distribution is binomial (not normal)
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Inference : tests for coefficients

Wald test statistics are simple ; for ‘sufficiently large’ samples :

z =
β̂

SE (β̂)
∼ N(0, 1)

Although the Wald test is adequate for large samples, the
likelihood ratio test (LRT) is more powerful and more reliable
for sample sizes often used in practice

The LRT test statistic compares the maximum LH of the
likelihood function when β = 0 to the maximum LA of the
likelihood function for unrestricted β :

λ = −2 log
L(θ̂HMLE )

L(θ̂AMLE )
,

Under certain regularity conditions, when H is true λ ∼ χ2
p,

where p = number of constraints imposed by H (= difference
in the number of parameters estimated under the 2 models)
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Inference : CI for probabilities

For simple logistic regression, the estimated (predicted)
probability at a fixed x value is given by :

P(Y = 1 | x) = π̂(x) =
e β̂0+β̂1 x

1 + e β̂0+β̂1 x

Activity : Estimate the probability of a satellite for female
crabs of width x = 26.5cm ...

From software, a 95% CI for the true probability π(26.5) is
(0.61, 0.77)
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Why use a model to estimate probabilities ?

Instead of finding π̂(x) using the model fit, as we just did at
x = 26.5, why not simply use the sample proportion to
estimate the probability ? ?

For width = 26.5, 4/6 had satellites, so the sample proportion
estimate at x = 26.5 is p = 4/6 = 0.67 (similar to the
model-based estimate)

A small sample exact (binomial) 95% CI is (0.22, 0.96) :
much larger than the model-based CI

When the logistic regression model holds, the model-based
estimator of π̂(x) is much better than that of the sample
proportion because it uses all the data rather than only the
data at the fixed x value, giving a more precise estimate

For example, at x = 26.5, software reports a SE = 0.04 for
the model-based estimate 0.695

By contrast, the SE for the sample proportion of 0.67 with
only six observations is :
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Indicator (dummy) predictors

Let’s go back to analyzing our Horseshoe crab data, but
instead of only using carapace width as a predictor, let’s also
include color.

Color is a categorical (factor) variable with five categories :
light, medium light, medium, medium dark, dark

Color is a surrogate for age, since older crabs tending to have
darker shells

The sample contained no light crabs, so we use only the other
four categories

In order to include categorical / factor explanatory variables in
a LM or GLM, we need to use indicator (sometimes called
dummy) variables

The number of dummy variables to include is the number of
categories minus 1

39 / 68



Multiple logistic regression

To incorporate color into the model, we need to introduce 3
indicator variables for the 4 categories

The model is now

logit[P(Y = 1)] = β0 + β1 c1 + β2 c2 + β3 c3 + β4 x

where x denotes width and
c1 = 1 for color = medium light, 0 otherwise
c2 = 1 for color = medium, 0 otherwise
c3 = 1 for color = medium dark, 0 otherwise

Crab color is dark when c1 = c2 = c3 = 0
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Multiple logistic modeling with width and color : results 1
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Multiple logistic modeling with width and color : results 2
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Some interpretation

The model assumes no interaction between color and width ⇒
width has the same effect (coefficient 0.468) for all colors

This implies that the shapes of the four curves relating width
to P(Y = 1) (for the four colors) are identical

For each color, a 1 cm increase in width has a multiplicative
effect of e0.468 = 1.60 on the odds that Y = 1

Each curve is the same as any other curve, only shifted to the
left or right

The parallelism of curves in the horizontal dimension implies
that two curves never cross

At all width values, for example, color 4 (dark) has a lower
estimated probability of a satellite than the other colors
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Let’s have some fun ! !
What is the estimated probability for a medium-light crab of
average width (26.3 cm) ? ? for a dark crab ? ?

What are the estimated odds for a medium-light crab ? ? for a
dark crab ? ?

The exponentiated difference between two color parameter
estimates is an odds ratio comparing those colors. What is the
estimated odds ratio comparing medium-light and dark
crabs ? ? Interpret.

44 / 68



Evaluation of the fitted model

In linear regression, ANOVA consists in the decomposition of
the total sum of squares of the observations around their
mean (SST) :

– SSE , error sum of squares (residuals = observed -
predicted)

– SSR, regression sum of squares (of the model)

Large values of SSR suggest the importance of the
explanatory variable(s)

We use the principle for logistic regression : comparison of the
observed response to the predicted response by the models
with//without the explanatory variable(s)

This comparison is made based on the log likelihood
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Deviance

For (ordinary) linear models, parameter estimation by least
squares (minimize the sum of squared residuals)

(Equivalent to ML for the Normal model)

For GLMs, estimation is by ML

The deviance is (proportional to) 2× `
(Analogous to SSE)

Obtaining an ‘absolute’ measure of the quality of model fit
(goodness-of-fit) depends on certain assumptions, often not
satisfied in practice

Thus typically focus rather on the comparison of competing
models

If the models are nested (that is, one model is a sub-model of
the other), we can carry out a LRT
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Test of goodness-of-fit (‘global’ test)

Or rather test of NONgoodness-of-fit ( ! !)

Test based on the deviance D of the model

We reject H : the data conform to the model, for large values
of D(residuals)

Under A, there is a parameter for each observation (saturated
model)

It is often said – BUT NOT TRUE ! ! ! ! – that under H,
D(residuals) ∼ χ2 with df = df error

(The problem : the asymptotic result for χ2 does not hold if
the number of parameters is not finite, and since the saturated
model has one parameter for each of the n observations, then
if n→∞ the number of parameters is not finite)

For samples of moderate size, it is not the worst thing in the
world to assume this asymptotic distribution
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Model comparison

Linear regression : a coefficient is (statistially) significant if its
standardized value β̂/SE (β̂) is ‘large’

We can use this same reasoning for logistic regression (z-test
= Wald test), but this approach is problematic (lacks power)

Preferred approach : likelihood ratio test (LRT)

Deviance D = −2

(
n∑

i=1

yi log

(
p̂i
yi

)
+ (1− yi ) log

(
1− p̂i
1− yi

))
Comparison of models : calculate the statistic

G 2 = D(sub-model)− D(bigger model)

Under H (the sub-model is sufficient), G 2 ∼ χ2 with degrees
of freedom (df) = difference in the number of estimated
parameters
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Summary : Tests for coefficients

One coefficient :
1 parameter = βi , the coefficient of variable xi in the logistic

regression model in the population
2 H : βi = 0 ; A : βi 6= 0

3 TS : • Wald : zobs =
β̂i

ES(β̂i )
• LRT : G 2 = −2 log

LH
LA

4 pobs : • Wald : 2P(Z >| z1−α/2 |) • LRT : P(X 2 > χ2
1)

Several coefficients :

1 parameters = βj , . . . , βk (= q coefficients), of variables
xj , . . . , βk in the logistic regression model in the population

2 H : βj = . . . = βk = 0 ; A : at least one βi 6= 0, q ≤ i ≤ k

3 TS : • LRT : G 2 = −2 log
LH
LA

4 pobs : • LRT : P(X 2 > χ2
q)

(Here, we consider the RV X 2 ∼ χ2)
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PAUSE
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DNA sequencing (optional)

(Automated) Sanger sequencing

– ‘first-generation’ technology
– F. Sanger, 1977

Process :

– bacterial cloning or PCR
– template purification
– labelling of DNA fragments using the chain termination

method with energy transfer, dye-labelled
dideoxynucleotides and a DNA polymerase

– capillary electrophoresis
– fluorescence detection

Data : four-colour plots that reveal the DNA sequence
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Next-generation sequencing

Several newer sequencing technologies

– ‘Next-generation sequencing’ (NGS data)
– ‘Ultra high-throughput sequencing’ (UHTS data)

These newer technologies use various strategies that rely on a
combination of template preparation, sequencing and imaging,
and genome alignment and assembly methods

Data : four-colour plots that reveal the DNA sequence

Major advance : ability to produce a large amount of data
relatively cheaply

Expands experimental possibilities beyond just determining
the order of bases
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Applications of NGS

Sequence assembly (original application)

Resequencing : The sequencing of part of an individual’s
genome in order to detect sequence differences between the
individual and the standard genome of the species

Gene expression : RNA-Seq

SNP discovery and genotyping

Variant discovery and quantification

Transcription factor binding sites : ChIP-Seq

Measuring DNA methylation
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NGS data generation

Sequencing technologies incorporate methods that we can
class as

– template preparation
– sequencing and imaging
– data analysis

Combination of specific protocols distinguishes different
technologies

Major technologies :

– Illumina HiSeq (older : Solexa)
– 454 (Roche)
– Applied Biosciences SOLiD
– Pacific Biosciences SMRT (single molecule real-time)
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Data analysis pipeline

Data are counts of short sequences (called ‘reads’)

Quality control of data

Match to reference sequence, read mapping

Count/summarize number of reads per feature

Statistical analysis (depends on the specific application)
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Sequence data

Sequence data are counts

DNA sample =⇒ population of cDNA fragments

Each genomic feature =⇒ species for which the population
size is to be estimated

Sequencing a DNA sample =⇒ random sampling of each of
these species

Aim : to estimate the relative abundance of each species in
the population

56 / 68



Poisson model

If we assume :

– each cDNA fragment has the same chance of being
selected for sequencing

– the fragments are selected independently

Then : the number of read counts for a given genomic feature
should follow a Poisson variation law across repeated sequence
runs of the same cDNA sample

The Poisson model implies that the mean equals the variance

(This relationship has been validated in an early RNA-Seq
study using the same initial source of RNA distributed across
multiple lanes of an Illumina GA sequencer)
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Single gene model

DNA sample =⇒ ‘library’

Contains genes 1, . . . , g , . . .

For a given gene g in library i , Ygi = number of reads for
gene g in library i

Ygi ∼ Bin(M, pgi ), where pgi is the proportion of the total
number of sequences M in library i that are gene g

M large, pgi small =⇒ Ygi ∼ Pois(µgi = Mpgi )
(approximately)
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Technical vs. biological replicates

For the Poisson model, the variance is equal to the mean

With technical replicates, this relation holds fairly well

With biological replicates, the variance is typically larger than
expected using the Poisson model

There are a few different approaches for accounting for this
additional variability (overdispersion)
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Link function for count data

We can model the count data Yi ∼ Pois(µi ), i = 1, . . . , n

Want to relate the mean µi to one or more covariates (for
example, treatment/control status)

A convenient link function in this case is the log :

log µi = η = xTi β

Using a log link ensures that the fitted values of µi will remain
in the parameter space [0, ∞)

A Poisson model with a log link is sometimes called a
log-linear model
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Variance function for the Poisson model

The Poisson distributions are a discrete family with probability
function indexed by the rate parameter µ > 0 :

p(y) =
e−µµy

y !
, y = 0, 1, 2, . . .

Under the Poisson model : E [Yi ] = Var(Yi ) = µi

General form of the relationship between the variance of the
response variable and its mean is : Var(response) = φV (µ),
with φ a constant scale factor

– Normal : V (µ) = 1, φ = σ2 (the variance does not
depend on the mean)

– Binomial : V (µ) = µ(1− µ) φ = 1
– Poisson : V (µ) = µ φ = 1

Real data are often overdispersed, exhibiting more variation
than allowed by the Poisson model
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Detecting and handling overdispersion

When fitting a GLM with binomial or Poisson errors, can
often detect overdispersion by comparing the residual deviance
to its degrees of freedom

For a well-fitting model, these should be approximately equal

Overdispersion usually handled with an alternative model :

– Quasi-Poisson Model : Assume Var(Yi ) = φµi and
estimating the scale parameter φ

– Zero-Inflated Poisson Model : for modeling the case
when there are too many ’0’ values

– Negative Binomial Model : Can arise from a two-stage
model :

Yi ∼ Pois(µ∗i ) µi∗ ∼ Γ(µi/ω, ω)

Then Yi ∼ NegBin, with E [Yi ] = µi and
Var(Yi ) = µi + µ2i /ω
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Differential gene expression for NGS data

Several BioConductor (R) packages for identifying differential
expression from NGS data

These mostly use the negative binomial model, since the
counts are typically over-dispersed compared to the Poisson
model

The edgeR package uses an overdispersed Poisson model to
account for both biological and technical variability, and uses
empirical Bayes methods to moderate the degree of
overdispersion across transcripts

63 / 68



Assessing model fit

In linear regression, an anova table partitions SST , the total
sum of squared deviations of observations about their mean,
into two parts :

– SSE , or residual (observed - predicted) sum of squares
– SSR, or regression sum of squares

Large SSR suggests the explanatory variable(s) is(are)
important

In linear regression, diagnostics are built around residuals and
SSR

For GLMs, there are a few different kinds of residuals :
Pearson residuals and deviance residuals

Pearson residual for an observation is obtained by subtracting
the mean (predicted value) for that observation and dividing
by the (estimated) SD

Deviance residuals are based on the contribution of each point
to the likelihood
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Deviance

In standard linear models, estimate parameters by minimizing
residual sum of squares

(Equivalent to ML for normal model)

In GLM, estimate parameters by ML

The deviance is (proportional to) 2× l

(Analogous to SSE)

Obtaining ‘absolute’ measure of goodness of fit depends on
some assumptions that may not be satisfied in practice

Usually focus on comparing competing models

When the models are nested, can carry out likelihood ratio test
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Comparing models

In linear regression, consider coefficient significant if (squared)
standardized value β̂/SE (β̂) is ‘large’

Can also do this for logistic regression (Wald test), but there
are some problems with it

Preferred approach : likelihood ratio test

Deviance D = −2
n∑

i=1

yi log

(
p̂i
yi

)
+ (1− yi ) log

(
1− p̂i
1− yi

)
To compare models, compute G = D(submodel)− D(bigger
model)

Under the null (i.e. the submodel), G ∼ χ2 with df =
difference in the number of estimated parameters
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Variance inflaction factors

The meaning of a variance inflation factor is essentially
equivalent for linear models and GLMs

We can use the VIF to look for multicollinearity

R function vif from the car package

Also look at correlation matrix for the data matrix X
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Summary

Residuals are certainly less informative for GLMs than for
linear regression

Issues of outliers and influential observations just as relevant
for GLMs as for linear regression : look at Cook’s distance plot

Usually a good idea to start with simple models and gradually
add in complexity

68 / 68


