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 Exponential survivals with censoring and explanatory variables

 By R. L. PRENTICE

 University of Waterloo and State University of New York at Buffalo

 SUMMARY

 Consideration is given to the analysis of survival times, censored and uncensored, arising
 from a hazard function that varies exponentially with covariates and is otherwise constant.

 Significance tests and statements of probabilistic inference are derived for covariate para-
 meters and for the hazard function at average values of the covariate. The results are ex-

 tended to include a Weibull component in the hazard. Clinical trials on advanced lung
 cancer patients serve to illustrate the suggested procedures.

 Some key words: Exponential and Weibull survivals; Concomitant variables; Exponential hazard;
 Censoring; Clinical trials; Hazard functions; Life tables; Structural probability.

 1. INTRODUCTION

 Preliminary analysis by sample survivor functions (Kaplan & Meier, 1958) of a number of

 clinical trials on advanced cancer patients under study at the Statistical Laboratory at

 State University of New York at Buffalo suggests an exponential survivor function.
 A number of explanatory variables describing patient etiology, general medical status and
 clinical stage of disease are recorded when a patient is taken on study. When such con-

 comitant variables seem important, an exponential relation between failure rate and

 explanatory variable is frequently suggested. We are then led to consider a hazard function
 of the form

 h(t) = a exp (-x,),

 where t is survival time, x = (xl, ..., x.) is a vector of covariate values, while a > 0 and
 = (31 . . ., ,8) are unknown parameters.
 Patients, when accepted for trial, are randomized to one of several therapy programmes.

 The objectives are to determine which covariates have an important relation with survival
 and to compare efficacy of treatments with respect to longevity, i.e. to compare ac values
 adjusting for necessary covariates.

 Techniques for the estimation and comparison of exponential parameters have long been
 available (Epstein, 1960). When arbitrary censoring is included suggested analyses have

 been based on the approximate normality of the logarithm of the failure rate (Zelen, 1959;

 Sampford & Taylor, 1959), or have been nonparametric (Gehan, 1965).
 The above hazard function with a single covariate was suggested by Glasser (1967) for

 use in an application very similar indeed to those that motivated the present work.

 The same model was discussed by Fiegl & Zelen (1965). Likelihood methods for this

 model were presented by Sprott & Kalbfleisch (1969). Cox & Snell (1968) also considered
 this model (p = 1) to illustrate the analysis of residuals. Other authors have accommodated
 concomitant information by representing the exponential mean survival (Fiegl & Zelen,
 1 965) or failure rate (Cox, 1964; Zippin & Armitage, 1966) as a linear function of the covariate.

 II BTI M 60
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 280 R. L. PRENTICE

 These latter models have the disadvantage that the range of values for the exponential

 parameter is restricted by the value of the covariate parameter. Most recently, Cox (1972)

 has considered a more general class of hazard functions with a similar relation between

 hazard and covariate.

 Censoring is included by supposing that the only individuals subject to censor are those

 actually censored. Techniques for model building with respect to covariates and for com-

 paring treatment parameters are included. The independence of the hazard from survival

 time is relaxed to include the two-parameter Weibull with covariates. Numerical results

 are presented. The techniques and notation of Fraser (1968, Chapter 2) are employed.

 2. UNCENSORED EXPONENTIAL WITH COVARIATES

 2X1. Inference on (x, 3)

 Suppose the ith individual under study has explanatory variables xi = (xli, ..., xi)
 (j = 1, .. ., n). Suppose further that corresponding survival times tl,..., tn arise from a hazard

 h(ti) = a- exp (-ziP), where zi = {zji = x _-x} (i = n;= 1, ...,p). Covariate values
 have been standardized about the mean in order that ac may be interpreted as the failure
 rate under an average set of covariate values.

 The model can be written in the form of a linear regression model of log t on covariates

 with nonnormal error. Let yi = log ti and y =-logoc. Then yi = y + zi3 + wi, where
 f (wi) = exp (wi - ew) for wi taking real values.

 The model is in the form of Fraser's (1968, Chapter 3) structural model:

 n

 11 f(wi),
 i=1

 y = y1+ZP+w,

 where Y' = (Yi ... Yn) 1' = (1...), w' = (w1, ..., wn) and Z' is a p x n matrix defined by
 _ (Z ....? Z). The analysis is, in principle, direct. A suitable transformation variable,

 or conditionally pivotal quantity, is {y, (y)}, where y = >y/n and P (y) = (Z'Z)-1 Z'y. The
 vector d = y - 1 - Z,(y) is the corresponding orbital reference point, or ancillary statistic.

 If no assumption is made about the parameters (ox, ,), then observing {y, 3(y)} provides no
 'information' about the values of the corresponding error, w, quantities {iw, ,3(w)}, in that

 whatever value of {w, P1(w)} is realized one can assert only {w, P (w)}J EP+' on the basis of
 the observed y. This is the purpose of the group relation in Fraser's model.

 Inference about {wi, P(w)} can then be made from

 g{w, P(w)Id} = k(d)exp(ni)exp [eW EXexp{ziP(w)+di}], (1)
 where k(d) is the integration constant.

 Because y = y + w and P(y) = p + 0 (w), an hypothesis (yo, P0) is, in theory, assessed by
 comparing {y- y', 3(y)-P0} with the above distribution. Probabilistic statements of
 inference for (oc, ,B) can correspondingly be made from

 k' (t) an exp [ a {exp (-zi " ) ti}] (dx/oc) dp, (2)

 where k'(t) is again the integration constant. If = 0, (2) reduces to a F(n) density for altt.
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 Exponential survivals with censoring and explanatory variables 281

 2*2. Inferences on ,

 A usual first step in analysis of data as described in ? 2a 1 would be to decide which covariates

 merit inclusion in the model. Marginal significance tests for sB = Po can be made by inte-
 grating w from expression (1), yielding

 k(d) F(n) [i1 exp {zi (w) + di} (3)

 and by comparing 0(y) - P0 with (3). Corresponding to (3), marginal probability statements
 for f3 can be made from

 n w-n

 k'(t) r(n) iE exp (zi P)ti| (4)

 One can specialize (3) or (4) to the comparison of two exponentials by setting xi = 0
 (i = 1, *..,nl) and xi = 1 (i = n1 + 1, ..., n, + n2). Let F' be the ratio of sample means,

 ni nl+n2

 F 'n2 Eti/ n, ti.
 i=l i=ni+l

 Expression (3) can be written as

 k'Fni-1 dF/(l + nj/n2F)nl+n2,
 where

 n I ni+n2

 F = F'efl = n2 exp {-/,(w)} edi/ nEedi .
 i=l i=n,+l

 That is, an hypothesis /J = 80 can be evaluated by comparing Fo = F'eflo with an
 F(2n1, 2n2) distribution.

 Forp = 1, expressions (3), and (4) are computationally feasible although the integration

 constant will generally have to be calculated numerically. For p > 1, some approximate
 procedures are desirable. One possibility is to apply a normal approximation to (4) with
 mean the modal value and covariance matrix minus the inverse of the matrix of second

 derivatives. This procedure is, for ,3, precisely the same as a normal approximation to the
 original likelihood.

 An alternative is to apply model building techniques similar to those used in normal linear

 regression. Enter covariates singly into the model and choose the one that is most highly

 significant. Suppose the Ith covariate vector is selected. Let t = ti exp (- zjiA) be the new
 vector of observations; Al is obtained as the mode of (4) with Z' = (z11, , Z1n). The quantities
 te are then assumed to arise from a hazard

 h(t8) = acexp(- E z*Z)
 j+a

 where Z* is an n x (p - 1) matrix consisting of covariate vectors orthogonalized to the Ith

 covariate. The above procedure would be repeated until no new covariates explain a

 significant portion of residual variation. The suggested procedure is similar to regression on
 residuals except that a is left unrestricted at each stage. The orthogonalizations imply that

 successive fi values are asymptotically independent so that successive significance levels
 are also asymptotically independent.

 In applications alluded to in the introduction, covariates are often very highly correlated

 so that only a small number need to be included in the model.

 II-2
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 282 R. L. PRENTICE

 2*3. Inference onoc

 Integration of P{(w) from (1), or p from (2), is generally not feasible and approximate
 procedures are again required. An asymptotic normal approximation to the original likeli-

 hood suggests that a', or y =-log a', and , are asymptotically independent and that

 9 = log ( exp (-zi ) tin) is approximately distributed as N(y, 1/n)
 i=l

 and A can be obtained from the procedures of ? 2*2. Alternatively, we may exploit the above
 asymptotic independence to insert the modal value of {3(w) in (1), or 3 in (2). Inference about

 a is then made by comparing
 n

 acEexp(-z P) t,
 i=1

 with a P(n) random variable. If the asymptotic properties are in doubt it would be wise to

 make this comparison for several values of f3 about 3.

 2.4. Factorial arrangements of treatments

 The model of ? 2* 1 can be relaxed to allow ac-values to vary with treatment classes. In the

 application mentioned in the introduction patients would be classified according to therapy
 received and may be further classified according to covariates that are of special interest or
 that are difficult to model.

 For purposes of illustration suppose patients are classified according to two factors. Let

 tijk refer to the kth individual at the ith level of the first factor and jth level of the second
 factor. Let the corresponding covariate vector be xijk = (xlijk, ...,Xpjk) with assumed
 hazard h(tijk) = acj exp (-ZljkP) for i = 1, ..., r; j = 1, ..., s and k = 1,..., nij. As before set
 Zlijk = Xlijk - X. A common covariate parameter has been assumed over classes. If this
 assumption is relaxed classes can be dealt with separately. The analysis is similar to that of
 ? 2a1 and so will be dealt with briefly.

 Let Yijk = log tijk and yij =-log aij. The model can be written, fori = 1, ...,r;j = 1, ...,S
 and k=1., nij,

 r s ni-ex Wkb n1 n1 n1 exp {Wijk exp (wiJk)}
 i=1 j=1 k=1

 Yijk = Yij + Zijk P + Wijk,

 and is again in the form of Fraser's ( 1968, Chapter 3) regression model. A suitable transforma-

 tion variable is supplied by the vector of class means Y = (Yll, I ls21 ..., Yrs) and

 p (y) = (V'V)-lV'y, where V is given by viijk = Xlijk -xlij (I = 1, ...,p). The quantities
 dijk = Yijk - - VijkP(Y) index orbits. Inference about the corresponding error quantities
 {wV, P(w)} can be made from

 g{w, p (w) I d} = k(d) exp (ZEnij qj) exp {-SE exp (iW5j) E exp (VijkP(w) + dijk)} (5)

 The observed {9, ,(y)} are related to {W, {3(w)} by

 p

 Ysj = Yyi + PRlij.0 + i(y j (i = ,r; y=

 P(Y) = p + P(w).
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 Exponential survivals with censoring and explanatory variables 283

 Expression (5) provides the basis for tests about the y's and p while the corresponding
 probability statement about the a's and ,B is

 r s

 kl(t) aQ ] c(ft-1) expf E aijyexp (-Ziik3) tiik} dcEdP
 i=l j=l i,j,k

 Tests of significance for p = P0 are made by comparing {3(w) = {3(y) - P with
 r s n A- nij

 g'{P(w)Jd} = K(d) H n exp (vMikP(w) + dijk) (6)
 i=1 j= =1

 and marginal probability statements for , are made from

 r s nij - nij 7
 K'(t) II ?IEexp (-Zik3P) tiik (

 i=1 j=l k=1

 The remarks of ? 2-2 apply equally well to expressions (6) and (7) while the remarks of

 ? 2*3 need to be altered only in that the indicator vector for the (i, j)th class is not orthogonal
 to the columns of Z; the vector dot product with the ith column of Z is - - l. The justi-
 fication for inserting maximum likelihood estimates for f3 in making inference about the c's
 is then weakened in that a and @ are not asymptotically independent. It is then necessary to

 rely on 3 being precisely estimated on approximate orthogonality of the abovementioned

 vectors in making such an insertion.

 3. EXPONENTIAL SURVIVALS WITH COVARIATES AND CENSORED DATA

 In extending the model of ? 2 to include censoring, the point of view is taken that the

 censoring point may be ignored for individuals that die during the study period. In the
 context of experiments mentioned in the introduction this assumption is not too unrealistic.

 Typically, entry into the study occurs as soon as the qualified patient is present with disease.

 The time from study activation to analysis is often large with respect to expected survival.

 Thusfor patients entering th e study early the censoring point is of no importance, while those
 entering late very likely give rise to censored survivals. Further, if the study has been
 terminated for some time, the only censored observations occur for patients lost to follow up.
 Such patients are, in a real sense, the only ones subject to censoring.

 Suppose, then, that tl, ..., tr are observed survival times while tr+1,..., tn are censored at
 r+) ... ., nt respectively. Assume a hazard h(ti) = oc exp (-zi ), as before, where zji = xji-x(;)
 and x(j) is the jth covariate mean for individuals that have died.

 The data can be written, in the notation of ? 2-1, as yi = y + zip + w (i = 1, ...,n) with
 Yl, ..., yr observed and yi > Yi- = log t for i = r + 1, ..., n. If we define -, w, {(y) and P{(w) as
 in ? 2* 1 but based only on uncensored individuals and set di = Yi - zi 0(y) for i = 1, ..., n
 and d = y- - zi 03(y) for i = r + 1, .. ., n, then the model and data may be written

 g{w-, P3(w) I dl) . .., dr) dr+1 > dr?+1) .. ) ndn > dn},

 y=ry+ w, ,(y)=?3+(w), d9, (8)
 where 9 is the event defined by dl, ..., dr, dr+1 > d?+1, ...,dn > do. The model (8) is again in the
 form of Fraser's structural model provided the set of censored individuals is held fixed. The

 quantity {y, 03(y)} acts as transformation variable and 9 indexes the orbit. Inference about
 the realized {f-, P3(w)} can be made from

 g{w, (w) 1-} = k(9) exp (rw) exp -ew exp {zi (w) + dil
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 284 R. L. PRENTICE

 where di has been written for d? for i > r; t* will also be written for t?. Marginal tests of
 significance are made by comparing ,0(w) = -,(y) -o0 with

 K(9) [1exp {zi (3(w) + di}

 The corresponding probability statement for (cc, ,B) is

 k'(t) aCr-l exp { a exp (-zj3B) ti} dacd(

 and for ,B alone is
 n -

 K'(t) (exp (-z zj) t} d.

 The remarks of ?? 2-2, 2 3 and 2-4 apply equally well here with r replacing n as required;

 in expressions (6) and (7) the number of deaths in the (i,j)th class replaces nj + h when
 n,j appears as an exponent.

 4. THE WEIBULL DISTRIBUTION WITH COVARIATES

 It may be desired to relax the independence of the hazard from survival time to accom-

 modate a broader range of applications or as a test for the suitability of the above models.

 A Weibull component may be inserted in the model of ? 2 and the hazard written

 h(t) = cctAl exp (- z,).

 The additional parameter A can be modelled as a scale parameter. On the basis of survivals

 tl ... ., tn? and with y =-log (c/A)/A, 8 = (3/A and yi = log ti (i = 1, ..., n), the model can be
 written

 n

 rl exp {wi - exp (w*)},

 y = yl + ZS + w/A.

 The quantities {y, 9(y), s(y)} provide a transformation variable, where y and 6(y) are the
 sample mean and least squares regression coefficients for y as before and s(y) is the length of

 the residual vector, s2(y) = 2(y* - - z* 8)2, while the quantities di = s'-(y) (yi-y- z 6)
 index orbits.

 For the sake of brevity only the statements of probabilistic inference from this model are

 recorded. Tests of significance, equivalent to the type given above, can be computed as tail

 area probabilities from the structural probability statements. Inference about (cc, 8, A) can
 be made from

 n F nl
 k(t) cn_A_1 A1 t tA 1 exp -(a/A) t~ exp (Azi ) ]da d dA,

 i=1 L 1

 and cc can be integrated out to yield

 n ti -n k (t) An-I tX texp(-Azi8)} dSdA. (9)

 Marginal inference about A can be made by integrating (9) over 8. For p = 1 this is
 possible, but generallyto test A = 1 it would be more convenient to classify data on covariate
 values, or intervals, and to compare A = 1 to
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 Exponential survival8 with cen8oring and explanatory variable8 285

 within each such class, m denoting the number of individuals in such a class. In the mood of
 ? 3 expression (9) becomes

 r { -

 k'(t) Ar-l t-l t exp(-AziB) dS dA (10)
 i=l ti=1

 if tr+1, ..., tn are censored.
 If data are initially classified as in ? 2*4, joint statements for (8, A) are a product of terms

 (10) over classes.

 5. AN ILLUSTRATION

 Table 1 presents survival data, double daggers indicate censoring, on 137 advanced lung
 cancer patients as collected by the Veterans Administration Lung Cancer Study Group.
 Patients were randomized according to one of two chemotherapeutic agents (1, standard;
 2, test). Of particular interest is the possible differential effects of therapy on tumour cell

 0.1

 005

 71 004
 003 _

 0-02

 +~~~~

 0-005 +
 0 004 -

 0003

 000' I I I I I I
 10 20 30 40 50 60 70 80 90 100

 Performnaice status

 Fig. 1. Death rate versus performance status.

 type. Tumours are classified into one of four broad groups (1, squamous; 2, small; 3, adeno;
 4, large). The covariates recorded when a patient is taken on study include performance
 status, a measure of general medical status on a scale 10, 20, ..., 90; 10, 20, 30 - completely

 hospitalized, 40, 50, 60 - partial confinement to hospital, 70, 80, 90 - able to care for self,
 time from diagnosis to starting on study (months), age, and previous therapy (0, no;

 10, yes). Denote covariate vectors by xl, ..., X4, respectively.

 The assumed hazard for the survival ti,k days of the kth patient in treatment group i and
 tumour cell type j is

 acj exp {- ll (Xljk( l - * (11V)

 The exponential relation between covariate and hazard was suggested by plots of exponential
 death rate versus covariate value. Figure 1 is a plot of death rate on a log scale versus
 performance status. A linear relation is suggested.

 Covariates 1 to 4 were entered singly into the hazard (I 1) and significance levels, twice the
 tail area, for ,8j = 0 (j = I, ..., 4) were calculated. These values are 0-00, 0-61, 0-72 and 0-57,
 respectively, while the corresponding g's are 0-029, -0-005, -0-003 and -0-012. The

 marginal probability densities for the ,8j's are very nearly normal with slight irregularities
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 286 R. L. PRENTICE

 Table 1. Data for lung cancer patients: days of -survival (t), performance status (x1),

 months from diagnosis (x2), age in years (x3), and prior* therapy (x,,)

 t X1 x2 X3 X4 t X1 x2 Xa3 X4 t X1 X2 xa X4

 Standard, squamoust 35 40 6 62 0 87 60 2 60 0
 72 60 7 69 0 117 80 2 38 0 2 40 36 44 10
 411 70 5 64 10 132 80 5 50 0 20 30 9 54 10
 228 60 3 38 0 12 50 4 63 10 7 20 11 66 0
 126 60 9 63 10 162 80 5 64 0 24 60 8 49 0
 118 70 11 65 10 3 30 3 43 0 99 70 3 72 0
 10 20 5 49 0 95 80 4 34 0 8 80 2 68 0
 82 40 10 69 10 99 85 4 62 0
 110 80 29 68 0 Standard,1lrge 61 70 2 71 0
 314 50 18 43 0 177 50 16 66 10 25 70 2 70 0
 100t 70 6 70 0 162 80 5 62 0 95 70 1 61 0
 42 60 4 81 0 216 50 15 52 0 80 50 17 71 0
 8 40 58 63 10 553 70 2 47 0 51 30 87 59 10

 144 30 4 63 0 278 60 12 63 0 29 40 8 67 0
 251t80 9 52 10 12 40 12 68 10
 11 70 11 48 10 260 80 5 45 0 Test, adeno

 200 80 12 41 10 24 40 2 60 0
 Standard, small 156 70 2 66 0 18 40 5 69 10

 30 60 3 61 0 182t 90 2 62 0 831 99 3 57 0
 384 60 9 42 0 143 90 8 60 0 31 80 3 39 0
 4 40 2 35 0 105 80 11 66 0 51 60 5 62 0
 54 80 4 63 10 103 80 5 38 0 90 60 22 50 10
 13 60 4 56 0 250 70 8 53 10 52 60 3 43 0

 1231 40 3 55 0 100 60 13 37 10 73 60 3 70 0
 971 60 5 67 0 8 50 5 66 0
 153 60 14 63 10 Test, squamous 36 70 8 61 0
 59 30 2 65 0 999 90 12 54 10 48 10 4 81 0
 117 80 3 46 0 112 80 6 60 0 7 40 4 58 0
 16 30 4 53 10 871 80 3 48 0 140 70 3 63 0
 151 50 12 69 0 2311 50 8 52 10 186 90 3 60 0
 22 60 4 68 0 242 50 1 70 0 84 80 4 62 10
 56 80 12 43 10 991 70 7 50 10 19 50 10 42 0
 21 40 2 55 10 111 70 3 62 0 45 40 3 69 0
 18 20 15 42 0 1 20 21 65 10 80 40 4 63 0

 139 80 2 64 0 587 60 3 58 0 Test, large
 20 30 5 65 0 389 90 2 62 0 2 6 4 45 0
 31 75 3 65 0 33 30 6 64 0 56 0 45 0
 52 70 2 55 0 2520 36 63 0 16470 1 68 10
 287 60 25 66 10 357 0 13 58 0 130 4 39 0
 18 30 4 60 0 467 0 2 64 0 530 1 66 0
 51 60 1 67 0 201 80P28 52 10 153r0 50 63 t0
 122 80t28 53 0 1 50 7 35 0 3436U0 11 64 10
 27 60 8 62 0 3070 11 63 0 13400 10 64 10
 54 70 1 67 0 44 60 13 70 10 133750 1 65 0
 7 50 7 72 0 283 90 2 51 0 211160 5 64 10
 63 50 11 48 0 15 50 13 40 10 23178 0 18 67 10
 392 40 4 68 0 378,smll4 80 4 65 0
 10 40 23 67 10 Ts,sal4 0 3 3

 25 30 2 69 0

 Standard, adeno 1031 70 22 36 10
 8 20 19 61 10 21 20 4 71 0

 92 70) 10 60 0 13 30 2 62 0

 * 0, no prior therapy, 10, prior therapy.

 t Standard therapy, squamous tumour cell type.
 + esrd uvvl
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 Exponential survivals with censoring and explanatory variables 287

 in the tails. Figure 2 provides a plot of this density for ,8l. Since ,8o = 0 was the most highly
 significant, x2, X3 and X4 were orthogonalized to xl and 1% = A, was inserted. Significance

 levels for the new coefficients ,81 = 0 (j = 2, 3, 4) were calculated as the orthogonalized
 vectors were entered singly into the hazard. These are 0-80, 0-56 and 0-46, respectively, with

 corresponding /%* values 0-001, 0-005 and -0015.

 80-

 - 60 -

 40-

 001 002 003 004 0.05

 fit

 Fig. 2. Marginal probability density for /3.

 It appears that if (11) is appropriate only xl needs to be included in the model. The

 quantities

 6,ij = [ A exp{ - (xlijk - x1) tikJ/

 are presented in Table 2. The number of deaths rij is bracketed.

 Table 2. Expected survival estimates in days adj4sted for performance status

 Cell type

 Therapy squamous small adeno large

 Standard 142-53 (13) 101-79 (28) 48-01 (9) 140-47 (14)

 Test 190-63 (18) 53 04 (17) 61-67 (17) 96-50 (12)

 Since ,81 is rather precisely estimated (Fig. 2), the quantities #2j/8l# (j = 1) ..., 4) may
 reasonably be regarded as arising from an F(2r2j, 2r,j) distribution for purposes of testing
 therapy equality within cell types.

 Finally the appropriateness of the exponential assumption is examined by writing

 the hazard as aij tA-1 exp {-,l(xlijk- -x1)}. The marginal probability distribution for A
 given by

 k(t)J II fl (II tAjklArij/[ E exp { - /l(Xlijk - X1)} t jk ) A'dl,
 i=1 j=1 k=1k=1

 is plotted in Fig. 3. The hypothesis A = 1 seems to be reasonably in keeping with the
 data.

This content downloaded from 104.194.220.189 on Mon, 27 Apr 2020 09:51:33 UTC
All use subject to https://about.jstor.org/terms



 288 R. L. PRENTICE

 40

 >, 30

 0
 . 20

 10 _

 0
 08 09 10 1 1 12 1-3 1-4

 A

 Fig. 3. Marginal probability density for A.
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