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Kaggle Survey (2019)
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What data science methods do you use at work?
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Decision Tree
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A decision tree
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Training
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h(v,0) € {True, False}
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data before split class distribution

Cg@ 0.8
o

o'

B, o8 .. ‘ ‘ |
31!! ‘.s 02 I [ I Hl |
p(c)
 Training set v « Compute p,(c), the proportion
 To each sample v is assigned of samples in each class that
a class c. lands 1n leaf 1.
|'L A



m

Testing
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‘ I p(c|v) = plc)

 Let us assume that v falls into leaf 1.
« We take the probability of belonging to class c, p(c|v), to be p;(c) if
it lands 1n leaf 1.
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Weak Learners

Weak learner examples

Weak learner: axis aligned.

Weak learner: oriented line.

h(v, 0)

Node weak learner

Node test params

Weak learner: conic section.

h(V,e) = [7'1 > ¢(V) ’(,b > 7'2]

d(v) = (z1 22 1)
P =(0113)

Feature response
for 2D example.

| With ¥ = (10%3) or

Ve

h(v,O) = [’7’1 > ¢(V) ’¢ > 7'2]

Feature response o
for 2D example. (,‘b(v) = (171 2 1

(With P € R’ generic line in homog. coordinates]
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h(v,0) = |11 > ¢T(v) % ¢(v) > 7]

P(v) = (z1221)"

Feature response
for 2D example.

L With 9 € R3*3a matrix representing a conic.
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Entropy and Gini Index

Let p* be the proportion of data points in & that are assigned to class k.

We can define
K
+ the Gini index Q(8) = ¥ pk(1 — p*),
k=1
K

o the entropy Q(&) = — Zpk In p*.
k=1
e They both vanish when 3k ,p¥=1.

» They are maximized when all p* are equal.

0.2 0.4 0.6
Two classes case.

—> Minimizing these measures favors leaves in which a large fraction

of samples belong to the same class.
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Maximizing Information Gain

data before split class distribution
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At each node, pick the weak learner that delivers the highest information gain.
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Problematic for AdaBoost ....
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When using linear classifiers as weak learners. :

®

=

=Pr-L




... but not for Trees

Training
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From Trees to Forests

Use multiple trees to increase robustness:

G0 D -

H‘ \ l ’\

pi(c|v) pa(c|V) pa(c|V)

p(c|v) = f(pi(c|v),...,pr(c|V))

—

e How many trees?
e How different should they be?
e How do we fuse their outputs?
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Creating Multiple Trees

S Full training set

S, € Sy Randomly sampled subsets made available to train the tree t

. J

Forest training
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v v

e The subsets are typically chosen randomly with replacement.
e This is known as bagging.
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Fusing the Output
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Naive Bayesian: p(c|v) « H pc|V)
t

1
L(c,v) = — D’ —log(p(c| V)

5

e Assumes the output of each tree is independent from each other.
e Valid assumption if the training subsets are disjoint.
e Justifiable assumption if the training database is large enough.
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Ensemble Model

MYM\\
D

|
1

=Pr-L



M
"N

Graphical Interpretation

Weak classifiers
at every level of
the tree split
the space.
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Graphical Interpretation

Weak classifiers
at every level of
the tree split
the space.




Graphical Interpretation
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Graphical Interpretation
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Graphical Interpretation
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Graphical Interpretation

e Each tree produces its
own partition of the
space.

e These partitions are
combined in a Naive
Bayesian manner.
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Relationship to Boosting

o N

e Boosted Cascades:
— Very unbalanced tree.

— Good for unbalanced binary problems,
such as sliding window object detection.

e Randomized forests:
— Less deep, more balanced.
— Ensemble of trees gives robustness.
— Good for multi-class problems.
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3D Pose Estimation

TWINING
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To track the car:
1. We track interest points in the image.
2. We infer their 3D position from the tracks.
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Classification-Based Approach to Matching

FEAFZE - N [K%

e One class per keypoint.

e Train a decision forest to recognize them.

Lepetit and Fua, PAMI’06 A
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Simple Weak Learners

The nodes contain simple tests of the form “Is [(m,) > [(m,) ¢”

Posteriors can be learned from:

® Warped images

¢ Video sequences
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patch smooth binary tests BRIEF

!

« Most smooth kernels work, even simple box filters.
« 128, 256, or 512 binary tests usually suffice.

typically
o - 256 bits

HO OH

« Random arrangement of tests effective as long as they are evenly
sampled.
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Point Correspondences

--> Real-time on a 2008 cell phone.

Wagner et al. ISMAR’08 A
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Body Part Estimation

depth sensor
A

'4 \
infrared infrared

emitter camera

camera




Depth Image

D © @ LibFreenec t
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Depth Sequence

Depth image.
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Side view
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Top view




Processing Pipeline

body joint hypotheses

input depth image body parts
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front view side view top view
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Body Part Recognition

m

Training labelled data

A
Visual feature: x(p, Ap) =J(p) - J(p + _p)
J(p)

Weak classifier: h(p, Ap,7) = x(p, Ap) — 7

e Very fast to compute.
e Real-time performance
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Synthetic Training Data

) : Retarget to varied body shapes A
Record mocap
100,000s of poses 8 ('l\ 1 1994 11
) '\ T T VALV )
Render (depth, body parts) pairs A
33 ] X
. J

Train invariance to:
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Influence of Tree Depth

Input depth Ground truth parts Inferred parts
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depth 18
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Choosing the Tree Depth

60% -

Average per-class
accuracy
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— 900k training images.
—— 15k training images.

On synthetic test data.
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Choosing the Number of Trees

ground truth

57% - |
Q‘\
% “
© 3
O >,
- O
g0
g S
> O inferred body parts (most likely)
© ©
3 1 tree 3 trees b trees
>
<
40% ———
1 2 3 4 5 6
Number of
trees

m
v
"N
r



Result

Input depth image with Inferred body parts posterior
background removed. p(c|v)
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Decision Forests in Short

e They make it comparatively easy to interpret what
is happening.

e Their behavior is easy to modify.

e They can be trained using moderate amounts of
data.

—> Vlery useful in many practical applications.
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