- Applied Biostatistics
Statistical modeling overview
- **Exponential family**
- Generalized linear models (GLM)
- **Horseshoe crabs**
- **Analysis of horseshoe crab data using logistic regression**
- Odds, odds ratio interpretation of logistic regression
- \blacksquare Horseshoe crab logistic regression model : 1 variable
- **n** Inference for logistic regression
	- CI/test for coefficients
	- CI for probabilities
- **Multiple logistic regression**
- **Logistic regression with indicators**
- **Assessing model fit**
- Count data and Poisson regression
- Comparing models

Horseshoe crabs

- Very old (\sim 450 million years), so sometimes called 'living fossils'
- \blacksquare 4 species
- Not actually 'crabs', they are arachnids (like spiders)
- Females \sim 30% bigger than males
- **Few survive into adulthood**
- **Important in biomedical research their blood has good** anti-bacterial properties and is used in developing vaccines and endotoxin testing

Mating affected by male's condition

- Males are either attached or unattached : satellites or more distant
- Attached males are :
	- lighter in color
	- more slime
	- less fouling
	- carapace, eyes and spine in better condition
	- younger

than unattached males

Sexual biology of horseshoe crabs

- **Migrate for spawning in shallow water**
- Nesting is synchronized and seasonal
- Tend to nest in (small number of) protected areas
- Reproductive competition in male Limulus polyphemus horseshoe crabs
- Operational sex ratio is usually male-biased : competitive males per female $\sim 1 - 6$

4 / 68

Scientific aim

- Suppose now that we are interested in investigating whether a female horseshoe crab has a satellite or not
- \blacksquare This is a *binary* response
- **Activity** : think about how you might do this and what information (variables) you could collect to study this

Data for the study

Data on $n = 173$ female horseshoe crabs.

- \bullet C = color (1,2,3,4=light medium, medium, dark medium, dark).
- $S =$ spine condition (1,2,3=both good, one worn or broken, both worn or broken).
- \bullet W = carapace width (cm).
- $Wt = weight (kg)$.
- \bullet Sa = number of satellites (additional male crabs besides her nest-mate husband) nearby.

BUT : what are we going to do with this information ?? $\blacksquare \Rightarrow$ need a (statistical) model

Exploring the data : carapace width

Let's first focus on the simplest case where there is only a single variable : carapace width

Statistical modeling

- Goal : to capture important characteristics of the *relationship* between one (or several) explanatory
- Many models are of the form :

 $g(Y) = f(\mathbf{x}) +$ erreur

Differences between models : the forms of g, f and distributional assumptions about the error term

Examples of models :

- Linear:
$$
Y = \beta_0 + \beta_1 x + \epsilon
$$

- Linear $Y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$
- $-$ (Intrinsically) nonlinear : $Y=\alpha x_1^\beta$ $x_1^\beta x_2^\gamma$ $\frac{1}{2}x_3^{\delta}+\epsilon$
- Generalized linear model (e.g. Binomial) : $\log \frac{p}{1-p} = \beta_0 + \beta_1 x + \beta_2 x_2$
- Cox proportional hazards model (used in survival analysis) : $h(t) = h_0(t) \exp(\beta x)$

 $\mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{B} \otimes \mathbf{B}$

Linear models

- A simple model : $E(Y) = \beta_0 + \beta_1 x$
- Gaussian measurement model : $Y = \beta_0 + \beta_1 x + \epsilon, \epsilon \; \mathcal{N}(0, \sigma^2)$
- More generally : $Y = X\beta + \epsilon$, où Y est $n \times 1$, X is $n \times p$, β is $\rho\times 1$, ϵ is $n\times 1$, often supposed $\mathcal{N}(0,\sigma^2I_{n\times n})$
- **Important application : analysis of designed experiments :**
	- a design matrix X such that for the response variable $Y : E(Y) = X\beta$,

where β is a vector of *parameters* (ou contrastes)

- There are several ways to specify the matrix X for a specific design (this corresponds to the parameterization of the model)
- \Rightarrow ANOVA

Linear regression model (again)

 \blacksquare For all the linear models that we have seen this semester, the reponse variable has been modeled as a Normal RV :

$$
Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \epsilon, \quad \epsilon \sim N(0, \sigma^2)
$$

 \blacksquare Equally :

$$
Y \sim N(\mu, \sigma^2), \quad \mu = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k
$$

- Suitable for a *continuous* response
- **NOT** for a *binary* response
- Generalized linear models (GLMs) : generalization of linear models for modeling non-normal response variables
- We will study *logistic regression* for a *binary response variable*

Modification of the response

Instead of modeling the response directly, could instead model the *probability* of obtaining the value '1' ('success') (that is, the expected value of the reponse)

Problems:

- could lead to fitted values outside of *outside of* $[0, 1]$
- normality assumption on errors is *false*
- Instead of modeling the expected response *directly* as a linear function of the predictors, model a *suitable transformation*
- For binary data, this is generally taken to be the *logit* (or logistic) transformation

Generalized linear model : theory

- GLMs allow unified treatment of statistical methods for several important classes of models
- \blacksquare The distribution of the response Y is supposed to belong to an exponential family : $f(x\mid \eta) = h(x) \exp[\eta^{\top} T(x) - A(\eta)].$
- \blacksquare (Many distributions can be respresented in this form, including the binomial, Normal, Poisson, exponential)
- GLMs are formed from three components :
	- $-$ random component : the reponse variable Y, a random component whose distribution belongs to the exponential family
	- deterministic component : the linear predictor $\beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k$
	- link function : describes the functional relation between the linear predictor and the mathematical expectation of the response varia[ble](#page-10-0) [Y](#page-12-0)

Linear models : a new view

■ For a linear model :

 $Y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \epsilon$, where $\epsilon \sim N(0, \sigma^2)$

- **The expected reponse is** $E[Y | x] = \beta_0 + \beta_1x_1 + \ldots + \beta_kx_k$
- Let η be the linear predictor $\eta = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k$
- For the (ordinary) linear model : $E[Y | x] = n$
- For a generalized linear model, there is a link function g that relates η with the expected response : $g(E[Y | x]) = \eta$
- For the (ordinary) linear model, $g(y) = y$ (link = identity)

Link function

Generally more clear when we consider the *inverse of the link* function :

$$
E[Y|x] = g^{-1}(\eta)
$$

For a binary response (values 0 or 1), then $E[Y | x] = P(Y = 1 | x)$

 \blacksquare In this case, a practical function is

$$
E[Y \mid x] = P(Y = 1 \mid x) = \frac{e^{\eta}}{1 + e^{\eta}}
$$

■ The corresponding link functions (that is, the inverse of this function) is called the *logit*

$$
\blacksquare \text{ logit}(x) = \log\left(\frac{x}{1-x}\right)
$$

■ The *logistic regression* models the logit as a function of the predictor variables

Logit transformation

 $\mathsf{logit}(\pi(\mathsf{x})) = \mathsf{log}\: \mathsf{odds}(\pi(\mathsf{x}))) = \mathsf{log}\: \frac{\pi(\mathsf{x})}{1 - \pi(\mathsf{x})} =$ $\beta_0 + \beta_1x_1 + \beta_2x_2 + \cdots + \beta_kx_k$

■ Then,
$$
\pi(x_1,...x_k) = \frac{\exp(\beta_0 + \beta_1x_1 + \beta_2x_2 + \cdots + \beta_kx_k)}{1 + \exp(\beta_0 + \beta_1x_1 + \beta_2x_2 + \cdots + \beta_kx_k)}
$$

- Parameter estimation by maximum likelihood
- Interpretation : the parameter β_k is such that $\exp(\beta_k)$ is the OR (odds ratio) that the response takes value 1 when x_k goes up by 1, when the remaining variables are constant $\Rightarrow \ \beta = \log OR$

For example, for binary X , we have

$$
\mathit{OR} = \frac{\left(\frac{\exp{(\beta_0+\beta_1)}}{1+\exp{(\beta_0+\beta_1)}}\right)\Big/\left(1-\frac{\exp{(\beta_0+\beta_1)}}{1+\exp{(\beta_0+\beta_1)}}\right)}{\left(\frac{\exp{\beta_0}}{1+\exp{\beta_0}}\right)\Big/\left(1-\frac{\exp{\beta_0}}{1+\exp{\beta_0}}\right)}\ =\ \frac{\exp{(\beta_0+\beta_1)}}{\sum\limits_{15/68}^{\text{max}}\exp{(\beta_0+\beta_1)}}\ =\ \frac{\exp{(\beta_0+\beta_1)}}{\exp{(\beta_0+\beta_1)}}\ =\ \frac{\
$$

Logistic regression

- **Example 1** Logistic regression is a natural choice for a *binary reponse*
- **Denote one of the 2 possibilities 'success', or** $Y = 1$
- We look for a model for estimating the *probability of success* as a function of the explanatory variables
- When using the *logit* transformation, la probabilité of 'success' is of the form : η

$$
E[Y \mid x] = P(Y = 1 \mid x) = \frac{e^{\eta}}{1 + e^{\eta}}
$$
\n
$$
\begin{array}{c}\n\frac{1}{0.9} \\
0.9 \\
0.7 \\
0.6 \\
0.4 \\
0.3 \\
0.3 \\
0.4 \\
\hline\n\end{array}
$$
\nAnswer 10.10

Logistic modeling of horseshoe crab data : results 1

Figure 4.3. Observed and fitted proportions of satellites, by width of female crab.

E 299 17 / 68

イロメ イ団メ イミメ イモメー

Logistic modeling of horseshoe crab data : results 2

Table 4.2. Computer Output for Logistic Regression Model with Horseshoe Crab Data

Now let's estimate $\pi(x) =$ probability (depending on x) of a female crab having a satellite

 \blacksquare Based on the output and the inverse logit function, we have :

$$
\pi(x) = \frac{\textit{exp}(-12.351 + 0.497 \times x)}{1 + \textit{exp}(-12.351 + 0.497 \times x)}
$$

For the minimum sample value (21.0cm), $\pi(x) = \bot$

For the maximum sample value (33.5cm), $\pi(x) =$

Odds and the OR

For a probability *p*, the *odds* is defined as :
$$
odds(p) = \frac{p}{1-p}
$$

For just one *binary* variable X, the *odds ratio* (OR) is the ratio of the odds :

$$
OR = \frac{P(Y=1 | X=1)/(1 - P(Y=1 | X=1))}{P(Y=1 | X=0)/(1 - P(Y=1 | X=0))}
$$

 \blacksquare 3 cases :

- $OR = 1$: Y is independent of X
- $OR > 1$: the condition represented by Y is more frequent for individuals with $X = 1$
- $OR < 1$: the condition represented by Y is more frequent for individuals with $X = 0$

Analogous to linear regression

- \blacksquare The logit function g possesses many of the same good properties of the linear regression model
- \blacksquare Mathematically convenient and flexible can include covariates in the model
- Can meaningfully interpret parameters
- **Linear in the parameters**
- A difference : Error distribution is *binomial* (not Normal)

20 / 68

 $\mathbf{A} \cap \mathbf{D} \rightarrow \mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B}$

Model fitting

- For linear regression, typicall fitting is done by the method of least squares
- But when the reponse est binary, the 'good' statistical properties of the resulting estimators no longer hold
- \blacksquare The general method that leads us to least squares (for normally distributed errors) is our friend (!!) maximum likelihood

21 / 68

Revision : binomial distribution

- **EXECUTE:** Logistic regression is related to the *binomial distribution*
- If there are multiple observations with the same value(s) of the explanatory variable(s), then the individual responses can be added and this sum has a binomial distribution
- Binomial mass function : $P(X = x) = \binom{n}{x}$ x $\int p^x (1-p)^{n-x}$
- For a binomial RV with parameters n and p, then the expected value is $\mu = n\overline{p}$ and the variance is $\sigma^2 = n\overline{p}(1-\overline{p})$
- **E** Logistic regression belongs to the 'binomial family' of GLMs

22 / 68

 $\mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{B} \otimes \mathbf{B}$

Maximum likelihood estimation

- Likelihood : $f(x_i) \propto \pi(x_i)^{y_i} [1-\pi(x_i)]^{1-y_i}$
- For independent observations, the likelihood is : $L(\beta) = \prod_{i=1}^n f(x_i)$
- log likelihood : $l(\beta) = \log[L(\beta)] = \sum_{i=1}^{n} (\log(\pi(x_i)) + (1 - y_i) \log(1 - \pi(x_i)))$
- **Find the** β_i **that maximize the log likelihood by differentiating** with respect to each β_i and setting all derivatives = 0
- For linear regression, these equations are simple to solve
- On the other hand, for *logistic regression* the equations are nonlinear and do not have an analytic solution
- \blacksquare They are solved using a *numerical algorithm* (notably Newton-Raphson)

Confidence intervals

From the estimated parameters $\hat{\beta}_{i}^{MLE}$, we obtain the MLE of the linear predictor :

$$
\hat{\eta}_{MLE} = \hat{\beta}_0^{MLE} + \sum_{i=1}^p \hat{\beta}_i^{MLE} x_i
$$

 \blacksquare In addition, due to the invariance of the MLE, we obtain the MLE of the probability of 'success' :

$$
\widehat{\pi(x)} = \frac{e^{\hat{\eta}}}{1+e^{\hat{\eta}}}
$$

■ We use the asymptotic normality of the MLE in order to make a CI at $100(1 - \alpha)\%$ for $\eta : \hat{\eta} \pm z_{1-\alpha/2} \times ES(\hat{\eta}) = (J, S)$ $\frac{e^J}{1+e^J}, \frac{e^S}{1+}$ \setminus

The 100 $(1-\alpha)$ % CI for $\pi(x)$ is thus : $\left(\frac{e^{j\alpha}}{1-\alpha}\right)$

24 / 68

 $1+e^5$

BREAK

25 / 68

 2990

K ロンス (個) > スミンス(ミン) () ミ

Model fitting and checking

For the standard (*fixed effects*) linear model, estimation is usually by *least squares*

26 / 68

イロト 不優 ト 不思 ト 不思 トー 理

- Can be more complicated with *random effects* or when x-variables are subject to measurement error as well
- Checking model : examination of *residuals*
	- Normality
	- Time effects
	- Nonconstant variance
	- Curvature
- **Detection of influential observations**

Linear regression model (again)

Linear model

$$
Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \epsilon, \quad \epsilon \sim N(0, \sigma^2)
$$

■ Another way to write this :

$$
Y \sim N(\mu, \sigma^2), \quad \mu = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k
$$

27 / 68

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\langle \begin{array}{ccc} \square & \end{array} \right\rangle & \left\langle \begin{array}{ccc}$

Suitable for a *continuous* response **NOT** suitable for a *binary* response NOT suitable for a *count* data

Modified model

- Instead of modeling the response directly, could instead model some *function* of the response
- i.e., Instead of modeling the expected response *directly* as a linear model, model a suitable transformation
- For binary data, it is convenient to use the *logit* function
- For count data, this is often taken to be the log transformation

Modified model for binary data

- **Instead of modeling the 0/1 response directly, could instead** model the probability of '1'
- **Problems** :
	- $-$ could lead to fitted values outside of $[0, 1]$
	- normality assumption on errors is wrong
- Instead of modeling the expected response *directly* as a linear function of the predictors, model a *suitable transformation*
- For binary data, this is generally taken to be the *logit* (or logistic) transformation

Logit transformation

■
$$
logit(p) = log \frac{p}{1-p} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k
$$

■ Therefore,

$$
p(x_1,... x_k) = \frac{\exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)}{1 + \exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)}
$$

- **The parameter** β_k is such that $exp(\beta_k)$ is the *odds ratio* that the response takes value 1 when x_k increases by one, when the remaining variables are constant
- i.e. β_k is a log-odds ratio (log OR)
- **Estimate parameters by** *maximum likelihood* **rather than least** squares

Generalized linear model

- In a standard linear model, the response variable is modeled as a normally distributed
- However, if the response variable is $dichotomous$ or a count, it does not make sense to model the outcome as normal
- Generalized linear models (GLMs) are an extension of linear models to model non-normal response variables
- A GLM consists of three components :
	- A random component, specifying the conditional distribution of the response variable, Y_i , given the values of the explanatory variables in the model
	- A linear predictor
	- A smooth and invertible linearizing *link function*
- We consider *logistic regression* for a count response
- We can consider *Poisson regression* for a count response

Generalized linear models : some theory

- **Allows unified treatment of statistical methods for several** important classes of models
- Response Y assumed to have exponential family distribution :

$$
f(y) = \exp[a(y)b(\theta) + c(\theta) + d(y)]
$$

- For a standard linear model $Y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \epsilon$, with $\epsilon \sim N(0, \sigma^2)$ **The expected response is** $E[Y | x] = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k$ Let η denote the *linear predictor* $\eta = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k$ For a standard linear model, $E[Y | x] = \eta$ In a generalized linear model, there is a link function g between η and the expected response : $g(E[Y | x]) = \eta$
- For a standard [li](#page-32-0)near model, $g(y) = y$ $g(y) = y$ $g(y) = y$ (*[id](#page-30-0)[en](#page-32-0)[ti](#page-30-0)[ty](#page-31-0) li[nk](#page-0-0)*)

Link function

When the response variable is binary (with values coded as 0 or 1), then $E[Y | x] = P(Y = 1 | x)$

\blacksquare A convenient function in this case is $E[Y | x] = P(Y = 1 | x) = \frac{e^{i\eta}}{1 - \eta}$ $1+e^{\eta}$

■ The corresponding link function (inverse of this function) is called the *logit*

33 / 68

イロト 不優 ト 不思 ト 不思 トー 温

$$
\log(t(x)) = \log \frac{x}{1-x}
$$

Regression using this model is called *logistic regression*

Link function : examples

Analogous to linear regression

- \blacksquare The logit function g has many of the desirable properties of a linear regression model :
	- Mathematically convenient and flexible
	- Can meaningfully interpret parameters
	- Linear in the parameters

 \blacksquare A difference : Error distribution is binomial (not normal)

35 / 68

Inference : tests for coefficients

 \blacksquare Wald test statistics are simple; for 'sufficiently large' samples :

$$
z=\frac{\hat{\beta}}{SE(\hat{\beta})}\sim N(0,1)
$$

- **Although the Wald test is adequate for large samples, the** likelihood ratio test (LRT) is more powerful and more reliable for sample sizes often used in practice
- The LRT test statistic compares the maximum L_H of the likelihood function when $\beta = 0$ to the maximum L_A of the likelihood function for unrestricted β :

$$
\lambda = -2 \log \frac{L(\hat{\theta}_{MLE}^{H})}{L(\hat{\theta}_{MLE}^{A})},
$$

Under certain regularity conditions, when H is true $\lambda \sim \chi^2_{\bm{\rho}}$, where $p =$ number of constraints imposed by H (= difference in the number of parameters estimated [un](#page-34-0)[de](#page-36-0)[r](#page-34-0) [th](#page-35-0)[e](#page-36-0) [2](#page-0-0) [m](#page-67-0)[od](#page-0-0)[els](#page-67-0)[\)](#page-0-0)

Inference : CI for probabilities

For simple logistic regression, the estimated (predicted) probability at a fixed x value is given by :

$$
P(Y=1 | x) = \hat{\pi}(x) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 x}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 x}}
$$

- **Activity**: Estimate the probability of a satellite for female crabs of width $x = 26.5$ cm ...
- From software, a 95% CI for the true probability $\pi(26.5)$ is (0.61, 0.77)

Why use a model to estimate probabilities ?

- Instead of finding $\hat{\pi}(x)$ using the model fit, as we just did at $x = 26.5$, why not simply use the sample proportion to estimate the probability ? ?
- For width $= 26.5, 4/6$ had satellites, so the sample proportion estimate at $x = 26.5$ is $p = 4/6 = 0.67$ (similar to the model-based estimate)
- A small sample exact (binomial) 95% CI is $(0.22, 0.96)$: much larger than the model-based CI
- When the logistic regression model holds, the model-based estimator of $\hat{\pi}(x)$ is *much better* than that of the sample proportion because it uses all the data rather than only the data at the fixed x value, giving a more precise estimate
- For example, at $x = 26.5$, software reports a $SE = 0.04$ for the model-based estimate 0.695
- By contrast, the SE for the sample proportion of 0.67 with only six observations is :

38 / 68

Indicator (dummy) predictors

- Let's go back to analyzing our Horseshoe crab data, but instead of only using carapace width as a predictor, let's also include color.
- Color is a *categorical* (factor) variable with five categories : light, medium light, medium, medium dark, dark
- Color is a surrogate for age, since older crabs tending to have darker shells
- The sample contained no light crabs, so we use only the other four categories
- \blacksquare In order to include categorical / factor explanatory variables in a LM or GLM, we need to use *indicator* (sometimes called $dummy)$ variables
- The number of dummy variables to include is the number of categories minus 1

Multiple logistic regression

- To incorporate color into the model, we need to introduce 3 indicator variables for the 4 categories
- **The model is now**

$$
logit[P(Y = 1)] = \beta_0 + \beta_1 c_1 + \beta_2 c_2 + \beta_3 c_3 + \beta_4 x
$$

40 / 68

イロト 不優 ト 不思 ト 不思 トー 理

where x denotes width and $c_1 = 1$ for color = medium light, 0 otherwise $c_2 = 1$ for color = medium, 0 otherwise $c_3 = 1$ for color = medium dark, 0 otherwise Grab color is dark when $c_1 = c_2 = c_3 = 0$

Multiple logistic modeling with width and color : results 1

		Std.	Like. Ratio Parameter Estimate Error Confidence	95% Limits	Chi	Square $Pr > Chisq$
c1 c2 C ₃ width		1.3299 0.8525 1.4023 0.5484 1.1061 0.5921 0.4680 0.1055	$intercept$ -12.7151 2.7618 -18.4564 -0.2738 0.3527 -0.0279 0.2713	-7.5788 21.20 3.1354 0.6870	2.43 2.5260 6.54 2.3138 3.49 19.66	\lt .0001 0.1188 0.0106 0.0617 \lt .0001
LR Statistics						
	Source	DF	Chi-Square		Pr > Chisq	
	width color	1 3	24.60 7.00	< .0001 0.0720		

Table 4.6. Computer Output for Model for Horseshoe Crabs with Width and **Color Predictors**

Multiple logistic modeling with width and color : results 2

 299 42 / 68

Some interpretation

- **The model assumes** *no interaction* between color and width \Rightarrow width has the same effect (coefficient 0.468) for all colors
- **This implies that the shapes of the four curves relating width** to $P(Y = 1)$ (for the four colors) are identical
- For each color, a 1 cm increase in width has a multiplicative effect of $e^{0.468} = 1.60$ on the odds that $Y = 1$
- Each curve is the same as any other curve, only shifted to the left or right
- The parallelism of curves in the horizontal dimension implies that two curves never cross
- At all width values, for example, color 4 (dark) has a lower estimated probability of a satellite than the other colors

Let's have some fun ! !

■ What is the estimated probability for a medium-light crab of average width (26.3 cm) ? ? for a dark crab ? ?

What are the estimated odds for a medium-light crab $\frac{2}{3}$ for a dark crab ? ?

■ The exponentiated difference between two color parameter estimates is an odds ratio comparing those colors. What is the estimated odds ratio comparing medium-light and dark crabs ? ? Interpret.

Evaluation of the fitted model

- In linear regression, ANOVA consists in the decomposition of the total sum of squares of the observations around their mean (SST) :
	- $-$ SSE, error sum of squares (residuals $=$ observed predicted)
	- SSR, regression sum of squares (of the model)
- **E** Large values of *SSR* suggest the importance of the explanatory variable(s)
- We use the *principle* for logistic regression : comparison of the observed response to the predicted response by the models with//without the explanatory variable(s)
- \blacksquare This comparison is made based on the log likelihood

Deviance

- For (ordinary) linear models, parameter estimation by least squares (minimize the sum of squared residuals)
- (Equivalent to ML for the Normal model)
- For GLMs, estimation is by ML
- The *deviance* is (proportional to) $2 \times \ell$
- (Analogous to SSE)
- Obtaining an 'absolute' measure of the quality of model fit (goodness-of-fit) depends on certain assumptions, often not satisfied in practice
- **Thus typically focus rather on the** *comparison* **of competing** models
- If the models are *nested* (that is, one model is a sub-model of the other), we can carry out a LRT

Test of goodness-of-fit ('global' test)

- Or rather test of NONgoodness-of-fit (!!)
- \blacksquare Test based on the deviance D of the model
- \blacksquare We reject H : the data conform to the model, for *large values* of D(residuals)
- Under A, there is a parameter for each observation (saturated model)
- It is often said BUT NOT TRUE !!!!! that under H , D(residuals) $\sim \chi^2$ with df = df error
- (The problem : the asymptotic result for χ^2 does not hold if the number of parameters is not finite, and since the saturated model has one parameter for each of the *n* observations, then if $n \to \infty$ the number of parameters is not finite)
- For samples of moderate size, it is not the worst thing in the world to assume this asymptotic distribution

Model comparison

- **Example 2** Linear regression : a coefficient is (statistially) significant if its standardized value $\hat{\beta}/SE(\hat{\beta})$ is 'large'
- \blacksquare We can use this same reasoning for logistic regression (z -test $=$ *Wald test*), but this approach is problematic (lacks power)
- **Preferred approach** : *likelihood ratio test* (LRT)

■ Deviance
$$
D = -2 \left(\sum_{i=1}^{n} y_i \log \left(\frac{\hat{p}_i}{y_i} \right) + (1 - y_i) \log \left(\frac{1 - \hat{p}_i}{1 - y_i} \right) \right)
$$

- Comparison of models : calculate the statistic $G^2 = D(\text{sub-model}) - D(\text{bigger model})$
- Under H (the sub-model is sufficient), $G^2 \sim \chi^2$ with degrees of freedom $(df) = difference in the number of estimated$ parameters

Summary : Tests for coefficients

One coefficient :

- $\textbf{1}$ parameter $=\beta_i$, the coefficient of variable x_i in the logistic regression model in the population
- 2 $H : \beta_i = 0;$ $A : \beta_i \neq 0$ **3** TS : • Wald : $z_{obs} = \frac{\hat{\beta}_{i}}{5.56}$ $ES(\hat{\beta}_i)$ • LRT : $G^2 = -2 \log \frac{L_H}{L_A}$ 4 $\rho_{\textit{obs}}$: • Wald : 2 $\mathit{P(Z>\mid z_{1-\alpha/2} \mid)}$ • LRT : $\mathit{P(X^2>\chi_1^2)}$

■ Several coefficients :

 $\textbf{1} \text{ }$ parameters $=\beta_j,\ldots,\beta_k$ $(=$ q coefficients), of variables $\mathsf{x}_{j},\ldots,\mathsf{\beta}_{k}$ in the logistic regression model in the population 2 $H : \beta_i = \ldots = \beta_k = 0;$ A : at least one $\beta_i \neq 0, q \leq i \leq k$ 3 TS : ● LRT : $G^2 = -2 \log \frac{L_H}{L_A}$ 4 p_{obs} : • LRT : $P(X^2 > \chi_q^2)$ (Here, we consider the RV $X^2 \sim \chi^2$)

49 / 68

イロト 不優 ト 不思 ト 不思 トー 理

PAUSE

50 / 68

 299

イロメ イ部メ イ君メ イ君メー 君

DNA sequencing (optional)

(Automated) Sanger sequencing

- 'first-generation' technology
- F. Sanger, 1977

Process:

- bacterial cloning or PCR
- template purification
- labelling of DNA fragments using the chain termination method with energy transfer, dye-labelled dideoxynucleotides and a DNA polymerase
- capillary electrophoresis
- fluorescence detection

■ Data : four-colour plots that reveal the DNA sequence

Next-generation sequencing

Several newer sequencing technologies

- 'Next-generation sequencing' (NGS data)
- 'Ultra high-throughput sequencing' (UHTS data)
- **These newer technologies use various strategies that rely on a** combination of template preparation, sequencing and imaging, and genome alignment and assembly methods
- Data : four-colour plots that reveal the DNA sequence
- **Major advance : ability to produce a** *large amount* **of data** relatively *cheaply*
- **Expands experimental possibilities beyond just determining** the order of bases

Applications of NGS

- Sequence assembly (original application)
- Resequencing : The sequencing of part of an individual's genome in order to detect sequence differences between the individual and the standard genome of the species

53 / 68

- Gene expression : RNA-Seq
- SNP discovery and genotyping
- Variant discovery and quantification
- Transcription factor binding sites : ChIP-Seq
- **Measuring DNA methylation**

NGS data generation

Sequencing technologies incorporate methods that we can class as

- template preparation
- sequencing and imaging
- data analysis
- Combination of specific protocols distinguishes different technologies
- **Major technologies** :
	- Illumina HiSeq (older : Solexa)
	- 454 (Roche)
	- Applied Biosciences SOLiD
	- Pacific Biosciences SMRT (single molecule real-time)

Data analysis pipeline

- Data are *counts* of short sequences (called 'reads')
- Quality control of data
- **Match to reference sequence, read mapping**
- Count/summarize number of reads per feature
- **Statistical analysis (depends on the specific application)**

Sequence data

- Sequence data are counts
- **DNA** sample \implies population of cDNA fragments
- **■** Each genomic feature \implies species for which the population size is to be estimated
- Sequencing a DNA sample \implies random sampling of each of these species
- \blacksquare Aim : to estimate the relative abundance of each species in the population

Poisson model

 \blacksquare If we assume :

- each cDNA fragment has the same chance of being selected for sequencing
- the fragments are selected independently
- Then : the number of read counts for a given genomic feature should follow a *Poisson variation law* across repeated sequence runs of the same cDNA sample
- \blacksquare The Poisson model implies that the *mean equals the variance*
- (This relationship has been validated in an early RNA-Seq study using the same initial source of RNA distributed across multiple lanes of an Illumina GA sequencer)

Single gene model

- DNA sample \implies 'library'
- **Contains genes** $1, \ldots, g, \ldots$
- For a given gene g in library i, Y_{gi} = number of reads for gene g in library i
- Y_{gi} ~ Bin(M, p_{gi}), where p_{gi} is the proportion of the total number of sequences M in library *i* that are gene g

58 / 68

KORK EX KEY A BY A GAA

■ *M* large, p_{gi} small $\implies Y_{gi} \sim Pois(\mu_{gi} = M p_{gi})$ (approximately)

Technical vs. biological replicates

- For the Poisson model, the variance is equal to the *mean*
- With *technical replicates*, this relation holds fairly well
- With biological replicates, the variance is typically larger than expected using the Poisson model
- There are a few different approaches for accounting for this additional variability (overdispersion)

Link function for count data

- We can model the count data $Y_i \sim Pois(\mu_i)$, $i = 1, \ldots, n$
- Want to relate the mean μ_i to one or more *covariates* (for example, treatment/control status)
- \blacksquare A convenient link function in this case is the log :

$$
\log \mu_i = \eta = x_i^T \beta
$$

- Using a log link ensures that the fitted values of μ_i will remain in the parameter space $[0, \infty)$
- A Poisson model with a log link is sometimes called a log-linear model

Variance function for the Poisson model

The Poisson distributions are a discrete family with probability function indexed by the rate parameter $\mu > 0$:

$$
p(y) = \frac{e^{-\mu} \mu^y}{y!}, \quad y = 0, 1, 2, ...
$$

Under the Poisson model : $E[Y_i] = \text{Var}(Y_i) = \mu_i$

- General form of the relationship between the variance of the response variable and its mean is : $Var(response) = \phi V(\mu)$, with ϕ a constant scale factor
	- $-$ Normal : $V(\mu)=1,\;\;\phi=\sigma^2$ (the variance does not depend on the mean)
	- Binomial : $V(\mu) = \mu(1 \mu)$ $\phi = 1$
	- Poisson : $V(\mu) = \mu \phi = 1$
- Real data are often overdispersed, exhibiting more variation than allowed by the Poisson model **KORK CRANEY KEY CRANE**

Detecting and handling overdispersion

- When fitting a GLM with binomial or Poisson errors, can often detect overdispersion by comparing the residual deviance to its degrees of freedom
- \blacksquare For a well-fitting model, these should be approximately equal
- Overdispersion usually handled with an alternative model :
	- **Quasi-Poisson Model** : Assume $Var(Y_i) = \phi \mu_i$ and estimating the *scale parameter* ϕ
	- Zero-Inflated Poisson Model : for modeling the case when there are too many '0' values
	- Negative Binomial Model : Can arise from a two-stage model :

$$
Y_i \sim \text{Pois}(\mu_i^*) \qquad \mu_i^* \sim \Gamma(\mu_i/\omega, \omega)
$$

Then $Y_i \sim \mathsf{NegBin}$, with $E[Y_i] = \mu_i$ and $Var(Y_i) = \mu_i + \mu_i^2/\omega$

62 / 68

Differential gene expression for NGS data

- Several BioConductor (R) packages for identifying differential expression from NGS data
- These mostly use the negative binomial model, since the counts are typically over-dispersed compared to the Poisson model
- The edgeR package uses an overdispersed Poisson model to account for both biological and technical variability, and uses empirical Bayes methods to moderate the degree of overdispersion across transcripts

63 / 68

Assessing model fit

- In linear regression, an anova table partitions SST , the total sum of squared deviations of observations about their mean. into two parts :
	- SSE, or residual (observed predicted) sum of squares
	- $-$ SSR, or regression sum of squares
- **Large SSR suggests the explanatory variable(s) is(are)** important
- In linear regression, diagnostics are built around residuals and SSR
- For GLMs, there are a few different kinds of residuals : Pearson residuals and deviance residuals
- **Pearson residual for an observation is obtained by subtracting** the mean (predicted value) for that observation and dividing by the (estimated) SD
- **Deviance residuals are based on the contribution of each point** to the likelihood $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

Deviance

- In standard linear models, estimate parameters by minimizing residual sum of squares
- (Equivalent to ML for normal model)
- In GLM, estimate parameters by ML
- **The** *deviance* is (proportional to) $2 \times l$
- (Analogous to SSE)
- Obtaining 'absolute' measure of goodness of fit depends on some assumptions that may not be satisfied in practice
- Usually focus on comparing competing models
- \blacksquare When the models are *nested*, can carry out likelihood ratio test

Comparing models

- In linear regression, consider coefficient significant if (squared) standardized value $\hat{\beta}/SE(\hat{\beta})$ is 'large'
- Can also do this for logistic regression (Wald test), but there are some problems with it
- Preferred approach : likelihood ratio test

■ Deviance
$$
D = -2 \sum_{i=1}^{n} y_i \log \left(\frac{\hat{p}_i}{y_i} \right) + (1 - y_i) \log \left(\frac{1 - \hat{p}_i}{1 - y_i} \right)
$$

- To compare models, compute $G = D$ (submodel) D(bigger model)
- Under the null (*i.e.* the submodel), $G \sim \chi^2$ with df = difference in the number of estimated parameters

Variance inflaction factors

- The meaning of a variance inflation factor is essentially equivalent for linear models and GLMs
- We can use the VIF to look for multicollinearity
- \blacksquare R function vif from the car package
- Also look at correlation matrix for the data matrix X

67 / 68

イロト 不優 ト 不思 ト 不思 トー 理

Summary

- Residuals are certainly less informative for GLMs than for linear regression
- \blacksquare Issues of outliers and influential observations just as relevant for GLMs as for linear regression : look at Cook's distance plot
- Usually a good idea to *start with simple models* and gradually add in complexity