Haptic interfaces

```
1. Definition, scope and history
2. Haptic display characteristics
3. Haptic display types
4. Haptic design guidelines
5. Haptic interaction through virtual coupling
6. From Haptic to pseudo-haptic feedback
```


3. Haptic display types [BKLP 2005]

Body-referenced haptic device [Utah hand]

Placed on the user body: exoskeleton with motors or cables. Need calibration to user skeleton.

Ground-referenced haptic device [Phantom] (on desk, floor, wall, ceiling...)

Dental materials journal 2013, 32(5)

Force-reflecting joystick, pen-based force feedback, stringed devices, motion platform, large articulated arm

3. Haptic display types (2)

Body-referenced haptic device:

more freedom of motion

Tradeoff due to weight

Twiice rehabilitation system [EPFL-LSRO]

Rutgers Master I

DextrES: electrostatic brakes [H2018]

The concept of **haptic suit** is popular in science fiction (film «Ready Player One») but limited to vibrating units or muscular electrical stimulation (**teslasuit** below)

Haptic feedback system

Electrical Muscle Stimulation replicates the small electrical stimulation produced by the brain and carried by the efferent neural signals.

Used in sport and rehabilitation ->

wikipedia.org: Electrical_muscle_stimulation

3. Haptic display types (3) Ground-referenced haptic device

Virtuose from
Haption (FR):
Cable system
allowing human
arm scale

Exoskeleton from Hocoma for rehabilitation

+ recent miniature system Foldaway from EPFL-RRL

3. Haptic display types (4)

GROPE III, 6 Degree of Freedom (DoF)
Force & Torque haptic display [B 1990]

Ground-referenced haptic device :

- Research project from UNC by Brooks team, started in 1967.
- Goal: help chemists to find more easily good docking position for news drugs (i.e. relative location of complex molecules at which some receptor can be exploited).
- Results: such task was achieved about twice as fast with haptic feedback compared to only stereo graphics display.
- Chemists have a new understanding of the receptor force field and the docking

3. Haptic display types (5)

Ground-referenced haptic device: using 2 phantom-like devices for bimanual training of stomach laparoscopic surgery (Rensselaer Polytech. / Reuter / 2011)

The 2 devices providing the force feedback

Laparoscopic surgical tools

The interaction must integrate a realtime deformation model of the organ to compute the correct reaction force and mesh deformation https://www.youtube.com/watch?v=UNRIhgkfMCY

SW platform on physics-based tissu deformation:

3. Haptic display types (6)

Ground-referenced haptic device exploiting a Stewart Platform are mostly used to stimulate the vestibular system sensitive to accelerations, for driving /flight simulators, arcade games and theme parks:

Stewart Platform=

6 DoFs but with limited range

Check also: www.bluetiger.com www.simbolrides.com

6 DoFs driving platform: KAIST (Korea)

Ferrari F1 simulator: https://www.youtube.com/watch?v=5T tXG-89IU

3. Haptic display types (7) Research setup

IIG 🦻

Ground-referenced haptic device: Kuka robot used in MPI Tuebingen for studing human perception, cognition and action [Prof. Buelthoff]

http://www.youtube.com/watch?v=jrvnC6L9nPA&feature=related

The robot is ideal for producing acceleration stimulations and displacements over a large range

Toward RT aircraft
Simulation with the
MPI motion simulator,
(MPI & Univ. Pisa),
Niccolini, Pollini,
Innocenti, & Giordano,
Teufel, Buelthoff

3. Haptic display types (8)

Ground-referenced haptic device: Space Interface Device for Artificial Reality (SPIDAR) is a stringed system [Sato 1989]: a good compromise for large space interaction at low cost, lightness, and high safety

LISA Anger & IBISC Evry [N 2009]

$$\begin{cases} x = \frac{(l_0^2 - l_1^2 - l_2^2 + l_3^2)}{8a} \\ y = \frac{(l_0^2 - l_1^2 + l_2^2 - l_3^2)}{8a} \\ z = \frac{(l_0^2 + l_1^2 - l_2^2 - l_3^2)}{8a} \end{cases}$$

right & left

3. Haptic display types (9)

A bimanual SPIDAR system from Tokyo Institute of Technology, Yokohama [W 2004]

The user interacts by looking at a screen that displays virtual hands estimated from the location of the 8 finger caps

An anatomic model of a 17 DoF hand with finger joint coupling is used to infer the virtual hand with an Inverse Kinematics algorithm

http://www.youtube.com/watch?v=m-DS1U INpQ

3. Haptic display types [BKLP 2005] (10)

Tactile device

vibrotactile units on each finger of an Immersion CyberGlove.

Each unit can be programmed to generate pulse or sutained vibrations

CyberForce® is a force feedback armature that not only conveys 3D forces to the wrist and arm but also provides 6 DoF (degre of Freedom) wrist tracking:

3 Dof in translation

+ 3Dof in orientation

Max: 60N

Finger pulling device

CyberGrasp TM: from
Immersion
Each finger can be pulled from the back side of the hand to force it to open. It cannot force the hand to close

Combination: Haptic Workstation = 2 CyberForce & Cybergrap

4. Haptic design guidelines [BKLP 2005]

Ground-referenced

- + can produce high level of force if needed
- + don't have to wear them
- + accurate trackers
- limited movement when using them ...
- ... or high cost (e.g. Kuka from MPI)
- + some compromise exist, e.g. SPIDAR

Body-referenced

- + more freedom of motion
- + more control for direct manipulation
- user has to bear the weight of device
- can be tedious to put on and calibrate

Tactile /electrical

- + smaller than force display
- difficult to get sensation correct
- limited to small skin area

Hybrid

- + combines force and tactile feedback
- more complex devices

[References]

[TRV 2006] Traité de Réalité Virtuelle, Ed. P. Fuch, Vol 2, chap 6-8, Vol 3, chap 5-6

[BKLP 2005] 3D User Interfaces, D. Bowmann, E. Kruijff, J. LaViola, I. Poupyrev, Addison Wesley, 2005

[LO 2006] Haptic Rendering, Eds M. Lin And M. Otadui, A. K. Peters

[B 1990] Frederick P. Brooks, Jr., Ming Ouh-Young, James J. Batter, and P. Jerome Kilpatrick. 1990. Project GROPEHaptic displays for scientific visualization. SIGGRAPH Comput. Graph. 24, 4 (September 1990), 177-185. http://doi.acm.org/10.1145/97880.97899

[B 2006] E. Burns PhD, UNC 2006 + E. Burns et al., "The Hand Is More Easily Fooled Than the Eye: Users Are More Sensitive to Visual Interpenetration than to Visual-ProprioceptiveDiscrepancy," Presence vol. 15, 2006, pp. 1–15

[B 2007] Eric Burns, Sharif Razzaque, Mary C. Whitton and Frederick P. Brooks1, MACBETH: Management of Avatar Conflict by Employment of a Technique Hybrid, The International Journal of Virtual Reality, 2007, 6(2):11-20

[H2000] Ho, Basdogan, Srinivasan, Ray-based haptic rendering, Int. Journal of Robotic research, 19(7), july 2000, pp 668-683

[H2018] R. Hinchet, V. Vechev, H. Shea, O. Hilliges, DextrES: Wearable Haptic Feedback for Grasping in VR via a Thin Form-Factor Electrostatic Brake, 901-912, Proc. of ACM UIST 2018, Berlin

[N 2009] M. NAUD, D. CHAMARET, L. HAMON, S. ULLAH, E. RICHARD, P. RICHARD, Human-Scale Haptic Interaction using the SPIDAR, Joint Virtual Reality Conference (JVRC09) – Lyon

[W 2004] Walairacht, S., Yamada, K., Hasegawa, S., Koike, Y. and Sato, M. (2004), Two-handed multiple-finger virtual object manipulation environment with haptic cues. Electronics and Communications in Japan (Part II: Electronics), 87: 65–73. doi: 10.1002/ecjb.20117

[M 1996] William R. Mark, Scott C. Randolph, Mark Finch, James M. Van Verth, and Russell M. Taylor, II. 1996. Adding force feedback to graphics systems: issues and solutions. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (SIGGRAPH '96).

[web References]

MPI Tuebingen: lab of Human Perception, Cognition and action

http://www.kyb.tuebingen.mpg.de/research/dep/bu.html

http://www.youtube.com/watch?v=jrvnC6L9nPA&feature=related

SPIDAR

http://www.youtube.com/watch?v=m-DS1U INpQ

Da Vinci demo and press article about issues with this type of interaction in surgery

http://www.youtube.com/watch?v=VJ_3GJNz4fg

http://www.informationweek.com/healthcare/clinical-information-systems/robotic-surgery-da-vinci-versus-the-ideal/d/d-id/1112732

Rensselaer Polytechnic bimanual surgery training

https://www.youtube.com/watch?v=UNRIhgkfMCY

Hocoma haptic rehabilitation

http://player.vimeo.com/video/26048381?title=0&byline=0&portrait=0&color=ff9933