Statistical modeling overview

- Exponential family
- Generalized linear models (GLM)
- Horseshoe crabs
- Analysis of horseshoe crab data using logistic regression
- Odds, odds ratio interpretation of logistic regression
- Horseshoe crab logistic regression model : 1 variable
- Inference for logistic regression
 - CI/test for coefficients
 - CI for probabilities
- Multiple logistic regression
- Logistic regression with indicators
- Assessing model fit
- Count data and Poisson regression
- Comparing models

Horseshoe crabs

- Very old (\sim 450 million years), so sometimes called 'living fossils'
- 4 species
- Not actually 'crabs', they are arachnids (like spiders)
- $lue{}$ Females $\sim 30\%$ bigger than males
- Few survive into adulthood
- Important in biomedical research their blood has good anti-bacterial properties and is used in developing vaccines and endotoxin testing

Mating affected by male's condition

- Males are either attached or unattached : satellites or more distant
- Attached males are :
 - lighter in color
 - more slime
 - less fouling
 - carapace, eyes and spine in better condition
 - younger

than unattached males

Sexual biology of horseshoe crabs

- Migrate for spawning in shallow water
- Nesting is synchronized and seasonal
- Tend to nest in (small number of) protected areas
- Reproductive competition in male Limulus polyphemus horseshoe crabs
- Operational sex ratio is usually male-biased : competitive males per female $\sim 1-6$

Scientific aim

- Suppose now that we are interested in investigating whether a female horseshoe crab has a satellite or not
- This is a *binary* response
- Activity: think about how you might do this and what information (variables) you could collect to study this ______

Data for the study

Data on n = 173 female horseshoe crabs.

- C = color (1,2,3,4=light medium, medium, dark medium, dark).
- S = spine condition (1,2,3=both good, one worn or broken, both worn or broken).
- W = carapace width (cm).
- Wt = weight (kg).
- Sa = number of satellites (additional male crabs besides her nest-mate husband) nearby.

- **BUT**: what are we going to do with this information??
- ⇒ need a (statistical) *model*

Exploring the data: carapace width

Let's first focus on the simplest case where there is only a single variable : carapace width

Statistical modeling

- Goal : to capture important characteristics of the *relationship* between one (or several) explanatory
- Many models are of the form :

$$g(Y) = f(\mathbf{x}) + \text{erreur}$$

- Differences between models : the forms of g, f and distributional assumptions about the error term
- Examples of models :
 - Linear : $Y = \beta_0 + \beta_1 x + \epsilon$
 - Linear $Y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$
 - (Intrinsically) nonlinear : $Y = \alpha x_1^{\beta} x_2^{\gamma} x_3^{\delta} + \epsilon$
 - Generalized linear model (e.g. Binomial):

$$\log \frac{p}{1-p} = \beta_0 + \beta_1 x + \beta_2 x_2$$

- Cox proportional hazards model (used in survival analysis) : $h(t) = h_0(t) \exp(\beta x)$

Linear models

- A simple model : $E(Y) = \beta_0 + \beta_1 x$
- Gaussian measurement model : $Y = \beta_0 + \beta_1 x + \epsilon, \epsilon \ N(0, \sigma^2)$
- More generally : $Y = X\beta + \epsilon$, où Y est $n \times 1$, X is $n \times p$, β is $p \times 1$, ϵ is $n \times 1$, often supposed $N(0, \sigma^2 I_{n \times n})$
- Important application : analysis of designed experiments :
 - a design matrix X such that for the response variable $Y: E(Y) = X\beta$, where β is a vector of *parameters* (ou contrastes)
 - There are several ways to specify the matrix X for a specific design (this corresponds to the parameterization of the model)
 - $\Rightarrow ANOVA$

Linear regression model (again)

■ For all the linear models that we have seen this semester, the *reponse variable* has been modeled as a *Normal RV*:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon, \quad \epsilon \sim N(0, \sigma^2)$$

Equally :

$$Y \sim N(\mu, \sigma^2), \quad \mu = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

- Suitable for a continuous response
- **NOT** for a *binary* response
- Generalized linear models (GLMs): generalization of linear models for modeling non-normal response variables
- We will study *logistic regression* for a *binary response variable*

Modification of the response

- Instead of modeling the response directly, could instead model the probability of obtaining the value '1' ('success') (that is, the expected value of the reponse)
- Problems :
 - could lead to fitted values outside of outside of [0, 1]
 - normality assumption on errors is false
- Instead of modeling the expected response directly as a linear function of the predictors, model a suitable transformation
- For binary data, this is generally taken to be the *logit* (or *logistic*) transformation

Generalized linear model: theory

- GLMs allow unified treatment of statistical methods for several important classes of models
- The distribution of the response Y is supposed to belong to an *exponential family* : $f(x \mid \eta) = h(x) \exp[\eta^T T(x) A((\eta))]$.
- (Many distributions can be respresented in this form, including the binomial, Normal, Poisson, exponential)
- GLMs are formed from *three components* :
 - random component: the reponse variable Y, a random component whose distribution belongs to the exponential family
 - **deterministic component** : the *linear predictor* $\beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k$
 - link function: describes the functional relation between the linear predictor and the mathematical expectation of the response variable Y

Linear models: a new view

For a linear model :

$$Y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \epsilon$$
, where $\epsilon \sim N(0, \sigma^2)$

- The *expected reponse* is $E[Y \mid x] = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k$
- Let η be the *linear predictor* $\eta = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k$
- For the (ordinary) linear model : $E[Y \mid x] = \eta$
- For a generalized linear model, there is a link function g that relates η with the expected response : $g(E[Y | x]) = \eta$
- For the (ordinary) linear model, g(y) = y (link = identity)

Link function

Generally more clear when we consider the inverse of the link function:

$$E[Y|x] = g^{-1}(\eta)$$

For a binary response (values 0 or 1), then

$$E[Y \mid x] = P(Y = 1 \mid x)$$

In this case, a practical function is

$$E[Y \mid x] = P(Y = 1 \mid x) = \frac{e^{\eta}}{1 + e^{\eta}}$$

- The corresponding link functions (that is, the inverse of this function) is called the *logit*
- $\log \operatorname{logit}(x) = \log \left(\frac{x}{1-x} \right)$
- The *logistic regression* models the logit as a function of the predictor variables

Logit transformation

•
$$\log \operatorname{it}(\pi(x)) = \log \operatorname{odds}(\pi(x)) = \log \frac{\pi(x)}{1 - \pi(x)} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

• Then,
$$\pi(x_1, \dots x_k) = \frac{\exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)}{1 + \exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)}$$

- Parameter estimation by maximum likelihood
- Interpretation: the parameter β_k is such that $\exp(\beta_k)$ is the OR (odds ratio) that the response takes value 1 when x_k goes up by 1, when the remaining variables are constant $\Rightarrow \beta = \log OR$
- \blacksquare For example, for binary X, we have

$$OR = \frac{\left(\frac{\exp\left(\beta_0 + \beta_1\right)}{1 + \exp\left(\beta_0 + \beta_1\right)}\right) / \left(1 - \frac{\exp\left(\beta_0 + \beta_1\right)}{1 + \exp\left(\beta_0 + \beta_1\right)}\right)}{\left(\frac{\exp\beta_0}{1 + \exp\beta_0}\right) / \left(1 - \frac{\exp\beta_0}{1 + \exp\beta_0}\right)} = -\frac{1}{\left(\frac{\exp\beta_0}{1 + \exp\beta_0}\right) / \left(1 - \frac{\exp\beta_0}{1 + \exp\beta_0}\right)}$$

Logistic regression

- Logistic regression is a natural choice for a *binary reponse*
- Denote one of the 2 possibilities 'success', or Y = 1
- We look for a model for estimating the *probability of success* as a function of the explanatory variables
- When using the *logit* transformation, la probabilité of 'success' is of the form :

$$E[Y \mid x] = P(Y = 1 \mid x) = \frac{e^{\eta}}{1 + e^{\eta}}$$

Logistic modeling of horseshoe crab data: results 1

Figure 4.3. Observed and fitted proportions of satellites, by width of female crab.

Logistic modeling of horseshoe crab data: results 2

Table 4.2. Computer Output for Logistic Regression Model with Horseshoe Crab Data

Log Lik	elihood	-97.2263		
Parameter Estimate		Likelihood Ratio 95% Conf. Limits		Pr > ChiSq
Intercept -12.3508 width 0.4972		-17.8097 -7.4573 0.3084 0.7090		

- Now let's estimate $\pi(x) = \text{probability (depending on } x)$ of a female crab having a satellite
- Based on the output and the inverse logit function, we have :

$$\pi(x) = \frac{exp(-12.351 + 0.497 \times x)}{1 + exp(-12.351 + 0.497 \times x)}$$

- For the minimum sample value (21.0cm), $\pi(x) =$
- For the maximum sample value (33.5cm), $\pi(x) =$

Odds and the OR

- For a probability p, the *odds* is defined as : $odds(p) = \frac{p}{1-p}$
- For just one \underline{binary} variable X, the odds ratio (OR) is the ratio of the odds :

$$OR = \frac{P(Y=1 \mid X=1)/(1 - P(Y=1 \mid X=1))}{P(Y=1 \mid X=0)/(1 - P(Y=1 \mid X=0))}$$

- 3 cases :
 - OR = 1 : Y is independent of X
 - OR > 1: the condition represented by Y is more frequent for individuals with X = 1
 - OR < 1: the condition represented by Y is more frequent for individuals with X = 0

Analogous to linear regression

- The logit function g possesses many of the same good properties of the linear regression model
- Mathematically convenient and flexible can include covariates in the model
- Can meaningfully interpret parameters
- Linear in the parameters
- A difference: Error distribution is binomial (not Normal)

Model fitting

- For linear regression, typicall fitting is done by the method of least squares
- But when the reponse est binary, the 'good' statistical properties of the resulting estimators no longer hold
- The general method that leads us to least squares (for normally distributed errors) is our friend (!!) maximum likelihood

Revision: binomial distribution

- Logistic regression is related to the binomial distribution
- If there are multiple observations with the same value(s) of the explanatory variable(s), then the individual responses can be added and this sum has a binomial distribution
- Binomial mass function : $P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$
- For a binomial RV with parameters n and p, then the expected value is $\mu = np$ and the variance is $\sigma^2 = np(1-p)$
- Logistic regression belongs to the 'binomial family' of GLMs

Maximum likelihood estimation

- Likelihood : $f(x_i) \propto \pi(x_i)^{y_i} [1 \pi(x_i)]^{1-y_i}$
- For independent observations, the likelihood is : $L(\beta) = \prod_{i=1}^{n} f(x_i)$
- log likelihood : $I(\beta) = \log[L(\beta)] = \sum_{i=1}^{n} (\log(\pi(x_i)) + (1 y_i) \log(1 \pi(x_i)))$
- Find the β_i that maximize the log likelihood by differentiating with respect to each β_i and setting all derivatives = 0
- For *linear regression*, these equations are *simple to solve*
- On the other hand, for logistic regression the equations are nonlinear and do not have an analytic solution
- They are solved using a numerical algorithm (notably Newton-Raphson)

Confidence intervals

■ From the estimated parameters $\hat{\beta}_i^{MLE}$, we obtain the MLE of the linear predictor :

$$\hat{\eta}_{MLE} = \hat{\beta}_0^{MLE} + \sum_{i=1}^p \hat{\beta}_i^{MLE} x_i$$

In addition, due to the invariance of the MLE, we obtain the MLE of the probability of 'success' :

$$\widehat{\pi(x)} = \frac{e^{\widehat{\eta}}}{1 + e^{\widehat{\eta}}}$$

- We use the asymptotic normality of the MLE in order to make a CI at $100(1-\alpha)\%$ for $\eta:\hat{\eta}\pm z_{1-\alpha/2}\times ES(\hat{\eta})=(J,S)$
- The $100(1-\alpha)\%$ CI for $\pi(x)$ is thus : $\left(\frac{e^J}{1+e^J}, \frac{e^S}{1+e^S}\right)$

BREAK

Model fitting and checking

- For the standard (fixed effects) linear model, estimation is usually by least squares
- Can be more complicated with random effects or when x-variables are subject to measurement error as well
- Checking model : examination of *residuals*
 - Normality
 - Time effects
 - Nonconstant variance
 - Curvature
- Detection of influential observations

Linear regression model (again)

Linear model

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon, \quad \epsilon \sim N(0, \sigma^2)$$

Another way to write this :

$$Y \sim N(\mu, \sigma^2), \quad \mu = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

- Suitable for a *continuous* response
- **NOT** suitable for a *binary* response
- NOT suitable for a *count* data

Modified model

- Instead of modeling the response directly, could instead model some function of the response
- i.e., Instead of modeling the expected response *directly* as a linear model, model a *suitable transformation*
- For binary data, it is convenient to use the *logit* function
- For count data, this is often taken to be the *log* transformation

Modified model for binary data

- Instead of modeling the 0/1 response directly, could instead model the *probability* of '1'
- Problems :
 - could lead to fitted values outside of [0,1]
 - normality assumption on errors is wrong
- Instead of modeling the expected response directly as a linear function of the predictors, model a suitable transformation
- For binary data, this is generally taken to be the *logit* (or *logistic*) transformation

Logit transformation

$$\log \operatorname{id}(p) = \log \frac{p}{1-p} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

Therefore,

$$p(x_1,...x_k) = \frac{\exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)}{1 + \exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k)}$$

- The parameter β_k is such that $\exp(\beta_k)$ is the *odds ratio* that the response takes value 1 when x_k increases by one, when the remaining variables are constant
- i.e. β_k is a log-odds ratio (log OR)
- Estimate parameters by maximum likelihood rather than least squares

Generalized linear model

- In a standard linear model, the response variable is modeled as a normally distributed
- However, if the response variable is dichotomous or a count, it does not make sense to model the outcome as normal
- Generalized linear models (GLMs) are an extension of linear models to model non-normal response variables
- A GLM consists of three components :
 - A random component, specifying the conditional distribution of the response variable, Y_i, given the values of the explanatory variables in the model
 - A linear predictor
 - A smooth and invertible linearizing link function
- We consider *logistic regression* for a count response
- We can consider *Poisson regression* for a count response

Generalized linear models : some theory

- Allows unified treatment of statistical methods for several important classes of models
- Response *Y* assumed to have *exponential family distribution*:

$$f(y) = \exp[a(y)b(\theta) + c(\theta) + d(y)]$$

For a standard linear model

$$Y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \epsilon$$
, with $\epsilon \sim N(0, \sigma^2)$

- The expected response is $E[Y \mid x] = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k$
- Let η denote the *linear predictor* $\eta = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k$
- For a standard linear model, $E[Y \mid x] = \eta$
- In a generalized linear model, there is a link function g between η and the expected response :

$$g(E[Y \mid x]) = \eta$$

■ For a standard linear model, g(y) = y (identity link)

Link function

- When the response variable is binary (with values coded as 0 or 1), then $E[Y \mid x] = P(Y = 1 \mid x)$
- A convenient function in this case is $E[V \mid v] = P(V = 1 \mid v) = P(V = 1 \mid v)$

$$E[Y \mid x] = P(Y = 1 \mid x) = \frac{e^{\eta}}{1 + e^{\eta}}$$

- The corresponding link function (inverse of this function) is called the *logit*
- $\log \operatorname{logit}(x) = \log \frac{x}{1-x}$
- Regression using this model is called logistic regression

Link function : examples

	Family Name						
Link	binomial	Gamma	gaussian	inverse.gaussi	an poisson		
logit	D						
probit	•						
cloglog	•						
identity		•	D		•		
inverse		D					
log		•			D		
1/mu^2				D			
sqrt					•		

Analogous to linear regression

- The logit function *g* has many of the desirable properties of a linear regression model :
 - Mathematically convenient and flexible
 - Can meaningfully interpret parameters
 - Linear in the parameters
- A difference : Error distribution is binomial (not normal)

Inference: tests for coefficients

Wald test statistics are simple; for 'sufficiently large' samples:

$$z = rac{\hat{eta}}{\mathsf{SE}(\hat{eta})} \sim \mathsf{N}(0,1)$$

- Although the Wald test is adequate for large samples, the likelihood ratio test (LRT) is more powerful and more reliable for sample sizes often used in practice
- The LRT test statistic compares the maximum L_H of the likelihood function when $\beta = 0$ to the maximum L_A of the likelihood function for unrestricted β :

$$\lambda = -2 \log \frac{L(\hat{\theta}_{MLE}^{H})}{L(\hat{\theta}_{MLE}^{A})},$$

• Under certain regularity conditions, when H is true $\lambda \sim \chi_p^2$, where p= number of constraints imposed by H (= difference in the number of parameters estimated under the 2 models)

Inference: CI for probabilities

■ For simple logistic regression, the estimated (predicted) probability at a fixed *x* value is given by :

$$P(Y = 1 \mid x) = \hat{\pi}(x) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 \cdot x}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 \cdot x}}$$

- **Activity**: Estimate the probability of a satellite for female crabs of width x = 26.5cm ...
- From software, a 95% CI for the true probability $\pi(26.5)$ is (0.61, 0.77)

Why use a model to estimate probabilities?

- Instead of finding $\hat{\pi}(x)$ using the model fit, as we just did at x=26.5, why not simply use the sample proportion to estimate the probability ??
- For width = 26.5, 4/6 had satellites, so the sample proportion estimate at x = 26.5 is p = 4/6 = 0.67 (similar to the model-based estimate)
- A small sample exact (binomial) 95% CI is (0.22, 0.96) : <u>much</u> larger than the model-based CI
- When the logistic regression model holds, the model-based estimator of $\hat{\pi}(x)$ is *much better* than that of the sample proportion because it uses *all the data* rather than *only* the data at the fixed x value, giving a more precise estimate
- For example, at x = 26.5, software reports a SE = 0.04 for the model-based estimate 0.695
- By contrast, the SE for the sample proportion of 0.67 with only six observations is :

Indicator (dummy) predictors

- Let's go back to analyzing our Horseshoe crab data, but instead of only using carapace width as a predictor, let's also include color.
- Color is a categorical (factor) variable with five categories : light, medium light, medium, medium dark, dark
- Color is a surrogate for age, since older crabs tending to have darker shells
- The sample contained no light crabs, so we use only the other four categories
- In order to include categorical / factor explanatory variables in a LM or GLM, we need to use indicator (sometimes called dummy) variables
- The number of dummy variables to include is the number of categories minus 1

Multiple logistic regression

- To incorporate color into the model, we need to introduce 3 indicator variables for the 4 categories
- The model is now

$$logit[P(Y = 1)] = \beta_0 + \beta_1 c_1 + \beta_2 c_2 + \beta_3 c_3 + \beta_4 x$$

where x denotes width and

 $c_1 = 1$ for color = medium light, 0 otherwise

 $c_2 = 1$ for color = medium, 0 otherwise

 $c_3 = 1$ for color = medium dark, 0 otherwise

• Crab color is dark when $c_1 = c_2 = c_3 = 0$

Multiple logistic modeling with width and color : results 1

Table 4.6. Computer Output for Model for Horseshoe Crabs with Width and Color Predictors

Parameter	Estimate	Std. Error	Like. Ratio Confidence	95% Limits	Chi Square	Pr > ChiSq
intercept c1 c2 c3 width	1.3299 1.4023 1.1061	2.7618 0.8525 0.5484 0.5921 0.1055	-18.4564 -0.2738 0.3527 -0.0279 0.2713	-7.5788 3.1354 2.5260 2.3138 0.6870	2.43 6.54 3.49	<.0001 0.1188 0.0106 0.0617 <.0001
LR Statistics						
	Source	DF	Chi-Square	Pr > ChiSq		
	width color	1 3	24.60 7.00		.0001 .0720	

Multiple logistic modeling with width and color: results 2

Some interpretation

- The model assumes no interaction between color and width ⇒ width has the same effect (coefficient 0.468) for all colors
- This implies that the shapes of the four curves relating width to P(Y = 1) (for the four colors) are identical
- For each color, a 1 cm increase in width has a multiplicative effect of $e^{0.468} = 1.60$ on the odds that Y = 1
- Each curve is the same as any other curve, only shifted to the left or right
- The parallelism of curves in the horizontal dimension implies that two curves never cross
- At all width values, for example, color 4 (dark) has a lower estimated probability of a satellite than the other colors

Let's have some fun!!

■ What is the estimated probability for a medium-light crab of average width (26.3 cm) ?? for a dark crab ??

What are the estimated odds for a medium-light crab ?? for a dark crab ??

The exponentiated difference between two color parameter estimates is an odds ratio comparing those colors. What is the estimated odds ratio comparing medium-light and dark crabs? Interpret.

Evaluation of the fitted model

- In linear regression, ANOVA consists in the decomposition of the total sum of squares of the observations around their mean (SST):
 - SSE, error sum of squares (residuals = observed predicted)
 - SSR, regression sum of squares (of the model)
- Large values of SSR suggest the importance of the explanatory variable(s)
- We use the *principle* for logistic regression: comparison of the observed response to the predicted response by the models with//without the explanatory variable(s)
- This comparison is made based on the *log likelihood*

Deviance

- For (ordinary) linear models, parameter estimation by least squares (minimize the sum of squared residuals)
- (Equivalent to ML for the Normal model)
- For GLMs, estimation is by ML
- The *deviance* is (proportional to) $2 \times \ell$
- (Analogous to SSE)
- Obtaining an 'absolute' measure of the quality of model fit (goodness-of-fit) depends on certain assumptions, often not satisfied in practice
- Thus typically focus rather on the *comparison* of competing models
- If the models are nested (that is, one model is a sub-model of the other), we can carry out a LRT

Test of goodness-of-fit ('global' test)

- Or rather test of <u>NON</u>goodness-of-fit (!!)
- Test based on the deviance D of the model
- We reject *H* : the data conform to the model, for *large values* of *D*(*residuals*)
- Under A, there is a parameter for each observation (saturated model)
- It is often said **BUT NOT TRUE!!!!** that under H, D(residuals) $\sim \chi^2$ with df = df error
- (The problem : the asymptotic result for χ^2 does not hold if the number of parameters is not finite, and since the saturated model has one parameter for each of the n observations, then if $n \to \infty$ the number of parameters is not finite)
- For samples of moderate size, it is not the worst thing in the world to assume this asymptotic distribution

Model comparison

- Linear regression : a coefficient is (statistially) significant if its standardized value $\hat{\beta}/SE(\hat{\beta})$ is 'large'
- We can use this same reasoning for logistic regression (z-test
 Wald test), but this approach is problematic (lacks power)
- Preferred approach : likelihood ratio test (LRT)

■ Deviance
$$D = -2\left(\sum_{i=1}^n y_i \log\left(\frac{\hat{p}_i}{y_i}\right) + (1 - y_i) \log\left(\frac{1 - \hat{p}_i}{1 - y_i}\right)\right)$$

- Comparison of models : calculate the statistic $G^2 = D(\text{sub-model}) D(\text{bigger model})$
- Under H (the sub-model is sufficient), $G^2 \sim \chi^2$ with degrees of freedom (df) = difference in the number of estimated parameters

Summary: Tests for coefficients

One coefficient :

- 1 parameter = β_i , the coefficient of variable x_i in the logistic regression model in the population
- **2** $H: \beta_i = 0;$ $A: \beta_i \neq 0$
- 3 TS: Wald: $z_{obs} = \frac{\hat{\beta}_i}{ES(\hat{\beta}_i)}$ LRT: $G^2 = -2 \log \frac{L_H}{L_A}$
- 4 $p_{obs}: \bullet \text{ Wald}: 2P(Z > |z_{1-\alpha/2}|) \bullet \text{LRT}: P(X^2 > \chi_1^2)$

Several coefficients :

- **1** parameters $= \beta_j, \dots, \beta_k$ (= q coefficients), of variables x_j, \dots, β_k in the logistic regression model in the population
- **2** $H: \beta_j = \ldots = \beta_k = 0$; A: at least one $\beta_i \neq 0$, $q \leq i \leq k$
- $3 TS : \bullet LRT : G^2 = -2 \log \frac{L_H}{L_A}$
- 4 $p_{obs} : \bullet LRT : P(X^2 > \chi_q^2)$
- (Here, we consider the RV $X^2 \sim \chi^2$)

PAUSE

DNA sequencing (optional)

- (Automated) Sanger sequencing
 - 'first-generation' technology
 - F. Sanger, 1977
- Process :
 - bacterial cloning or PCR
 - template purification
 - labelling of DNA fragments using the chain termination method with energy transfer, dye-labelled dideoxynucleotides and a DNA polymerase
 - capillary electrophoresis
 - fluorescence detection
- Data : four-colour plots that reveal the DNA sequence

Next-generation sequencing

- Several newer sequencing technologies
 - 'Next-generation sequencing' (NGS data)
 - 'Ultra high-throughput sequencing' (UHTS data)
- These newer technologies use various strategies that rely on a combination of template preparation, sequencing and imaging, and genome alignment and assembly methods
- Data: four-colour plots that reveal the DNA sequence
- Major advance : ability to produce a large amount of data relatively cheaply
- Expands experimental possibilities beyond just determining the order of bases

Applications of NGS

- Sequence assembly (original application)
- Resequencing: The sequencing of part of an individual's genome in order to detect sequence differences between the individual and the standard genome of the species
- Gene expression : RNA-Seq
- SNP discovery and genotyping
- Variant discovery and quantification
- Transcription factor binding sites : ChIP-Seq
- Measuring DNA methylation

NGS data generation

- Sequencing technologies incorporate methods that we can class as
 - template preparation
 - sequencing and imaging
 - data analysis
- Combination of specific protocols distinguishes different technologies
- Major technologies :
 - Illumina HiSeq (older : Solexa)
 - 454 (Roche)
 - Applied Biosciences SOLiD
 - Pacific Biosciences SMRT (single molecule real-time)

Data analysis pipeline

- Data are counts of short sequences (called 'reads')
- Quality control of data
- Match to reference sequence, read mapping
- Count/summarize number of reads per feature
- Statistical analysis (depends on the specific application)

Sequence data

- Sequence data are *counts*
- DNA sample ⇒ population of cDNA fragments
- Each genomic feature ⇒ species for which the population size is to be estimated
- Sequencing a DNA sample ⇒ random sampling of each of these species
- Aim: to estimate the relative abundance of each species in the population

Poisson model

- If we assume :
 - each cDNA fragment has the same chance of being selected for sequencing
 - the fragments are selected independently
- Then: the number of read counts for a given genomic feature should follow a *Poisson variation law* across repeated sequence runs of the same cDNA sample
- The Poisson model implies that the *mean equals the variance*
- (This relationship has been validated in an early RNA-Seq study using the same initial source of RNA distributed across multiple lanes of an Illumina GA sequencer)

Single gene model

- DNA sample ⇒ 'library'
- Contains genes $1, \ldots, g, \ldots$
- For a given gene g in library i, Y_{gi} = number of reads for gene g in library i
- $Y_{gi} \sim Bin(M, p_{gi})$, where p_{gi} is the proportion of the total number of sequences M in library i that are gene g
- M large, p_{gi} small $\implies Y_{gi} \sim Pois(\mu_{gi} = Mp_{gi})$ (approximately)

Technical vs. biological replicates

- For the Poisson model, the *variance* is equal to the *mean*
- With *technical replicates*, this relation holds fairly well
- With *biological replicates*, the variance is typically *larger* than expected using the Poisson model
- There are a few different approaches for accounting for this additional variability (overdispersion)

Link function for count data

- We can model the count data $Y_i \sim Pois(\mu_i), i = 1, ..., n$
- Want to relate the mean μ_i to one or more *covariates* (for example, treatment/control status)
- A convenient link function in this case is the log :

$$\log \mu_i = \eta = \mathbf{x}_i^T \boldsymbol{\beta}$$

- Using a log link ensures that the fitted values of μ_i will remain in the parameter space $[0, \infty)$
- A Poisson model with a log link is sometimes called a log-linear model

Variance function for the Poisson model

■ The Poisson distributions are a discrete family with probability function indexed by the rate parameter $\mu > 0$:

$$p(y) = \frac{e^{-\mu}\mu^y}{y!}, \quad y = 0, 1, 2, \dots$$

- Under the Poisson model : $E[Y_i] = Var(Y_i) = \mu_i$
- General form of the relationship between the variance of the response variable and its mean is : $Var(response) = \phi V(\mu)$, with ϕ a constant scale factor
 - **Normal** : $V(\mu) = 1$, $\phi = \sigma^2$ (the variance does not depend on the mean)
 - **Binomial** : $V(\mu) = \mu(1 \mu) \ \phi = 1$
 - Poisson : $V(\mu) = \mu \ \phi = 1$
- Real data are often overdispersed, exhibiting more variation than allowed by the Poisson model

Detecting and handling overdispersion

- When fitting a GLM with binomial or Poisson errors, can often detect overdispersion by comparing the residual deviance to its degrees of freedom
- For a well-fitting model, these should be approximately equal
- Overdispersion usually handled with an alternative model :
 - **Quasi-Poisson Model**: Assume $Var(Y_i) = \phi \mu_i$ and estimating the *scale parameter* ϕ
 - Zero-Inflated Poisson Model: for modeling the case when there are too many '0' values
 - Negative Binomial Model : Can arise from a two-stage model :

$$Y_i \sim Pois(\mu_i^*)$$
 $\mu_i^* \sim \Gamma(\mu_i/\omega, \omega)$

Then
$$Y_i \sim \textit{NegBin}$$
, with $E[Y_i] = \mu_i$ and $\textit{Var}(Y_i) = \mu_i + \mu_i^2/\omega$

Differential gene expression for NGS data

- Several BioConductor (R) packages for identifying differential expression from NGS data
- These mostly use the negative binomial model, since the counts are typically over-dispersed compared to the Poisson model
- The edgeR package uses an overdispersed Poisson model to account for both biological and technical variability, and uses empirical Bayes methods to moderate the degree of overdispersion across transcripts

Assessing model fit

- In linear regression, an anova table partitions SST, the total sum of squared deviations of observations about their mean, into two parts :
 - SSE, or residual (observed predicted) sum of squares
 - SSR, or regression sum of squares
- Large SSR suggests the explanatory variable(s) is(are) important
- In linear regression, diagnostics are built around residuals and SSR
- For GLMs, there are a few different kinds of residuals : Pearson residuals and deviance residuals
- Pearson residual for an observation is obtained by subtracting the mean (predicted value) for that observation and dividing by the (estimated) SD
- Deviance residuals are based on the contribution of each point to the likelihood

Deviance

- In standard linear models, estimate parameters by minimizing residual sum of squares
- (Equivalent to ML for normal model)
- In GLM, estimate parameters by ML
- The *deviance* is (proportional to) $2 \times I$
- (Analogous to SSE)
- Obtaining 'absolute' measure of goodness of fit depends on some assumptions that may not be satisfied in practice
- Usually focus on comparing competing models
- When the models are *nested*, can carry out likelihood ratio test

Comparing models

- In linear regression, consider coefficient significant if (squared) standardized value $\hat{\beta}/SE(\hat{\beta})$ is 'large'
- Can also do this for logistic regression (Wald test), but there are some problems with it
- Preferred approach : likelihood ratio test
- Deviance $D = -2\sum_{i=1}^{n} y_i \log \left(\frac{\hat{p}_i}{y_i}\right) + (1 y_i) \log \left(\frac{1 \hat{p}_i}{1 y_i}\right)$
- To compare models, compute G = D(submodel) D(bigger model)
- Under the null (*i.e.* the submodel), $G \sim \chi^2$ with df = difference in the number of estimated parameters

Variance inflaction factors

- The meaning of a variance inflation factor is essentially equivalent for linear models and GLMs
- We can use the VIF to look for multicollinearity
- R function vif from the car package
- Also look at correlation matrix for the data matrix X

Summary

- Residuals are certainly less informative for GLMs than for linear regression
- Issues of outliers and influential observations just as relevant for GLMs as for linear regression: look at Cook's distance plot
- Usually a good idea to start with simple models and gradually add in complexity